Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ (Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Image Analysis
2.2.1. Image Texture Parameters
2.2.2. Geometric Features
2.3. Determination of Physicochemical Properties
2.4. Statistical Analysis
3. Results and Discussion
3.1. Image Parameters of ‘Mejhoul’ Date Fruits
3.2. Pomological, Rheological, and Biochemical Quality of ‘Mejhoul’ Date Fruits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, D.V.; Al-Khayri, J.M.; Jain, S.M. Introduction: Date production status and prospects in Asia and Europe. In Date Palm Genetic Resources and Utilization; Springer: Dordrecht, The Netherlands, 2015; pp. 1–16. [Google Scholar]
- FaoStat. The FAOSTAT Database. 2022. Available online: https://www.fao.org/faostat/fr/#data/QCL (accessed on 22 November 2022).
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.)—A review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Ayad, A.A.; Williams, L.L.; Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O. Date fruit: A review of the chemical and nutritional compounds, functional effects and food application in nutrition bars for athletes. Int. J. Food Sci. Technol. 2021, 56, 1503–1513. [Google Scholar] [CrossRef]
- Seerangurayar, T.; Al-Ismaili, A.M.; Jeewantha, L.J.; Al-Nabhani, A. Experimental investigation of shrinkage and microstructural properties of date fruits at three solar drying methods. Sol. Energy 2019, 180, 445–455. [Google Scholar] [CrossRef]
- Noutfia, Y.; Alem, C.; Filali Zegzouti, Y. Assessment of physico-chemical and sensory properties of two date (Phoenix dactylifera L.) cultivars under commercial cold storage conditions. J. Food Process. Preserv. 2019, 43, e14228. [Google Scholar] [CrossRef]
- Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021, 11, 6. [Google Scholar] [CrossRef]
- Ropelewska, E.; Rutkowski, K.P. Cultivar discrimination of stored apple seeds based on geometric features determined using image analysis. J. Stored Prod. Res. 2021, 92, 101804. [Google Scholar] [CrossRef]
- Ropelewska, E. Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms. Agronomy 2022, 12, 762. [Google Scholar] [CrossRef]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning. Agriculture 2021, 11, 1212. [Google Scholar] [CrossRef]
- Al-Janobi, A.A. Date inspection by color machine vision. J. King Saud Univ. 2000, 12, 69–79. [Google Scholar]
- Fadel, M.; Kurmestegy, L.; Rashed, M.; Rashed, Z. Fruit Color Properties of Different Cultivars of Dates (Phoenix dactylifera, L.). Agric. Eng. Int. CIGR E J. 2006, VIII, Manuscript FP 05 005. [Google Scholar]
- Pérez-Pérez, D.B.; Salomón-Torres, R.; García-Vázquez, J.P. Dataset for localization and classification of Medjool dates in digital images. Data Brief 2021, 36, 107116. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Hamid, N.A.; Mustaffer, N.H.; Maulidiani, M.; Mediani, A.; Ismail, I.S.; Tham, C.L.; Shadid, K.; Abas, F. Quality evaluation of the physical properties, phytochemicals, biological activities and proximate analysis of nine Saudi date palm fruit varieties. J. Saudi Soc. Agric. Sci. 2020, 19, 151–160. [Google Scholar] [CrossRef]
- Abdelkarim, D.O.; Mohamed Ahmed, I.A.; Ahmed, K.A.; Younis, M.; Yehia, H.M.; Zein El-Abedein, A.I.; Alhamdan, A. Extending the Shelf Life of Fresh Khalal Barhi Dates via an Optimized Postharvest Ultrasonic Treatment. Plants 2022, 11, 2029. [Google Scholar] [CrossRef] [PubMed]
