Targeting Environmental and Technical Parameters through Eco-Efficiency Criteria for Iberian Pig Farms in the dehesa Ecosystem †
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Data Collection
2.2. LCA–DEA Approach and Tobit Model
2.2.1. Step 1: Data Collection
2.2.2. Step 2: LCA Calculation and Climate Change for DMU’s
2.2.3. Step 3: Eco-Efficiency Assessment Using DEA Model
2.2.4. Step 4: Determinants of Eco-Efficiency: Tobit Model
2.3. Statistical Analysis
3. Results
3.1. Description of the Iberian Pig Production System
3.2. Eco-Efficiency Assessment Using LCA–DEA Approach and Tobit Model
3.2.1. Variables
3.2.2. Eco-Efficiency Results
3.2.3. Targets for CC, Output Value and Inputs for Inefficient DMUs
3.2.4. Determinants of Inefficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. The European Green Deal, COM (2019) 640 Final, Brussels. 2019. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 28 January 2021).
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System. COM/2020/381 Final. Brussels. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 5 April 2021).
- United Nations. The Sustainable Development Goals Report 2018; United Nations Publications: New York, NY, USA, 2018. [Google Scholar]
- Cortés, A.; Feijoo, G.; Fernández, M.; Moreira, M.T. Pursuing the route to eco-efficiency in dairy production: The case of Galician area. J. Clean. Prod. 2020, 285, 124861. [Google Scholar] [CrossRef]
- Kloepffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Stępień, S.; Czyżewski, B.; Sapa, A.; Borychowski, M.; Poczta, W.; Poczta-Wajda, A. Eco-efficiency of small-scale farming in Poland and its institutional drivers. J. Clean. Prod. 2021, 279, 123721. [Google Scholar] [CrossRef]
- Martinsson, E.; Hansson, H. Adjusting eco-efficiency to greenhouse gas emissions targets at farm level—The case of Swedish dairy farms. J. Environ. Manag. 2021, 287, 112313. [Google Scholar] [CrossRef]
- García-Gudiño, J.; Monteiro, A.N.T.R.; Espagnol, S.; Blanco-Penedo, I.; Garcia-Launay, F. Life Cycle Assessment of Iberian Traditional Pig Production System in Spain. Sustainability 2020, 12, 627. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Chang, H.-H.; Mishra, A. Does the Milk Income Loss Contract program improve the technical efficiency of US dairy farms? J. Dairy Sci. 2011, 94, 2945–2951. [Google Scholar] [CrossRef] [Green Version]
- Godoy-Durán, Á.; Gómez, E.G.; Pérez-Mesa, J.C.; Piedra-Muñoz, L. Assessing eco-efficiency and the determinants of horticultural family-farming in southeast Spain. J. Environ. Manag. 2017, 204, 594–604. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, X.; Xu, L. Eco-efficiency optimization for municipal solid waste management. J. Clean. Prod. 2015, 104, 242–249. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Gómez, T.; Gémar, G.; Molinos-Senante, M.; Sala-Garrido, R.; Caballero, R. Measuring the eco-efficiency of wastewater treatment plants under data uncertainty. J. Environ. Manag. 2018, 226, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, E.; Kounetas, K.E. Eco-efficiency convergence and technology spillovers of European industries. J. Environ. Manag. 2021, 283, 111972. [Google Scholar] [CrossRef] [PubMed]
- Picazo-Tadeo, A.J.; Gómez-Limón, J.A.; Reig-Martínez, E. Assessing farming eco-efficiency: A Data Envelopment Analysis approach. J. Environ. Manag. 2011, 92, 1154–1164. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Picazo-Tadeo, A.J.; Reig-Martínez, E. Eco-efficiency assessment of olive farms in Andalusia. Land Use Policy 2012, 29, 395–406. [Google Scholar] [CrossRef]
- You, H.; Zhang, X. Ecoefficiency of Intensive Agricultural Production and Its Influencing Factors in China: An Application of DEA-Tobit Analysis. Discret. Dyn. Nat. Soc. 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Żyłowski, T.; Rozakis, S.; Kozyra, J. Efficiency under different methods for incorporating undesirable outputs in an LCA+DEA framework: A case study of winter wheat production in Poland. J. Environ. Manag. 2020, 260, 110138. [Google Scholar] [CrossRef] [PubMed]
- Chancharoonpong, P.; Mungkung, R.; Gheewala, S.H. Life Cycle Assessment and eco-efficiency of high value-added riceberry rice products to support Thailand 4.0 policy decisions. J. Clean. Prod. 2021, 292, 126061. [Google Scholar] [CrossRef]
