Productivity and Physicochemical Properties of the BRS Isis Grape on Various Rootstocks under Subtropical Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Productivity Features
3.2. Physical Features of the Bunch
3.3. Chemical Properties of the Grape Must
3.4. Chemical Properties of the Grape Must
3.5. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.; Roberto, S.R.; Shahab, M.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; Souza, R.T. Proposal of double-cropping system for “BRS Isis” seedless grape grown in subtropical area. Sci. Hortic. 2019, 251, 118–126. [Google Scholar] [CrossRef]
- Mello, M.R.; Machado, C.E. Vitivinicultura Brasileira: Panorama 2021; Comunicado Técnico nº226; Embrapa Uva e Vinho: Bento Gonçalves, Brazil, 2022; 17p. [Google Scholar]
- El Gengaihi, S.; Ella, F.A.; Hassan, E.M.; Shalaby, E.A.; Baker, D.H.A. Phytochemical investigation and radical scavenging activity of wastes of some grape varieties grown in Egypt. Glob. J. Pharmacol. 2013, 7, 465–473. [Google Scholar] [CrossRef]
- Ritschel, P.; Maia, J.D.G.; Camargo, U.A.; Souza, R.T.; Fajardo, T.V.M.; Naves, R.L.; Girardi, C.L. BRS Isis: Nova Cultivar de Uva de Mesa Vermelha, Sem Sementes e Tolerante ao Míldio; Comunicado Técnico 143; Embrapa: Bento Gonçalves, Brazil, 2013; 20p. [Google Scholar]
- Peterson, J.C.D.; Walker, M.A. Influence of Grapevine Rootstock on Scion Development and Initiation of Senescence. Catal. Discov. Into Pract. 2017, 2, 48–54. [Google Scholar] [CrossRef]
- Leão, P.C.S.; Silva, D.J. Cultivo da videira no Semiárido nordestino. In Cultivo de Fruteiras de Clima Temperado em Regiões Subtropicais e Tropicais, 2nd ed.; Pio, R., Ed.; UFLA: Lavras, Brazil, 2018; pp. 586–625. [Google Scholar]
- Tecchio, M.A.; Hernandes, J.L.; Pires, E.J.P.; Terra, M.M.; Moura, M.F. Cultivo da videira para mesa, vinho e suco. In Cultivo de Fruteiras de Clima Temperado em Regiões Subtropicais e Tropicais, 2nd ed.; Pio, R., Ed.; UFLA: Lavras, Brazil, 2018; pp. 512–584. [Google Scholar]
- Borges, R.S.; Silva, G.A.; Roberto, S.R.; Assis, A.M.; Yamamoto, L.Y. Phenolic compounds, favorable oxi-redox activity and juice color of ‘Concord’ grapevine clones. Sci. Hortic. 2013, 161, 188–192. [Google Scholar] [CrossRef]
- Ibacache, A.; Albornoz, F.; Zurita-Silva, A. Yield responses in flame seedless, Thompson seedless and Red Globe table grape cultivars are differentially modified by rootstocks under semi-arid conditions. Sci. Hortic. 2016, 204, 25–32. [Google Scholar] [CrossRef]
- Silva, M.J.R.; Paiva, A.P.M.; Pimentel Junior, A.; Sánchez, C.A.P.C.; Callili, D.; Moura, M.F.; Leonel, S.; Tecchio, M.A. Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Sci. Hortic. 2018, 241, 194–200. [Google Scholar] [CrossRef]
- Vrsic, S.; Pulko, B.; Kocsis, L. Factors influencing grafting success and compatibility of grape rootstocks. Sci. Hortic. 2015, 181, 168–173. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Silva, M.J.R.; Callili, D.; Hernandes, J.L.; Moura, M.F. Yield of white and red grapes, in terms of quality, from hybrids and Vitis labrusca grafted on different rootstocks. Sci. Hortic. 2020, 259, 108846. [Google Scholar] [CrossRef]
- Yağci, A.; Bozkurt, A. Cluster and Must Characteristics of Boğazkere and Kalecik Karası Grape Cultivars Grown on Different Rootstocks. Tr. J. Nature Sci. 2022, 11, 55–62. [Google Scholar] [CrossRef]
- Fisarakis, I.; Nikolaou, N.; Tsikalas, P.; Therios, I.; Stavrakas, D. Effect of Salinity and Rootstock on Concentration of Potassium, Calcium, Magnesium, Phosphorus, and Nitrate–Nitrogen in Thompson Seedless Grapevine. J. Plant Nutr. 2005, 27, 2117–2134. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Teixeira, L.A.J.; Terra, M.M.; Moura, M.F.; Paioli-Pires, E.J. Extração de nutrientes pela videira ‘Niagara Rosada’ enxertada em diferentes porta-enxertos. Rev. Bras. Frutic. 2011, 33, 736–742. [Google Scholar] [CrossRef]
- Cookson, S.J.; Hevin, C.; Donnart, M.; Ollat, N. Grapevine rootstock effects on scion biomass are not associated with large modifications of primary shoot growth under non limiting conditions in the first year of growth. Funct. Plant Biol. 2012, 39, 650–660. [Google Scholar] [CrossRef]
- Aliquó, G.; Catania, A.; Aguado, G. La Poda de la Vid. Secretaria de Agricultura, Ganadería, Pesca y Alimentación; Instituto Nacional de Tecnología Agropecuaria (INTA): Mendoza, Argentina, 2010; pp. 9–14. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, T.J.F.; Oliveira, J.B. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; 356p, Available online: https://www.embrapa.br/solos/sibcs (accessed on 26 October 2023).