- Tafti, A.G.; Fooladi, M.H. A study on the physico-chemical properties of Iranian Shamsaei date at different stages of maturity. World J. Dairy Food Sci. 2006, 1, 28–32. [Google Scholar]
- Mallah, N.A.; Sahito, H.A.; Kousar, T.; Kubar, W.A.; Jatoi, F.A.; Shah, Z.H.; Mangrio, W.M. Varietal analyze of chemical composition moisture, ash and sugar of date palm fruits. J. Adv. Bot. Zool. 2017, 5, 1–5. [Google Scholar]
- Bouhlali, E.D.T.; Derouich, M.; Meziani, R.; Bourkhis, B.; Filali-Zegzouti, Y.; Alem, C. Nutritional, mineral and organic acid composition of syrups produced from six Moroccan date fruit (Phoenix dactylifera L.) varieties. J. Food Compos. Anal. 2020, 93, 103591. [Google Scholar] [CrossRef]
- Hasan, F.; Nazir, A.; Sobti, B.; Tariq, H.; Karim, R.; Al-Marzouqi, A.H.; Kamal-Eldin, A. Dehydration of date fruit (Pheonix dactylifera L.) for the production of natural sweet powder. NFS J. 2022, 27, 13–20. [Google Scholar] [CrossRef]
- Ropelewska, E. The use of seed texture features for discriminating different cultivars of stored apples. J. Stored Prod. Res. 2020, 88, 101668. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A. MaZda—A Software for Texture Analysis. In Proceedings of the ISITC 2007, Jeonju, Republic of Korea, 23–24 November 2007; pp. 245–249. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Strzelecki, M.; Szczypiński, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res. A 2013, 702, 137–140. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. In Official Methods of Analysis, 19th ed.; AOAC International: Washington, DC, USA, 2012. [Google Scholar]
- Hazbavi, I.; Khoshtaghaza, M.H.; Mostaan, A.; Banakar, A. Effect of postharvest hot-water and heat treatment on quality of date palm (cv. Stamaran). J. Saudi Soc. Agric. Sci. 2015, 14, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Ismail, B.; Haffar, I.; Baalbaki, R.; Mechref, Y.; Henry, J. Physico-chemical characteristics and total quality of five date varieties grown in the United Arab Emirates. Int. J. Food Sci. Technol. 2006, 41, 919–926. [Google Scholar] [CrossRef]
- Houmy, N.; Melhaoui, R.; Kodad, S.; Zantar, S.; Elamrani, A. Valorisation of cold-pressed almond oil’s cake as raw material for the preparation of naturally gluten-free flour for specific food applications. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 240, p. 03004. [Google Scholar]
- Djouab, A.; Benamara, S.; Gougam, H.; Amellal, H.; Hidous, K. Physical and antioxidant properties of two Algerian date fruit species (Phoenix dactylifera L. and Phoenix canariensis L.). Emir. J. Food Agric. 2016, 28, 601–608. [Google Scholar] [CrossRef]
- Haider, M.S.; Khan, I.A.; Jaskani, M.J.; Naqvi, S.A.; Mateen, S.A.J.I.D.; Shahzad, U.; Abbas, H.A.I.D.E.R. Pomological and biochemical profiling of date fruits (Phoenix dactylifera L.) during different fruit maturation phases. Pak. J. Bot. 2018, 50, 1069–1076. [Google Scholar]
- Harrak, H.; Hamouda, A. Etude de quelques critères de qualité des principales variétés de dattes marocaines. In Proceedings of the Actes du Symposium International sur le Développement Durable des Systèmes Oasiens, Rabat, Maroc, 8–10 March 2005; Institut National de la Recherche Agronomique: Rabat, Maroc, 2005; pp. 8–10. [Google Scholar]