- Lozano, S.; Iribarren, D.; Moreira, M.T.; Feijoo, G. The link between operational efficiency and environmental impacts: A joint application of Life Cycle Assessment and Data Envelopment Analysis. Sci. Total Environ. 2009, 407, 1744–1754. [Google Scholar] [CrossRef]
- Iribarren, D.; Hospido, A.; Moreira, M.T.; Feijoo, G. Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms. Sci. Total. Environ. 2011, 409, 1786–1798. [Google Scholar] [CrossRef]
- Martinelli, G.; Vogel, E.; Decian, M.; Farinha, M.J.U.S.; Bernardo, L.V.M.; Borges, J.A.R.; Gimenes, R.M.T.; Garcia, R.G.; Ruviaro, C.F. Assessing the eco-efficiency of different poultry production systems: An approach using life cycle assessment and economic value added. Sustain. Prod. Consum. 2020, 24, 181–193. [Google Scholar] [CrossRef]
- García-Cornejo, B.; Pérez-Méndez, J.A.; Roibás, D.; Wall, A. Efficiency and Sustainability in Farm Diversification Initiatives in Northern Spain. Sustainability 2020, 12, 3983. [Google Scholar] [CrossRef]
- Trícia, A.N.; Monteiro, R.; Wilfart, E.; Utzeri, V.J.; Luka, N.B.; Tomazin, U.; Nanni Costa, L.; Candek-Potokar, M.; Fontanesi, L.; Garcia-Launay, F. Environmental impacts of pig production systems using European local breeds: The contribution of carbon sequestration and emissions from grazing. J. Clean. Prod. 2019, 237, 117843. [Google Scholar] [CrossRef]
- Horrillo, A.; Gaspar, P.; Escribano, M. Organic Farming as a Strategy to Reduce Carbon Footprint in Dehesa Agroecosystems: A Case Study Comparing Different Livestock Products. Animals 2020, 10, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Gudiño, J.; Blanco-Penedo, I.; Font-I-Furnols, M.; Angón, E.; Perea, J. Analysis of the Sustainability of Fattening Systems for Iberian Traditional Pig Production through a Technical and Environmental Approach. Animals 2021, 11, 411. [Google Scholar] [CrossRef]
- Comisión Técnica de la Dehesa. Pacto Andaluz por la Dehesa. Boja de 4 de abril de 2006. Sevilla. 2006. Available online: http://www.juntadeandalucia.es/medioambiente/site/portalweb/menuitem.7e1cf46ddf59bb227a9ebe205510e1ca/?vgnextoid=931c2709733da010VgnVCM1000000624e50aRCRD&vgnextchannel=8b08efc8e9255310VgnVCM2000000624e50aRCRD (accessed on 5 January 2021).
- Gaspar, P.; Mesías, F.; Escribano, M.; Pulido, F. Assessing the technical efficiency of extensive livestock farming systems in Extremadura, Spain. Livest. Sci. 2009, 121, 7–14. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.-M.; Blas-Morato, R.; Rengifo-Gallego, J.-I. The Dehesas of Extremadura, Spain: A Potential for Socio-Economic Development Based on Agritourism Activities. Forests 2019, 10, 620. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Estévez, V.; García, A.; Peña, F.; Gómez, A. Foraging of Iberian fattening pigs grazing natural pasture in the dehesa. Livest. Sci. 2009, 120, 135–143. [Google Scholar] [CrossRef]
- Eldesouky, A.; Mesias, F.J.; Escribano, M. Perception of Spanish consumers towards environmentally friendly labelling in food. Int. J. Consum. Stud. 2019, 44, 64–76. [Google Scholar] [CrossRef]
- García-Gudiño, J.; Blanco-Penedo, I.; Gispert, M.; Brun, A.; Perea, J.; Font-I-Furnols, M. Understanding consumers’ perceptions towards Iberian pig production and animal welfare. Meat Sci. 2021, 172, 108317. [Google Scholar] [CrossRef]
- Rebolledo-Leiva, R.; Angulo-Meza, L.; Iriarte, A.; González-Araya, M.C. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Sci. Total. Environ. 2017, 593–594, 36–46. [Google Scholar] [CrossRef]
- Angulo-Meza, L.; González-Araya, M.; Iriarte, A.; Rebolledo-Leiva, R.; de Mello, J.C.S. A multiobjective DEA model to assess the eco-efficiency of agricultural practices within the CF + DEA method. Comput. Electron. Agric. 2019, 161, 151–161. [Google Scholar] [CrossRef]
- De Vries, M.; de Boer, I. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A thematic review of life cycle assessment (LCA) applied to pig production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [Google Scholar] [CrossRef]
- Basset-Mens, C.; van der Werf, H.; Robin, P.; Morvan, T.; Hassouna, M.; Paillat, J.-M.; Vertes, F. Methods and data for the environmental inventory of contrasting pig production systems. J. Clean. Prod. 2007, 15, 1395–1405. [Google Scholar] [CrossRef]
- The Ecoinvent Database: Overview and Methodology, Data Quality Guideline for the Ecoinvent Database Version 3. Available online: https://www.ecoinvent.org (accessed on 20 June 2022).
