Spray Deposition and Distribution on Rice as Affected by a Boom Sprayer with a Canopy-Opening Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Platform
2.3. Test Design
2.3.1. Working Parameter Settings
2.3.2. Arrangement of the Sampling Point
2.4. Test Methods
2.4.1. Determination of Actual Droplet Diameter
2.4.2. Droplet Coverage and Distribution Uniformity
2.5. Data Processing
3. Results and Discussion
3.1. Analysis of Deposition Effect
3.2. Droplet Permeability
3.3. Droplet Distribution Uniformity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Da Silva, A.; Sinfort, C.; Tinet, C.; Pierrat, D.; Huberson, S. A Lagrangian model for spray behaviour within vine canopies. J. Aerosol Sci. 2006, 37, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Salyani, M. Modeling of spray penetration and deposition on citrus tree canopies. Trans. ASAE 2004, 47, 619–627. [Google Scholar] [CrossRef]
- Gaskin, R.E.; Manktelow, D.W.; Cook, S.; May, W.A.; Van_Leeuwen, R.M. Effects of canopy density on spray deposition in kiwifruit. N. Zeal. Plant Prot. 2013, 66, 194–198. [Google Scholar] [CrossRef] [Green Version]
- Skamnioti, P.; Gurr, S.J. Against the grain: Safeguarding rice from rice blast disease. Trends Biotechnol. 2009, 27, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heong, K.L.; Cheng, J.; Escalada, M.M. Rice Planthoppers; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Prado, E.P.; Pogetto, M.H.F.D.A.D.; De Cerqueira, D.T.R.; Raetano, C.G.; Costa, S.Í.D.A. Construction and practical application of a canopy opener device. Eng. Agrícola 2016, 36, 1126–1135. [Google Scholar] [CrossRef] [Green Version]
- Sumner, H.R.; Herzog, G.A. Assessing the effectiveness of air-assisted and hydraulic sprayers in cotton via leaf bioassay. J. Cotton Sci. 2000, 4, 79–83. [Google Scholar]
- Womac, A.R.; Mulrooney, J.E.; Scott, W.P. Characteristics of air-assisted and drop-nozzle sprays in cotton. Trans. ASAE 1992, 35, 1369–1376. [Google Scholar] [CrossRef]
- Zhu, H.; Brazee, R.D.; Fox, R.D.; Derksen, R.C.; Ozkan, H.E. Development of a canopy opener to improve spray deposition and coverage inside soybean canopies: Part 1. Mathematical models to assist opener development. Trans. ASABE 2008, 51, 1905–1912. [Google Scholar] [CrossRef]
- Wu, S.; Wei, X. Mechanical interaction between a canopy opener and rice stalks based on the transient dynamic analysis. Biosyst. Eng. 2019, 178, 256–263. [Google Scholar] [CrossRef]
- Zhu, H.; Derksen, R.C.; Ozkan, H.E.; Reding, M.E.; Krause, C.R. Development of a canopy opener to improve spray deposition and coverage inside soybean canopies: Part 2: Opener design with field experiments. Trans. ASABE 2008, 51, 1913–1922. [Google Scholar] [CrossRef]
- Wenfeng, S.; Haiyang, L.; Tianpeng, F.; Yue, H.; Runtao, W.; Fulin, W. Design and Experiment of Plant Protection Opener Suspender Combination Device Based on Sturgeon Head Curve. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2021, 52, 49–61. [Google Scholar]
- Nascimento, A.B.; de Oliveira, G.M.; de Batista Fonseca, I.C.; Abi Saab, O.J.G.; Canteri, M.G. Determination of the samples required of water-sensitive paper in experiments related spray technology. Semin. Ciências Agrárias 2013, 34, 2687–2696. [Google Scholar] [CrossRef]
- Zhu, H.; Salyani, M.; Fox, R.D. A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric. 2011, 76, 38–43. [Google Scholar] [CrossRef]