- Al-Harrasi, A.; Rehman, N.U.; Hussain, J.; Khan, A.L.; Al-Rawahi, A.; Gilani, S.A.; Al-Broumi, M.; Ali, L. Nutritional assessment and antioxidant analysis of 22 date palm (Phoenix dactylifera) varieties growing in Sultanate of Oman. Asian Pac. J. Trop. Med. 2014, 7, S591–S598. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Elhoumaizi, A.; Hakkou, A.; Wathelet, B.; Sindic, M. Physico-chemical characterization, classification and quality evaluation of date palm fruits of some Moroccan cultivars. J. Sci. Res. 2011, 3, 139–149. [Google Scholar] [CrossRef]
- Ahmed, J.; Ramaswamy, H.S. Physico-chemical properties of commercial date pastes (Phoenix dactylifera). J. Food Eng. 2006, 76, 348–352. [Google Scholar] [CrossRef]
- Al-Jasass, F.M.; Siddiq, M.; Sogi, D.S. Antioxidants activity and color evaluation of date fruit of selected cultivars commercially available in the United States. Adv. Chem. 2015, 2015, 567203. [Google Scholar] [CrossRef] [Green Version]
- Ghnimi, S.; Al-Shibli, M.; Al-Yammahi, H.R.; Al-Dhaheri, A.; Al-Jaberi, F.; Jobe, B.; Kamal-Eldin, A. Reducing sugars, organic acids, size, color, and texture of 21 Emirati date fruit varieties (Phoenix dactylifera, L.). NFS J. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; George, N.; Sobti, B.; AlRashidi, N.; Ghnimi, S.; Ali, A.A.; Andersson, A.A.M.; Andersson, R.; Antony, A.; Hamed, F. Dietary fiber components, microstructure, and texture of date fruits (Phoenix dactylifera, L.). Sci. Rep. 2020, 10, 21767. [Google Scholar] [CrossRef]
- Albarrak, K.; Gulzar, Y.; Hamid, Y.; Mehmood, A.; Soomro, A.B. A Deep Learning-Based Model for Date Fruit Classification. Sustainability 2022, 14, 6339. [Google Scholar] [CrossRef]
- Haidar, A.; Dong, H.; Mavridis, N. Image-based date fruit classification. In Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems, St. Petersburg, Russia, 3–5 October 2012; pp. 357–363. [Google Scholar]
- Meshram, V.; Patil, K.; Meshram, V.; Hanchate, D.; Ramkteke, S. Machine learning in agriculture domain: A state-of-art survey. Artif. Intell. Life Sci. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Lee, D.J.; Archibald, J.K.; Xiong, G. Rapid color grading for fruit quality evaluation using direct color mapping. IEEE Trans. Autom. Sci. Eng. 2011, 8, 292–302. [Google Scholar] [CrossRef]
- Ohali, Y.A. Computer vision based date fruit grading system: Design and implementation. J. King Saud Univ. Comput. Inf. Sci. 2011, 23, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, B.D.; García Vázquez, J.P.; Salomón-Torres, R. Evaluation of Convolutional Neural Networks’ Hyperparameters with Transfer Learning to Determine Sorting of Ripe Medjool Dates. Agriculture 2021, 11, 115. [Google Scholar] [CrossRef]
- Manickavasagan, A.; Al-Mezeini, N.K.; Al-Shekaili, H.N. RGB color imaging technique for grading of dates. Sci. Hortic. 2014, 175, 87–94. [Google Scholar] [CrossRef]
- Fadel, M.A. Sugar content estimation of date (Phoenix dactylifera, L.) fruits intamr stage. Agric. Eng. Int. CIGR J. 2008, X, 1–9. [Google Scholar]
- Khayer, M.A.; Hasan, M.S.; Sattar, A. Arabian date classification using CNN algorithm with various pre-trained models. In Proceedings of the International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 1431–1436. [Google Scholar]
- Ropelewska, E.; Szwejda-Grzybowska, J. Relationship of Textures from Tomato Fruit Images Acquired Using a Digital Camera and Lycopene Content Determined by High-Performance Liquid Chromatography. Agriculture 2022, 12, 1495. [Google Scholar] [CrossRef]
- Nazari, L.; Shaker, M.; Karimi, A.; Ropelewska, E. Correlations between the textural features and chemical properties of sorghum grain using the image processing method. Eur. Food Res. Technol. 2021, 247, 333–342. [Google Scholar] [CrossRef]