- Coelli, T.; Rao, D.S.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Springer Science & Business Media: New York, NY, USA, 1998. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Areal, F.J.; Balcombe, K.; Tiffin, R. Integrating spatial dependence into Stochastic Frontier Analysis. Aust. J. Agric. Resour. Econ. 2012, 56, 521–541. [Google Scholar] [CrossRef] [Green Version]
- Toro-Mujica, P.; Aguilar, C.; Vera, R.; Rivas, J.; García, A. Sheep production systems in the semi-arid zone: Changes and simulated bio-economic performances in a case study in Central Chile. Livest. Sci. 2015, 180, 209–219. [Google Scholar] [CrossRef]
- Toro-Mujica, P.; García, A.; Gómez-Castro, A.; Acero, R.; Perea, J.; Rodríguez-Estévez, V.; Aguilar, C.; Vera, R. Technical efficiency and viability of organic dairy sheep farming systems in a traditional area for sheep production in Spain. Small Rumin. Res. 2011, 100, 89–95. [Google Scholar] [CrossRef]
- Angón, E.; García, A.; Perea, J.; Acero, R.; Toro-Mújica, P.; Pacheco, H.; González, A. Eficiencia técnica y viabilidad de los sistemas de pastoreo de vacunos de leche en La Pampa, Argentina. Agrociencia 2013, 47, 443–456. [Google Scholar]
- Li, Y.; Wu, N.; Xu, R.; Li, L.; Zhou, W.; Zhou, X. Empirical analysis of pig welfare levels and their impact on pig breeding efficiency—Based on 773 pig farmers’ survey data. PLoS ONE 2017, 12, e0190108. [Google Scholar] [CrossRef] [Green Version]
- Angón, E.; Perea, J.; Toro-Mújica, P.; Rivas, J.; De-Pablos, C.; García, A. Pathways towards to Improve the Feasibility of Dairy Pastoral System in La Pampa (Argentine). Ital. J. Anim. Sci. 2015, 14, 3624. [Google Scholar] [CrossRef]
- Saiyut, P.; Bunyasiri, I.; Sirisupluxana, P.; Mahathanaseth, I. The Impact of Age Structure on Technical Efficiency in Thai Agriculture. Kasetsart J. Soc. Sci. 2018. Available online: https://so04.tci-thaijo.org/index.php/kjss/article/view/242220 (accessed on 10 April 2021). [CrossRef]
- Ceyhan, V.; Canan, S.; Yıldırım, Ç.; Turkten, H. Economic structure and services efficiency of Turkish Beekeepers’ Association. EJSD. Eur. J. Sustain. Dev. 2017, 6, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Tobin, J. Estimation of relationships for limited dependent variables. Econom. J. Econom. Soc. 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.; Gil, J.; Sierra, I. Technical efficiency of meat sheep production systems in Spain. Small Rumin. Res. 2007, 69, 237–241. [Google Scholar] [CrossRef]
- SPSS for Windows, version 16.0; SPSS Inc. Released 2007; SPSS Inc.: Chicago, IL, USA, 2007.
- Coll-Serrano, V.; Benítez, R.; Bolós, V.J. Data Envelopment Analysis with deaR. Universitat de València. 2018. Available online: https://www.uv.es/dearshiny/Tutoriales_deaR/Tutorial_deaR_espa%C3%B1ol.pdf (accessed on 24 June 2022).
- Eview, version 11; Windows: Ottawa, ON, Canada, 2020.