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA: Washington, DC, USA, 1999. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/ (accessed on 27 November 2022).
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Damyanova, B.N.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV—Visible Spectroscopy Characterization and Measurement of Anthocyanins by UV—Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar]
- Leão, P.C.S.; Nascimento, J.H.B.; Moraes, D.S.; Souza, E.R. Yield components of the new seedless table grape ‘BRS Ísis’ as affected by the rootstock under semi-arid tropical conditions. Sci. Hortic. 2020, 263, 109114. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Silva, M.J.R.; Cunha, S.R.; Callili, D.; Sánchez, C.A.P.C.; Souza, J.R.; Moura, M.F. Productive performance and physicochemical quality of grapes for processing grown on different rootstocks. Pesqui. Agropecu. Bras. 2022, 57, e02071. [Google Scholar] [CrossRef]
- Leão, P.C.S.; Nunes, B.T.G.; Souza, E.M.; De Rego, C.J.I.; Nascimento, S.J.H.B. BRS Isis: New seedless grape cultivar for the tropical viticulture in Northeastern of Brazil. BIO Web Conf. 2016, 7, 1002. [Google Scholar] [CrossRef]
- Mota, R.V.; Souza, C.R.; Favero, A.C.; Silva, C.P.C.; Carmo, E.L.; Fonseca, A.R.; Regina, M.A. Produtividade e composição físico-química de bagas de cultivares de uva em distintos porta-enxertos. Pesq. Agropec. Bras. 2009, 44, 576–582. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Silva, M.J.R.; Paiva, A.P.M.; Moura, M.F.; Terra, M.M.; Pires, E.J.P.; Leonel, S. Phenological, physicochemical, and productive characteristics of ‘Vênus’ grapevine onto rootstocks. Pesqui. Agropecu. Bras. 2019, 54, e00335. [Google Scholar] [CrossRef]
- Leão, P.C.S.; Oliveira, C.R.S. Agronomic performance of table grape cultivars affected by rootstocks in semi-arid conditions. Bragantia 2023, 82, e20220176. [Google Scholar] [CrossRef]
- Maia, J.D.G.; Camargo, U.A. O Cultivo da Videira Niágara no Brasil; Empresa Brasileira de Pesquisa Agropecuária—Embrapa: Brasília, Brazil, 2012. [Google Scholar]
- Bettiga, L.J.; Golino, D.A.; McGourty, G.; Smith, R.J.; Verdegaal, P.S.; Weber, E. Wine Grape Varieties in California; UC ANR Publications: Davis, CA, USA, 2003; Volume 3419, 188p, ISBN 1879906635/9781879906631. [Google Scholar]
- Silva, M.J.R.; Paiva, A.P.M.; Souza, J.F.; Padilha, C.V.S.; Basílio, L.S.P.; Lima, M.S.; Pereira, G.E.; Corrêa, L.C.; Vianello, F.; Lima, G.P.P.; et al. Phytochemical profile of Brazilian grapes (Vitis labrusca and hybrids) grown on different rootstocks. PLoS ONE 2022, 17, e0275489. [Google Scholar] [CrossRef] [PubMed]
- Brasil, Instrução Normativa 1/2002. Available online: http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=661183307 (accessed on 26 October 2023).