- Faraji, A.; Unlu, I.; Crepeau, T.; Healy, S.; Crans, S.; Lizarraga, G.; Fonseca, D.; Gaugler, R. Droplet Characterization and Penetration of an Ultra-Low Volume Mosquito Adulticide Spray Targeting the Asian Tiger Mosquito, Aedes albopictus, within Urban and Suburban Environments of Northeastern USA. PLoS ONE 2016, 11, e0152069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, M.; Carvalho, C.; Marcal, A.R.S. Assessing the ability of image processing software to analyse spray quality on water-sensitive papers used as artificial targets. Biosyst. Eng. 2012, 111, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Fuentes, A.; Rodríguez-Lizana, A.; Gil, E.; Agüera-Vega, J.; Gil-Ribes, J.A. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies. Sci. Total Environ. 2015, 537, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.; Fernández, M. Comparative spray deposits by manually pulled trolley sprayer and a spray gun in greenhouse tomato crops. Crop Prot. 2012, 31, 119–124. [Google Scholar] [CrossRef]
- Smith, D.B. Uniformity and recovery of broadcast sprays using fan nozzles. Trans. ASAE 1992, 35, 39–44. [Google Scholar] [CrossRef]
- Zhu, H.; Dorner, J.; Rowland, D.; Derksen, R.; Ozkan, H. Spray Penetration into Peanut Canopies with Hydraulic Nozzle Tips. Biosyst. Eng. 2004, 87, 275–283. [Google Scholar] [CrossRef]
Parameters | |
---|---|
Position | Front |
Nozzle model | ARAG-422HCC035 |
Pressure | 0.3~2 MPa |
Flow rate (one nozzle) | 1.4~3.61 L/min |
Nozzle spacing | 47 cm |
Number | 12 |
Spraying angle | 80° (vertically down) |
Performance Criteria. | Parameters |
---|---|
Signal | GPS L1/L2 |
Position accuracy (RMS) | 1 cm + 1 ppm (parts per million) |
Velocity accuracy (RMS) | 0.03 m s−1 |
Time accuracy (RMS) | 20 ns |
Locator data refresh rate | 20 Hz |
Treatments | Spraying Equipment | Spraying Velocity (m s−1) | Height (m) |
---|---|---|---|
A | R1 | V1 | H1 |
B | R1 | V2 | H2 |
C | R1 | V3 | H3 |
D | R2 | V2 | H1 |
E | R2 | V3 | H1 |
F | R2 | V1 | H2 |
G | R2 | V3 | H2 |
H | R2 | V1 | H3 |
I | R2 | V2 | H3 |
J | R3 | V1 | |
K | R3 | V2 | |
L | R3 | V3 |
Average Droplet Coverage (%) | Layers | Treatments | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | ||
Adaxial surface | Upper | 71.51 | 26.46 | 20.06 | 95.18 | 94.68 | 71.36 | 12.24 | 21.53 | 33.38 | 32.36 | 28.96 | 12 |
Middle | 42.55 | 12.78 | 13.57 | 88.41 | 34.21 | 66.79 | 8.56 | 13.47 | 13.12 | 15.08 | 13.4 | 5.04 | |
Under | 20.32 | 17.27 | 14.44 | 94.99 | 51.94 | 55.29 | 7.13 | 22.94 | 11.57 | 12.41 | 8.95 | 5.06 | |
Abaxial surface | Upper | 0.36 | 0.75 | 1.67 | 13.59 | 9.47 | 1.12 | 0.24 | 1.08 | 1.37 | 0.39 | 0.13 | 0.22 |
Middle | 2.44 | 0.4 | 0.19 | 3.29 | 45.84 | 0.56 | 0.41 | 11.93 | 0.31 | 0.12 | 0.21 | 0.35 | |
Under | 2.08 | 1.07 | 0.36 | 4.01 | 11.22 | 0.38 | 0.19 | 0.35 | 0.89 | 1.17 | 0.28 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, L.; Wei, X. Spray Deposition and Distribution on Rice as Affected by a Boom Sprayer with a Canopy-Opening Device. Agriculture 2023, 13, 94. https://doi.org/10.3390/agriculture13010094
Jing L, Wei X. Spray Deposition and Distribution on Rice as Affected by a Boom Sprayer with a Canopy-Opening Device. Agriculture. 2023; 13(1):94. https://doi.org/10.3390/agriculture13010094
Chicago/Turabian StyleJing, Linlong, and Xinhua Wei. 2023. "Spray Deposition and Distribution on Rice as Affected by a Boom Sprayer with a Canopy-Opening Device" Agriculture 13, no. 1: 94. https://doi.org/10.3390/agriculture13010094
APA StyleJing, L., & Wei, X. (2023). Spray Deposition and Distribution on Rice as Affected by a Boom Sprayer with a Canopy-Opening Device. Agriculture, 13(1), 94. https://doi.org/10.3390/agriculture13010094