- Gaspar, P.; Escribano, M.; Mesías, F.; de Ledesma, A.R.; Pulido, F. Sheep farms in the Spanish rangelands (dehesas): Typologies according to livestock management and economic indicators. Small Rumin. Res. 2008, 74, 52–63. [Google Scholar] [CrossRef]
- Dourmad, J.; Ryschawy, J.; Trousson, T.; Bonneau, M.; Gonzàlez, J.; Houwers, H.; Hviid, M.; Zimmer, C.; Nguyen, T.; Morgensen, L. Evaluating environmental impacts of contrasting pig farming systems with life cycle assessment. Animal 2014, 8, 2027–2037. [Google Scholar] [CrossRef] [Green Version]
- RD 4/2014, de 10 de Enero, por el Que se Aprueba la Norma de Calidad Para la Carne, el Jamón, la Paleta y la Caña de Lomo Ibérico. Available online: http://www.boe.es/boe/dias/2014/01/11/pdfs/BOE-A-2014-318.pdf (accessed on 15 February 2021).
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Data envelopment analysis: History, models, and interpretations. In Handbook on Data Envelopment Analysis; Springer: Boston, MA, USA, 2011; pp. 1–39. [Google Scholar]
- Espagnol, S.; Demartini, J. Environmental impacts of extensive outdoor pig production systems in Corsica. In Proceedings of the 9th International Conference Life Cycle Assessment Agri-Food Sector (LCA Food 2014), San Francisco, CA, USA, 8–10 October 2014; pp. 8–10. [Google Scholar]
- Garcia-Launay, F.; Wilfart, A.; Dusart, L.; Nzally, C.; Gaudré, D.; Espagnol, S. Multi-objective formulation is an efficient methodology to reduce environmental impacts of pig feeds. In Proceedings of the 10th International Conference on Life Cycle Assessment of Food, Dublin, Ireland, 19–21 October 2016. [Google Scholar]
- López-Sánchez, A.; Schroeder, J.; Roig, S.; Sobral, M.; Dirzo, R. Effects of Cattle Management on Oak Regeneration in Northern Californian Mediterranean Oak Woodlands. PLoS ONE 2014, 9, e105472. [Google Scholar] [CrossRef]
- Lozano, S.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Environmental impact efficiency in mussel cultivation. Resour. Conserv. Recycl. 2010, 54, 1269–1277. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
- Malak-Rawlikowska, A.; Gębska, M.; Hoste, R.; Leeb, C.; Montanari, C.; Wallace, M.; de Roest, K. Developing a Methodology for Aggregated Assessment of the Economic Sustainability of Pig Farms. Energies 2021, 14, 1760. [Google Scholar] [CrossRef]
- Lockheed, M.E.; Jamison, T.; Lau, L.J. Farmer Education and Farm Efficiency: A Survey. Econ. Dev. Cult. Chang. 1980, 29, 37–76. Available online: https://www.journals.uchicago.edu/doi/abs/10.1086/451231 (accessed on 7 March 2021). [CrossRef]
- Ritten, C.J.; Peck, D.; Ehmke, M.; Patalee, M.A.B. Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Services Industry. J. Econ. Èntomol. 2018, 111, 1014–1022. [Google Scholar] [CrossRef]
- Angón, E.; Bragulat, T.; García, A.; Giorgis, A.; Perea, J. Key factors affecting the technical efficiency of bee farms in the province of La Pampa (Argentina): A two-stage DEA approach. Rev. Fac. Cienc. Agrar. UNCuyo 2021, 53, 150–163. [Google Scholar] [CrossRef]
Dependent Variables | Definition of the Variables | |
---|---|---|
Eco-efficiency level | Social and demographic aspects | |
Family size | Number of family members | |
Number of children | Number of children | |
Civil state | Dummy = 1 If the producer is married, 0 if he is single | |
Age | Manager age | |
Experience | Number of years of managerial experience | |
Education level | Dummy = 1 If it is secondary or higher, 0 if it is primary level or without studies | |
AWU | Annual work unit | |
Farm and management characteristics | ||
% owned area | Own area as a percentage of total area | |
% small ruminant livestock units | Percentage of small ruminant livestock units | |
% of the area used for livestock | Percentage of land area used by livestock | |
