Effect of Ultrasonic Pretreatment on Radio Frequency Vacuum Drying Characteristics and Quality of Codonopsis pilosula Slices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Test Equipment
2.3. Test Method
2.4. Determination of Test Indicators
2.4.1. Dry Base Moisture Content Determination
2.4.2. Determination of Drying Rate
2.4.3. Determination of Moisture Ratio
2.4.4. Effective Moisture Diffusion Coefficient
2.4.5. Calculation of Drying Rate Constant
2.5. Determination of Color
2.6. Determination of Polysaccharide
2.6.1. Drawing of Standard Curve
2.6.2. Determination of Polysaccharide Content in Codonopsis Slices
2.7. Determination of Total Phenolic Content (TPC)
2.7.1. Drawing of Standard Curves
2.7.2. Determination of TPC in Codonopsis Slices
2.8. Determination of Total Flavonoid Content (TFC)
2.8.1. Drawing of Standard Curve
2.8.2. Determination of TFC in Codonopsis Slices
2.9. Determination of Antioxidant Capacity
2.10. Determination of Active Ingredients
2.10.1. Chromatographic Conditions
2.10.2. Preparation of Reference Substance
2.10.3. Preparation of Test Samples
2.11. Microstructure
2.12. Data Analysis
3. Results and Analysis
3.1. Analysis of Drying Characteristics
3.2. Effective Moisture Diffusion Coefficient
3.3. Drying Rate Constant
3.4. Analysis of Drying Quality
3.4.1. Color Difference Analysis
3.4.2. Analysis of Polysaccharides, TPC, TFC and Antioxidant Capacity
3.4.3. Analysis of active components
3.5. Microstructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Pharmacopoeia Commission. Chinese Pharmacopoeia, Volume I; China Pharmaceutical Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Gao, S.M.; Liu, J.S.; Wang, M.; Cao, T.T.; Qi, Y.D.; Zhang, B.G.; Sun, X.B.; Liu, H.T.; Xiao, P.G. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: A review. J. Ethnopharmacol. 2018, 219, 50–70. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.P.; Feng, B.; Zhu, Z.K.; Xin, F.; Chen, S.F.; Li, L.X. The polysaccharides from Codonopsis pilosula modulates the immunity and intestinal microbiota of cyclophosphamide-treated immunosuppressed mice. Molecules 2018, 23, 1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, X.Q.; Le, A.D.; Nguyen, N.P.; Nguyen, H. Thermal diffusivity, moisture diffusivity, and color change of codonopsis javanica with the support of the ultrasound for drying. J. Food Quality 2019, 2019, 2623404. [Google Scholar] [CrossRef] [Green Version]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Özbek, B.; Dadali, G. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J. Food Eng. 2007, 83, 541–549. [Google Scholar] [CrossRef]
- Geng, X.; Zheng, G.S.; Qiang, Z.Z.; Wei, X.G.; Li, H.B.; Wang, M.; Chen, Y.G. Research progress on drying and processing of Radix Codonopsis pilosulae. Chin. Contemp. Med. 2020, 5, 23–26. [Google Scholar]
- Li, Y.F.; Xu, F.J.; Zhang, Z.G.; Wu, P.G.; Liu, F.L.; Jin, H.; Yan, X.K. Effect of microwave drying on the content of codonopsis ginseng kynurense in Codonopsis pilosula. J. Chin. Vet. Med. 2015, 1, 55–58. [Google Scholar]
- Zhang, F.; Zhang, Y.M.; Zheng, Y.; Kang, S.J.; Zhang, H.Y. Optimization of hot air drying process of Codonopsis Radix. Shi Zhenguo Med. 2016, 27, 2161–2164. [Google Scholar]
- Guo, Y.F.; Gu, W.; Qiu, R.L.; Hou, W.Y.; Zhou, H.; Ma, L.L.; Lu, S.S.; Zhang, S.B.; Pei, L.F. Effects of different drying methods on the quality of Codonopsis pilosula. J. Nanjing Univ. Tradit. Chin. Med. 2020, 36, 600–606. [Google Scholar]
- Zhou, X.; Wang, S. Recent developments in radio frequency drying of food and agricultural products: A review. Dry. Technol. 2019, 37, 271–286. [Google Scholar] [CrossRef]