- Ropelewska, E. Assessment of the Influence of Storage Conditions and Time on Red Currants (Ribes rubrum L.) Using Image Processing and Traditional Machine Learning. Agriculture 2022, 12, 1730. [Google Scholar] [CrossRef]
- Ropelewska, E. Application of Imaging and Artificial Intelligence for Quality Monitoring of Stored Black Currant (Ribes nigrum L.). Foods 2022, 11, 3589. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, B.; Ropelewska, E.; Wrzodak, A.; Kowalski, A.; Kaniszewski, S. Yield and quality of romaine lettuce at different daily light integral in an indoor controlled environment. Agronomy 2022, 12, 1026. [Google Scholar] [CrossRef]
Image Texture | Mean Value | Standard Error (SE) |
---|---|---|
RHMean | 95.85 | 1.34 |
GHMean | 37.56 | 0.73 |
BHMean | 22.79 | 0.83 |
LHMean | 86.06 | 0.74 |
aHMean | 145.88 | 0.39 |
bHMean | 145.49 | 0.49 |
XHMean | 16.88 | 0.40 |
YHMean | 12.14 | 0.29 |
ZHMean | 4.23 | 0.18 |
Parameter | Mean Value | Standard Error |
---|---|---|
Fmin (mm) | 31.93 | 0.29 |
Fmax (mm) | 55.17 | 0.42 |
Fh (mm) | 54.64 | 0.42 |
Fv (mm) | 32.21 | 0.23 |
Ft (mm2) | 1402.63 | 19.52 |
Lsz (mm) | 232.24 | 11.27 |
FE (mm2) | 2413.60 | 37.02 |
Spol (mm) | 42.17 | 0.29 |
Ug (mm) | 400.33 | 2.91 |
Uw (mm) | 142.04 | 0.99 |
Ul (mm) | 399.84 | 2.96 |
Mmin (mm) | 15.27 | 0.15 |
Mmax (mm) | 28.54 | 0.23 |
D1 (mm) | 15.761 | 0.14 |
D2 (mm) | 27.65 | 0.21 |
Fd2 (mm2) | 2414.01 | 37.04 |
Parameter | Mean Value | Standard Error |
---|---|---|
W1 (−) | 1.000 | 0.000 |
W2 (−) | 0.110 | 0.001 |
W3 (−) | 114.543 | 0.598 |
W4 (−) | 2.814 | 0.004 |
W5 (−) | 7.115 | 0.284 |
W6 (−) | 0.023 | 0.000 |
W7 (−) | 1.762 | 0.015 |
W8 (−) | 0.587 | 0.005 |
W9 (−) | 1.250 | 0.003 |
W10 (−) | 0.537 | 0.005 |
W11 (−) | 23.234 | 0.398 |
W12 (−) | 1.843 | 0.016 |
W13 (−) | 0.040 | 0.000 |
W14 (−) | 0.008 | 0.000 |
W15 (−) | 1.011 | 0.003 |
SigR (−) | 1613.177 | 52.979 |
RH (−) | 0.981 | 0.0015 |
RB (−) | 34.659 | 0.263 |
RM (−) | 11.089 | 0.033 |
RF (−) | 1.704 | 0.015 |
RFf (−) | 0.580 | 0.005 |
Rc (−) | 0.331 | 0.001 |
Rc1 (−) | 42.168 | 0.293 |
Rc2 (−) | 127.430 | 0.927 |
Quality Parameters of ‘Mejhoul’ Date Fruits | Mean | |
---|---|---|
Pomological features | Flesh thickness (mm) | 6.25 |
Length (mm) | 47.3 | |
Diameter (mm) | 26.4 | |
Total soluble solids (TSS %) | 62.1 | |
Water content (%) | 28.0 | |
Water activity | 0.652 | |
Hunter lab color | L | 30.8 |
a | 10.8 | |
b | 9.58 | |
Texture/hardness (g) | 694 | |
Reducing sugars (%) | 13.8 | |
Total sugars (%) | 58.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noutfia, Y.; Ropelewska, E. Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ (Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements. Agriculture 2023, 13, 74. https://doi.org/10.3390/agriculture13010074
Noutfia Y, Ropelewska E. Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ (Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements. Agriculture. 2023; 13(1):74. https://doi.org/10.3390/agriculture13010074
Chicago/Turabian StyleNoutfia, Younés, and Ewa Ropelewska. 2023. "Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ (Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements" Agriculture 13, no. 1: 74. https://doi.org/10.3390/agriculture13010074
APA StyleNoutfia, Y., & Ropelewska, E. (2023). Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ (Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements. Agriculture, 13(1), 74. https://doi.org/10.3390/agriculture13010074