- Santos, A.E.O.; Silva, E.O.; Oster, A.H.; Mistura, C.; Dos-Santos, M.O. Resposta fenológica e exigência térmica de uvas apirenas cultivadas no Submédio do São Francisco. Rev. Bras. Cienc. Agrar. 2013, 8, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.D.L.; Ribeiro, V.G.; De Lima, M.A.C.; Souza, E.R.; Shishido, W.K. Influência do ácido giberélico na fisiologia e qualidade da videira cv. Sweet Celebration® no Submédio São Francisco. Rev. Bras. Frutic. 2015, 37, 827–834. [Google Scholar] [CrossRef]
- Satisha, J.; Somkuwar, K.G.; Sharma, J.; Upadhyay, A.K.; Adsule, P.G. Influence of rootstocks on growth yield and fruit composition of Thompson seedless grapes grown in the Pune region of India. S. Afr. J. Enol. Vitic. 2010, 31, 1–8. [Google Scholar] [CrossRef]
- Aly, M.A.; Ezz, T.A.; Harhash, M.M.; El-Shenawe, S.A.; Shehata, A. Performance of some table grape cultivars grafting on different rootstocks in El-Nubaria region. Asian J. Crop. Sci. 2015, 7, 256–266. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Moura, M.F.; Teixeira, L.A.J.; Pires, E.J.P.; Leonel, S. Influence of rootstocks and pruning times on yield and on nutrient content and extraction in ‘Niagara Rosada’ grapevine. Pesqui. Agropecu. Bras. 2014, 49, 340–348. [Google Scholar] [CrossRef]
- Bascunán-Godoy, L.; Franck, N.; Zamorano, D.; Sanhueza, C.; Carvajal, D.E.; Ibacache, A. Rootstock effect on irrigated grapevine yield under arid climate conditions are explained by changes in traits related to light absorption of the of the scion. Sci. Hortic. 2017, 218, 284–292. [Google Scholar] [CrossRef]
- Callili, D.; Sánchez, C.A.P.C.; Campos, O.P.; Carneiro, D.C.S.; Scudeletti, A.C.B.; Tecchio, M.A. Phenology, thermal demand, and maturation development of the ‘BRS Vitória’ grape cultivated on different rootstocks in subtropical conditions. Rev. Bras. De Frutic. 2023, 45, e-999. [Google Scholar] [CrossRef]
- Harris, Z.N.; Pratt, J.E.; Kovacs, L.G.; Klein, L.L.; Kwasniewski, M.T.; Londo, J.P.; Wu, A.; Miller, A.J. Grapevine scion gene expression is driven by rootstock and environment interaction. BMC Plant Biol. 2023, 23, 211. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Fan, P.; Li, S.; Li, L. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J. Sci. Food Agric. 2005, 1536, 1526–1536. [Google Scholar] [CrossRef]
- Lee, J.; Steenwerth, K.L. Cabernet Sauvignon grape anthocyanin increased by soil conservation practices. Sci. Hortic. 2013, 159, 128–133. [Google Scholar] [CrossRef]
- Neumann, P.A.; Matzarakis, A. Potential climate change impacts on winegrape must density and titratable acidity in southwest Germany. Clim. Res. 2014, 59, 161–172. [Google Scholar] [CrossRef]
- Ribeiro, T.P.; Lima, M.A.C.; Alves, R.E. Maturação e qualidade de uvas para suco em condições tropicais, nos primeiros ciclos de produção. Pesqui. Agropecu. Bras. 2012, 47, 1057–1065. [Google Scholar] [CrossRef]