- Awuah, G.; Ramaswamy, H.; Tang, J. Radio Frequency Heating in Food Processing: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Wang, W.; Wang, W.; Jung, J.; Yang, R.; Tang, J.; Zhao, Y. Investigation of hot-air assisted radio frequency (HARF) dielectric heating for improving drying efficiency and ensuring quality of dried hazelnuts (Corylus avellana L.). Food Bioprod. Process. 2020, 120, 179–190. [Google Scholar] [CrossRef]
- Xu, Y.; Zang, Z.; Zhang, Q.; Wang, T.; Shang, J.; Huang, X.; Wan, F. Characteristics and Quality Analysis of Radio Frequency-Hot Air Combined Segmented Drying of Wolfberry (Lycium barbarum). Foods 2022, 11, 1645. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhu, H.; Yan, R.; Wang, S. Simulation and prediction of radio frequency heating in dry soybeans. Biosyst. Eng. 2015, 129, 34–47. [Google Scholar] [CrossRef]
- Xie, Y. A Comparative Study of Hot Air and RF-Hot Air Combined Drying of Maize Seeds. Master’s Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Mahmood, N.; Liu, Y.; Munir, Z.; Zhang, Y.; Niazi, B.M.K. Effects of hot air assisted radio frequency drying on heating uniformity drying characteristics and quality of paddy. LWT 2022, 158, 113131. [Google Scholar] [CrossRef]
- Santacatalina, J.V.; Contreras, M.; Simal, S.; Cárcel Garcia-Perez, J.V. Impact of applied ultrasonic power on the low temperature drying of apple. Ultrason. Sonochem. 2016, 28, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, S.; Santacatalina, J.V.; Simal, S.; Garcia-Perez, J.V.; Femenia, A.; Rossello, C. Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. J. Food Eng. 2014, 129, 21–29. [Google Scholar] [CrossRef]
- Rashid, M.T.; Ma, H.; Jatoi, M.A.; Hashim, M.M.; Wali, A.; Safdar, B. Influence of ultrasonic pretreatment with hot air drying on nutritional quality and structural related changes in dried sweet potatoes. Int. J. Food Eng. 2019, 15, 20180409. [Google Scholar] [CrossRef]
- Xu, J.X.; Wang, D.N.; Lei, Y.P.; Cheng, L.J.; Zhuang, W.J.; Tian, Y.T. Effects of combined ultrasonic and microwave vacuum drying on drying characteristics and physicochemical properties of Tremella fuciformis. Ultrason. Sonochem. 2022, 84, 105963. [Google Scholar] [CrossRef]
- Xu, B.; Lin, W.; Wei, B.; Rong, Z. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrason. Sonochem. 2018, 40 Pt A, 619–628. [Google Scholar]
- AOAC. Official Method of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Zhu, S.Q.; Guo, S.; Sha, X.X.; Zhu, D.X.; Lu, X.J.; Qian, D.W.; Duan, J.A. Simulation and analysis of moisture dynamic process of different drying methods of Radix Codonopsis pilosulae. Food Ind. Sci. Technol. 2017, 7, 245–249+255. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smit, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Wan, F.X.; Li, W.Q.; Luo, Y.; Wei, B.; Huang, X.P. Effect of ultrasonic pretreatment on the characteristics and quality of far-infrared vacuum drying of Lycium barbarum. Chin. Herb. Med. 2020, 51, 4654–4663. [Google Scholar]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in phenolic compounds in garlic (allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Lay, M.; Karsani, S.; Mohajer, S.; Malek, S.A. Phytochemical constituents, nutritional values, phenolics, flavonols, flavonoids, antioxidant and cytotoxicity studies on phaleria macrocarpa (scheff.) boerl fruits. BMC Complement. Altern. Med. 2014, 14, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nencini, C.; Menchiari, A.; Franchi, G.G.; Micheli, L. In vitro antioxidant activity of aged extracts of some italian allium species. Plant Foods Hum. Nutr. 2011, 66, 11–16. [Google Scholar] [CrossRef]
- Nowacka, M.; Wedzik, M. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Appl. Acoust. 2016, 103, 163–171. [Google Scholar] [CrossRef]