PDO a | Dummy =1 if the products of animal origin belong to PDO; 0 if they do not. | |
Type of management | Dummy =1 if it is an extensive management, 0 if it is not (intensive management) | |
Level of montanera orientation | Proportion of pigs fattened in montanera |
Mean | Standard Deviation | Min. | Max. | |
---|---|---|---|---|
Total surface (ha) | 646.4 | 627.00 | 28.50 | 3000 |
Surface of dehesa (ha) | 498.00 | 437.80 | 18.00 | 2000 |
% Surface used of dehesa | 84.00 | 25.89 | 0 | 100 |
Number of sows per farm | 27.60 | 25.75 | 0 | 100 |
Number of reproductive males per farm | 0.89 | 1.08 | 0 | 4.20 |
Number of piglets fattened per farm | 319.70 | 315.00 | 0 | 1260 |
CC a (kg CO2 eq./kg LW) | 3.70 | 0.69 | 2.87 | 6.07 |
LO b (m2.year/kg LW) | 39.42 | 21.49 | 13.83 | 126.0 |
Outputs | Inputs | |||
---|---|---|---|---|
Production Value (EUR) | Climate Change (CC, kg CO2-eq/kg LW) | Surface in Montanera (ha) | Number of Sows | |
Mean | 129,338 | 3.7 | 498.65 | 27.6 |
SD a | 112,458 | 0.69 | 442.65 | 25.75 |
Minimum | 13,502 | 2.87 | 0 | 0 |
Maximum | 634,500 | 6.07 | 2000 | 100 |
Level of Eco-Efficiency | Number of Farms | % | Mean |
---|---|---|---|
Low < 0.80 | 3 | 8.6 | 0.64 |
Medium 0.8–0.9 | 9 | 25.7 | 0.86 |
High 0.9–0.99 | 9 | 25.7 | 0.94 |
Eco-efficient a | 14 | 40 | 1 |
Total | 35 | 100 | 0.919 |
Value | |
---|---|
Reduction percentage of surface in montanera | 11.98 |
Reduction percentage of number of sows | 13.54 |
Climatic Impact on CC reduction | 8.32 |
Production value increase | 18.68 |
Variable | Coefficient | Std. Error | z-Statistic | Prob. |
---|---|---|---|---|
Social and demographic aspects | ||||
Family size | −0.002883 | 0.035695 | −0.080764 | 0.9356 |
Number of children | 0.065596 | 0.020803 | 3.153.233 | 0.0016 |
Civil state | −0.026756 | 0.046468 | −0.575791 | 0.5648 |
Age | 0.007590 | 0.005261 | 1.442.852 | 0.1491 |
Experience | −0.011463 | 0.004038 | −2.839.121 | 0.0045 |
Education level | −0.138727 | 0.050600 | −2.741.620 | 0.0061 |
AWU | 0.032217 | 0.052929 | 0.608680 | 0.5427 |
Farm and management characteristics | ||||
% owned area | 0.001732 | 0.000867 | 1.996.838 | 0.0458 |
% small ruminant livestock units | 0.054434 | 0.124319 | 0.437859 | 0.6615 |
% of the area used for livestock | 0.005509 | 0.001689 | 3.261.379 | 0.0011 |
PDO | 0.050314 | 0.045072 | 1.116.291 | 0.2643 |
Level of montanera orientation | 0.081780 | 0.022082 | 3.703.435 | 0.0002 |
Type of management | 0.084327 | 0.048146 | 1.751.482 | 0.0799 |
Constant | 0.079468 | 0.011470 | 6.928.203 | 0.0000 |
Log likelihood | 26.723 | |||
AIC | −1.0602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gudiño, J.; Angón, E.; Blanco-Penedo, I.; Garcia-Launay, F.; Perea, J. Targeting Environmental and Technical Parameters through Eco-Efficiency Criteria for Iberian Pig Farms in the dehesa Ecosystem. Agriculture 2023, 13, 83. https://doi.org/10.3390/agriculture13010083
García-Gudiño J, Angón E, Blanco-Penedo I, Garcia-Launay F, Perea J. Targeting Environmental and Technical Parameters through Eco-Efficiency Criteria for Iberian Pig Farms in the dehesa Ecosystem. Agriculture. 2023; 13(1):83. https://doi.org/10.3390/agriculture13010083
Chicago/Turabian StyleGarcía-Gudiño, Javier, Elena Angón, Isabel Blanco-Penedo, Florence Garcia-Launay, and José Perea. 2023. "Targeting Environmental and Technical Parameters through Eco-Efficiency Criteria for Iberian Pig Farms in the dehesa Ecosystem" Agriculture 13, no. 1: 83. https://doi.org/10.3390/agriculture13010083
APA StyleGarcía-Gudiño, J., Angón, E., Blanco-Penedo, I., Garcia-Launay, F., & Perea, J. (2023). Targeting Environmental and Technical Parameters through Eco-Efficiency Criteria for Iberian Pig Farms in the dehesa Ecosystem. Agriculture, 13(1), 83. https://doi.org/10.3390/agriculture13010083