- Mota, R.V.; Silva, C.P.C.; Favero, A.C.; Purgatto, E. Composição físico-química de uvas para vinho fino em ciclos de verão e inverno. Rev. Bras. Frutic. 2010, 32, 1127–1137. [Google Scholar] [CrossRef]
- Rizzon, L.A.; Zanuz, M.C.; Miele, A. Evolução da acidez durante a vinificação de uvas tintas de três regiões vitícolas do Rio Grande do Sul. Food Sci. Technol. 1998, 18, 179–183. [Google Scholar] [CrossRef]
- Özcan, M.M.; Juhaimi, F.A.; Gülcü, M.; Uslu, N.; Gecgel, U. Determination of Bioactive Compounds and Mineral Contents of Seedless Parts and Seeds of Grapes. S. Afr. J. Sci. 2017, 38, 212–220. [Google Scholar] [CrossRef]
- Brito, A.L.; Bonfim, W.M.D.; Neto, E.R.A.; Lima, M.A.C. Quality and antioxidant potential of ‘BRS Clara’ and ‘Arizul’ grapes influenced by rootstocks in a tropical region. Cienc. Agrotecnologia 2019, 43, e000219. [Google Scholar] [CrossRef]
- Corso, M.; Vannozzi, A.; Ziliotto, F.; Zouine, M.; Maza, E.; Nicolato, T. Grapevine rootstocks differentially affect the rate of ripening and modulate auxin-related genes in Cabernet Sauvignon berries. Front. Plant. Sci. 2016, 7, 14. [Google Scholar] [CrossRef]
- Neto, F.J.D.; Pimentel Junior, A.P.; Modesto, L.R.; Moura, M.F.; Putti, F.F.; Boaro, C.S.F.; Ono, E.O. Photosynthesis, Biochemical and Yield Performance of Grapevine Hybrids in Two Rootstock and Trellis Height. Horticulturae 2023, 9, 596. [Google Scholar] [CrossRef]
- Pereira, G.; Oliveira, J.; Ribeiro, V.; Mittler, R. Sinalização Reativa de Oxigênio em Plantas. Em Revisões Anuais de Plantas On-Line; Wiley: Hoboken, NJ, USA, 2018; pp. 189–201. [Google Scholar]
- Fanzone, M.; Zamora, F.; Jofré, V.; Assof, M.; Peña-Neira, A. Phenolic composition of Malbec grape skin and seeds from Valle de Uco (Mendoza, Argentina) during ripening. Effect of cluster thinning. J. Agric. Food Chem. 2011, 59, 6120–6136. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Wang, C.R.; Li, X.Y.; Yao, Y.X.; Hao, Y.J. Modifications of Kyoho grape berry quality under long-term NaCl treatment. Food Chem. 2013, 139, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.R.; da Silva Padilha, C.V.; dos Santos Lima, M.; Pereira, G.E.; Filho, W.G.V.; Moura, M.F. Grape juices produced from new hybrid varieties grown on Brazilian rootstocks–Bioactive compounds, organic acids and antioxidant capacity. Food Chem. 2019, 289, 714–722. [Google Scholar] [CrossRef] [PubMed]
Yield Components | Rootstocks | |||
---|---|---|---|---|
IAC 572 Jales | IAC 766 Campinas | Paulsen 1103 | p-Value | |
Yield per vine (kg vine−1) | 18.42 ± 3.13 a | 18.05 ± 1.72 a | 11.99 ± 1.93 b | >0.01 |
Productivity (t ha−1) | 30.70 ± 5.22 a | 30.09 ± 2.86 a | 19.99 ± 3.22 b | >0.01 |
Number of bunches per vine | 37.40 ± 8.78 a | 36.11 ± 10.64 a | 21.19 ± 4.28 b | >0.01 |