- de la Fuente-Blanco, S.; Riera-Franco de Sarabia, E.; Acosta-Aparicio, V.M.; Blanco-Blanco, A.; Gallego-Juárez, J.A. Food drying process by power ultrasound. Ultrasonics 2006, 44, 523–527. [Google Scholar] [CrossRef]
- Xu, B.G.; Essodézam, S.T.; Wei, B.X.; Wang, B.; Hu, Y.; Zhang, L.; Arun, S.M.; Zhou, C.S.; Ma, H.L. Multi-frequency power ultrasound as a novel approach improves intermediate-wave infrared drying process and quality attributes of pineapple slices. Ultrason. Sonochem. 2022, 88, 106083. [Google Scholar] [CrossRef]
- Ozan, K.; Amir, M.; Luis, V.; Feng, H. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 2020, 73, 105510. [Google Scholar]
- Nowacka, M.; Wiktor, A.; Śledź, M. Drying of ultrasound pretreated apple and its selected physical propertie. J. Food Eng. 2012, 113, 427–433. [Google Scholar] [CrossRef]
- Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Moisture Diffusivity Data Compilation in Foodstuffs. Drying Technol. 1996, 14, 2225–2253. [Google Scholar] [CrossRef]
- Yuan, L.J.; He, X.; Lin, R.; Cheng, S.S. Effect of ultrasonic pretreatment on moisture state and hot air drying characteristics of kiwifruit. J. Agric. Eng. 2021, 37, 263–272. [Google Scholar]
- Vadivambal, R.; Jayas, D.S. Changes in quality of microwave-treated agricultural products—A review. Biosyst. Eng. 2007, 98, 1–16. [Google Scholar] [CrossRef]
- Maskan, M. Kinetics of colour change of kiwifruits during hot air and microwave drying—sciencedirect. J. Food Eng. 2001, 48, 169–175. [Google Scholar] [CrossRef]
- Wiktor, A.; Sledz, M.; Nowacka, M.; Rybak, K.; Witrowa-Rajchert, D. The influence of immersion and contact ultrasound treatment on selected properties of the apple tissue. Appl. Acoust. 2016, 103, 136–142. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Mobbs, T.; Barbosa-Canovas, G.V. Ultrasound Applications in Food Processing; Feng, H., Barbosa-Canovas, G.V., Eds.; Ultrasound Technologies for Food and Bioprocessing Food Engineering Series; Springer: New York, NY, USA, 2011; pp. 65–105. [Google Scholar]
- Mcclements, D.J. Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 1995, 6, 299. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, T.; Liu, H.; Pan, Q.; Zhan, J.; Huang, W. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regul. 2009, 58, 251–260. [Google Scholar] [CrossRef]
- Ossipov, V.; Salminen, J.P.; Ossipova, S.; Haukioja, E.; Pihlaja, K. Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem. Syst. Ecol. 2003, 31, 3–16. [Google Scholar] [CrossRef]
- Han, H.Y.; Wang, X.H.; Wang, N.L.; Ling, M.T.; Wong, Y.C.; Yao, X.S. Lignans isolated from campylotropis hirtella (franch.) schindl. decreased prostate specific antigen and androgen receptor expression in lncap cells. J. Agric. Food Chem. 2008, 56, 6928–6935. [Google Scholar] [CrossRef]
- Li, Y.H.; Wang, X.C.; Wu, Z.F.; Wan, N.; Yang, M. Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrason. Sonochem. 2020, 68, 105219. [Google Scholar] [CrossRef]
- Lee, S.C.; Jeong, S.M.; Kim, S.Y.; Park, H.R.; Nam, K.C.; Ahnb, D.U. Effect of far-infrared radiation and heat treatment on theantioxidant activity of water extracts from peanut hulls. Food Chem. 2006, 94, 489–493. [Google Scholar] [CrossRef]
- Chao, E.; Tian, J.J.; Fan, L.P.; Zhang, T. Drying methods influence the physicochemical and functional properties of seed-used pumpkin. Food Chem. 2022, 369, 130937. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.B.; Yao, X.D.; Xiao, H.W.; Wang, D.D.; Zheng, X.; Wang, Q.; Zhu, R.G.; Zang, Y.Z.; Liu, H. Influence of RF-assisted hot air drying on the textural properties and microstructure of crisp red jujube slices. J. Agric. Eng. 2022, 38, 296–306. [Google Scholar]
- Roknul, A.S.M.; Zhang, M.; Mujumdar, A.S.; Wang, Y. A comparative study of four drying methods on drying time and quality characteristics of stem lettuce slices (lactuca sativa L.). Int. J. 2014, 32, 657–666. [Google Scholar]