Physical Characteristics of Bunches, Berries, and Rachis | Rootstocks | |||
---|---|---|---|---|
IAC 572 Jales | IAC 766 Campinas | Paulsen 1103 | p-Value | |
Number of berries per bunch | 72.28 ± 13.38 | 78.28 ± 15.70 | 64.14 ± 8.69 | 0.07 |
Bunch mass (g) | 458.3 ± 110 ab | 502.58 ± 84.08 a | 387.72 ± 49.06 b | >0.05 |
Bunch length (cm) | 18.4 ± 1.64 a | 18.34 ± 0.88 ab | 16.99 ± 0.57 b | >0.01 |
Bunch width (cm) | 8.67 ± 1.16 | 9.42 ± 0.66 | 9.48 ± 0.58 | 0.10 |
Berry Mass (g) | 6.23 ± 0.61 | 6.34 ± 0.46 | 5.91 ± 0.40 | 0.23 |
Berry Length (cm) | 3.03 ± 0.17 | 3.04 ± 0.13 | 2.95 ± 0.11 | 0.42 |
Berry Width (cm) | 1.60 ± 0.08 | 1.62 ± 0.15 | 1.63 ± 0.13 | 0.84 |
Berry diameter (cm) | 1.81 ± 0.13 | 1.77 ± 0.11 | 1.80 ± 0.17 | 0.61 |
Rachis mass (g) | 12.59 ± 3.06 | 13.34 ± 2.08 | 11.31 ± 1.50 | 0.14 |
Chemical Parameters of Grape Must | Rootstocks | |||
---|---|---|---|---|
IAC 572 Jales | IAC 766 Campinas | Paulsen 1103 | p-Value | |
Titratable acidity (%) | 0.42 ± 0.05 | 0.39 ± 0.02 | 0.41 ± 0.06 | 0.46 |
pH | 3.45 ± 0.03 | 3.45 ± 0.05 | 3.44 ± 0.06 | 0.69 |
Soluble Solids (°Brix) | 16.43 ± 0.33 | 16.38 ± 0.39 | 16.71 ± 0.33 | 0.28 |
Maturation index (SS/AT) | 46.81 ± 7.29 | 50.00 ± 3.14 | 45.66 ± 7.79 | 0.47 |
Total Bioactive Compounds | Rootstocks | |||
---|---|---|---|---|
IAC 572 Jales | IAC 766 Campinas | Paulsen 1103 | p-Value | |
Total Phenolics (mg 100 g−1) | 109.93 ± 2.47 b | 110.08 ± 4.76 b | 123.89 ± 1.47 a | <0.01 |
Total Flavonoids (mg 100 g−1) | 12.44 ± 0.39 a | 6.70 ± 0.20 b | 12.45 ± 0.28 a | <0.01 |
Total Monomeric Anthocyanins (mg 100 g−1) | 26.84 ± 7.24 | 32.84 ± 3.37 | 43.04 ± 6.35 | 0.1 |
Traits | YldV | Pdt | NBchV | BchM | BchL | BchW | BM | BL | BW | RM | BD | NBBch | SS | pH | TA | MI | TPC | TF | TMA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YldV | 1 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0 | 0.9 | 1.0 | 0.7 | 0.9 | −0.1 | 0.9 | −0.5 | 0.9 | −0.1 | 0.6 | −1.0 | −0.5 | −0.9 |
Pdt | 1.0 | 1 | 1.0 | 0.9 | 1.0 | 1.0 | 0.9 | 1.0 | 0.7 | 0.9 | −0.1 | 0.9 | −0.5 | 0.9 | −0.1 | 0.6 | −1.0 | −0.5 | −0.9 |
NBchV | 1.0 | 1.0 | 1 | 0.9 | 1.0 | 1.0 | 0.9 | 1.0 | 0.7 | 0.9 | −0.1 | 0.9 | −0.5 | 0.9 | −0.1 | 0.6 | −1.0 | −0.4 | −0.9 |
BchM | 0.9 | 0.9 | 0.9 | 1 | 0.9 | 0.9 | 1.0 | 1.0 | 0.9 | 1.0 | −0.5 | 1.0 | −0.8 | 1.0 | −0.5 | 0.9 | −0.9 | −0.8 | −0.7 |
BchL | 1.0 | 1.0 | 1.0 | 0.9 | 1 | 1.0 | 0.9 | 1.0 | 0.7 | 0.9 | −0.1 | 0.9 | −0.5 | 0.9 | −0.1 | 0.6 | −1.0 | −0.5 | −0.9 |
BchW | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 | 1 | 0.9 | 1.0 | 0.7 | 0.9 | −0.1 | 0.9 | −0.5 | 0.9 | −0.1 | 0.6 | −1.0 | −0.4 | −0.9 |
BM | 0.9 | 0.9 | 0.9 | 1.0 | 0.9 | 0.9 | 1 | 1.0 | 0.9 | 1.0 | −0.4 | 1.0 | −0.7 | 1.0 | −0.3 | 0.8 | −1.0 | −0.7 | −0.8 |
BL | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 1 | 0.8 | 0.9 | −0.2 | 1.0 | −0.7 | 1.0 | −0.2 | 0.7 | −1.0 | −0.6 | −0.9 |
BW | 0.7 | 0.7 | 0.7 | 0.9 | 0.7 | 0.7 | 0.9 | 0.8 | 1 | 0.9 | −0.7 | 1.0 | −1.0 | 0.9 | −0.7 | 1.0 | −0.7 | −0.9 | −0.4 |
RM | 0.9 | 0.9 | 0.9 | 1.0 | 0.9 | 0.9 | 1.0 | 0.9 | 0.95 | 1 | −0.5 | 1.0 | −0.8 | 1.0 | −0.5 | 0.9 | −0.9 | −0.8 | −0.7 |
BD | −0.1 | −0.1 | −0.1 | −0.5 | −0.1 | −0.1 | −0.4 | −0.2 | −0.7 | −0.5 | 1 | −0.5 | 0.9 | −0.4 | 1.0 | −0.8 | 0.1 | 0.9 | −0.2 |
NBBch | 0.9 | 0.9 | 0.9 | 1.0 | 0.9 | 0.9 | 1.0 | 0.9 | 0.9 | 1.0 | −0.5 | 1 | −0.8 | 1.0 | −0.5 | 0.9 | −0.9 | −0.8 | −0.7 |
SS | −0.5 | −0.5 | −0.5 | −0.8 | −0.5 | −0.5 | −0.7 | −0.7 | −1.0 | −0.8 | 0.9 | −0.8 | 1 | −0.8 | 0.9 | −1.0 | 0.5 | 1.0 | 0.2 |
pH | 0.9 | 0.9 | 0.9 | 1.0 | 0.9 | 0.9 | 1.0 | 1.0 | 0.9 | 1.0 | −0.4 | 1.0 | −0.8 | 1 | −0.4 | 0.9 | −0.9 | −0.8 | −0.7 |
TA | −0.1 | −0.1 | −0.1 | −0.5 | −0.1 | −0.1 | −0.3 | −0.2 | −0.7 | −0.5 | 1.0 | −0.5 | 0.9 | −0.4 | 1 | −0.8 | 0.1 | 0.9 | −0.3 |
MI | 0.6 | 0.6 | 0.6 | 0.9 | 0.6 | 0.6 | 0.8 | 0.7 | 1.0 | 0.9 | −0.8 | 0.9 | −1.0 | 0.9 | −0.8 | 1 | −0.6 | −1.0 | −0.3 |
TPC | −1.0 | −1.0 | −1.0 | −0.9 | −1.0 | −1.0 | −1.0 | −1.0 | −0.7 | −0.9 | 0.1 | −0.9 | 0.5 | −0.9 | 0.1 | −0.6 | 1 | 0.5 | 0.9 |
TF | −0.5 | −0.4 | −0.4 | −0.8 | −0.5 | −0.4 | −0.7 | −0.6 | −0.9 | −0.8 | 0.9 | −0.8 | 1.0 | −0.8 | 0.9 | −1.0 | 0.5 | 1 | 0.1 |
TMA | −0.9 | −0.9 | −0.9 | −0.7 | −0.9 | −0.9 | −0.8 | −0.8 | −0.4 | −0.7 | −0.2 | −0.7 | 0.2 | −0.7 | −0.3 | −0.3 | 0.9 | 0.1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, C.A.P.C.; Tecchio, M.A.; Callili, D.; da Silva, M.J.R.; Basílio, L.S.P.; Leonel, S.; Alonso, J.C.; Lima, G.P.P. Productivity and Physicochemical Properties of the BRS Isis Grape on Various Rootstocks under Subtropical Climatic Conditions. Agriculture 2023, 13, 2113. https://doi.org/10.3390/agriculture13112113
Sánchez CAPC, Tecchio MA, Callili D, da Silva MJR, Basílio LSP, Leonel S, Alonso JC, Lima GPP. Productivity and Physicochemical Properties of the BRS Isis Grape on Various Rootstocks under Subtropical Climatic Conditions. Agriculture. 2023; 13(11):2113. https://doi.org/10.3390/agriculture13112113
Chicago/Turabian StyleSánchez, Camilo André Pereira Contreras, Marco Antonio Tecchio, Daniel Callili, Marlon Jocimar Rodrigues da Silva, Leticia Silva Pereira Basílio, Sarita Leonel, Juan Carlos Alonso, and Giuseppina Pace Pereira Lima. 2023. "Productivity and Physicochemical Properties of the BRS Isis Grape on Various Rootstocks under Subtropical Climatic Conditions" Agriculture 13, no. 11: 2113. https://doi.org/10.3390/agriculture13112113
APA StyleSánchez, C. A. P. C., Tecchio, M. A., Callili, D., da Silva, M. J. R., Basílio, L. S. P., Leonel, S., Alonso, J. C., & Lima, G. P. P. (2023). Productivity and Physicochemical Properties of the BRS Isis Grape on Various Rootstocks under Subtropical Climatic Conditions. Agriculture, 13(11), 2113. https://doi.org/10.3390/agriculture13112113