- Zhou, X.; Xu, R.; Zhang, B. Radio Frequency-Vacuum Drying of Kiwifruits: Kinetics, Uniformity, and Product Quality. Food Bioprocess Technol. 2018, 11, 2094–2109. [Google Scholar] [CrossRef] [Green Version]
- Joanna, K.; Justyna, S.; Marcin, S.; Elżbieta, R.K.; Róża, B.M.; Grzegorz, M. Ultrasound- and microwave-assisted convective drying of carrots—Process kinetics and product’s quality analysis. Ultrason. Sonochem. 2018, 48, 249–258. [Google Scholar]
- Cinthia, R.; Meliza, L.R.; Alberto, C.M.; Raul, S.; Pedro, E.D.A. Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Res. Int. 2016, 89, 701–708. [Google Scholar]
- Juliana, G.S.; Antonia, M.; Juan, A.C.; Mar, V.; Jose, V.G.P. Air-borne ultrasound application in the convective drying of strawberry. J. Food Eng. 2014, 128, 132–139. [Google Scholar]
- Tao, Y.; Wang, P.; Wang, Y.L.; Shekhar, U.K.; Han, Y.B.; Wang, J.D.; Zhou, J.Z. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrason. Sonochem. 2016, 31, 310–318. [Google Scholar] [CrossRef]
Experimental Factor | Drying Rate Constant/g·10−4/g Min−1 | Effective Moisture Diffusivity/m2·Min·10−8 | ||
---|---|---|---|---|
Pretreatment Time/Min | Ultrasound Frequency/kHz | Ultrasound Power/W | ||
Without ultrasonic treatment | 3.43256 ± 0.23 ab | 6.87363 ± 1.12 b | ||
20 | 40 | 60 | 3.54025 ± 1.34 ab | 6.61425 ± 0.52 b |
30 | 40 | 60 | 4.65612 ± 0.32 ab | 7.78147 ± 0.85 ab |
40 | 40 | 60 | 5.66589 ± 0.14 a | 7.52208 ± 0.24 ab |
30 | 20 | 60 | 3.74271 ± 0.39 ab | 7.26271 ± 0.82 ab |
30 | 60 | 60 | 5.63408 ± 1.34 b | 9.46745 ± 0.32 ab |
30 | 40 | 40 | 3.68494 ± 1.45 a | 7.68416 ± 0.25 b |
30 | 40 | 80 | 4.89157 ± 0.35 ab | 8.23539 ± 0.39 a |
Drying conditions | L* | a* | b* | ΔE |
---|---|---|---|---|
Without ultrasonic treatment | 71.38 ± 0.73 a | 1.51 ± 0.76 ab | 18.81 ± 2.09 bc | 6.10 ± 2.76 bcd |
20 min | 73.83 ± 1.26 ab | 1.56 ± 0.38 bcd | 18.93 ± 0.69 bc | 5.81 ± 0.99 bcd |
30 min | 73.03 ± 0.45 a | 1.14 ± 0.82 abcd | 18.22 ± 0.77 bc | 3.58 ± 0.47 cd |
40 min | 73.72 ± 8.67 ab | 1.43 ± 1.47 abcd | 18.68 ± 2.54 bc | 5.16 ± 4.35 abc |
20 kHz | 74.31 ± 7.38 ab | 1.61 ± 1.53 d | 18.9 ± 0.44 bc | 5.57 ± 2.34 ab |
60 kHz | 73.95 ± 6.76 ab | 1.53 ± 1.54 bcd | 18.84 ± 3.51 bc | 5.69 ± 3.28 abcd |
40 W | 74.16 ± 7.11 a | 1.93 ± 0.17 ab | 19.67 ± 1.16 b | 5.77 ± 2.26 bcd |
80 W | 75.76 ± 5.33 a | 1.78 ± 0.96 a | 18.83 ± 3.25 bc | 5.96 ± 4.10 bcd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Y.; Zang, Z.; Wan, F.; Zhang, Q.; Shang, J.; Xu, Y.; Jiang, C.; Wang, T.; Huang, X. Effect of Ultrasonic Pretreatment on Radio Frequency Vacuum Drying Characteristics and Quality of Codonopsis pilosula Slices. Agriculture 2023, 13, 72. https://doi.org/10.3390/agriculture13010072
Yue Y, Zang Z, Wan F, Zhang Q, Shang J, Xu Y, Jiang C, Wang T, Huang X. Effect of Ultrasonic Pretreatment on Radio Frequency Vacuum Drying Characteristics and Quality of Codonopsis pilosula Slices. Agriculture. 2023; 13(1):72. https://doi.org/10.3390/agriculture13010072
Chicago/Turabian StyleYue, Yuanman, Zepeng Zang, Fangxin Wan, Qian Zhang, Jianwei Shang, Yanrui Xu, Chunhui Jiang, Tongxun Wang, and Xiaopeng Huang. 2023. "Effect of Ultrasonic Pretreatment on Radio Frequency Vacuum Drying Characteristics and Quality of Codonopsis pilosula Slices" Agriculture 13, no. 1: 72. https://doi.org/10.3390/agriculture13010072
APA StyleYue, Y., Zang, Z., Wan, F., Zhang, Q., Shang, J., Xu, Y., Jiang, C., Wang, T., & Huang, X. (2023). Effect of Ultrasonic Pretreatment on Radio Frequency Vacuum Drying Characteristics and Quality of Codonopsis pilosula Slices. Agriculture, 13(1), 72. https://doi.org/10.3390/agriculture13010072