Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass in Edaphoclimatic Scenarios of the Coastal Saline–Alkaline Land around Bohai Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Irrigation Treatments with Saline Drainage Water
2.3. Determination of EC, pH, and Soil Water Content
2.4. Evaluation of Plant Height, Dry Matter Yield, and Death Rate
2.5. Pot Experiment: Sufficient Irrigation with Saline Water
2.6. Gas Exchange Measurement
2.7. Crude Protein Content Determination
2.8. Assessment of Concentrations of Ions in the Representative Drainage Waters
2.9. Data Summary and Statistical Analysis
3. Results
3.1. The Effects of Saline Water Irrigation on Soil Salinity and Forage Yield of Transplanted-Tall Wheatgrass
3.2. The Effects of Saline Water irrigation on Forage Yield and Death Rate of Seed-Propagated Tall Wheatgrass
3.3. The Effects of Sufficient Irrigation with Saline Water on Soil Salinity and Forage Yield
3.4. The Effects of Sufficient Irrigation with Saline Water on Plant Height and Tiller Number
3.5. The Effect of Sufficient Irrigation with Saline Water on Leaf Size
3.6. The Effect of Sufficient Irrigation with Saline Water on Gas Exchange
4. Discussion
4.1. Supplemental Saline Water Irrigation of Transplanted-tall wheatgrass Enhanced Forage Yield
4.2. Saline Water Irrigation in Combination with Plastic Film Mulching Promoted Sward Establishment of Seed-Propagated Tall Wheatgrass
4.3. Confirmation of Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass
4.4. The Quality of Saline Drainage Water Used for Irrigation Could Have Profound Effects on Forage Products
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ciria, C.S.; Sastre, C.; Carrasco, J.; Ciria, P. Tall wheatgrass (Thinopyrum ponticum (Podp)) in a real farm context, a sustainable perennial alternative to rye (Secale cereale L.) cultivation in marginal lands. Ind. Crops Prod. 2020, 146, 112184. [Google Scholar] [CrossRef]
- Cao, X.; Sun, B.; Chen, H.; Zhou, J.; Song, X.; Liu, X.; Deng, X.; Li, X.; Zhao, Y.; Zhang, J.; et al. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bull. Chin. Acad. Sci. 2021, 36, 336–348. [Google Scholar]
- Scordia, D.; Papazoglou, E.G.; Kotoula, D.; Sanz, M.; Ciria, C.S.; Pérez, J.; Maliarenko, O.; Prysiazhniuk, O.; Von Cossel, M.; Greiner, B.E.; et al. Towards identifying industrial crop types and associated agronomies to improve biomass production from marginal lands in Europe. GCB Bioenergy 2022, 14, 710–734. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Liu, X.; Xie, Q.; Yang, W.; Cao, X.; Li, Z. Scientific and technological reason, contents and corresponding policies of constructing “Coastal Grass Belt”. Bull. Chin. Acad. Sci. 2022, 37, 238–245. [Google Scholar]
- Wang, T.; Cao, L.; Liu, Z.; Yang, Q.; Chen, L.; Chen, M.; Jing, H. Basic biology of forage grass for constructing Coastal Grass Belt in Yellow River Delta. Bull. Bot. 2022, 57, 837–847. [Google Scholar]
- Li, H.; Zheng, Q.; Wang, J.; Sun, H.; Zhang, K.; Fang, H.; Xing, X.; Yang, W.; Cao, X.; Liu, X.; et al. Industrialization of tall wheatgrass for construction of “Coastal Grass Belt”. Bull. Chin. Acad. Sci. 2023, 38, 622–631. [Google Scholar]
- Dewey, D.R. Salt tolerance of twenty-five strains of Agropyron. Agron. J. 1960, 52, 631–635. [Google Scholar] [CrossRef]
- Shannon, M.C. Testing salt tolerance variability among tall wheatgrass lines. Agron. J. 1978, 70, 719–722. [Google Scholar] [CrossRef]
- Mcguire, G.E.; Dvôrák, J. High salt tolerance potential in wheatgrasses. Crop Sci. 1981, 21, 702–705. [Google Scholar] [CrossRef]
- Roundy, B.A. Response of basin wildrye and tall wheatgrass seedlings to salination. Agron. J. 1983, 75, 67–71. [Google Scholar] [CrossRef]
- Andrioli, R.J. Adaptive mechanisms of tall wheatgrass to salinity and alkalinity stress. Grass Forage Sci. 2023, 78, 23–36. [Google Scholar] [CrossRef]
- Bahrani, M.J.; Bahrami, H.A.; Haghighi, A.A. Effect of water stress on ten forage grasses native or introduced to Iran. Grassl. Sci. 2010, 56, 1–5. [Google Scholar] [CrossRef]
- Borrajo, C.I.; Sánchez-moreiras, A.M.; Reigosa, M.J. Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PLoS ONE 2018, 13, e0209281. [Google Scholar] [CrossRef]
- Zhang, R.; Feng, X.; Wu, Y.; Sun, Q.; Li, J.; Li, J.; Liu, X. Interactive effects of drought and salt stresses on the growth and physiological characteristics of Thinopyrum ponticum. Chin. J. Eco-Agric. 2022, 30, 1795–1806. [Google Scholar]
- Bennett, S.J.; Barrett-Lennard, E.G.; Colmer, T.D. Salinity and waterlogging as constraints to saltland pasture production: A review. Agri. Ecosyst. Environ. 2009, 129, 349–360. [Google Scholar] [CrossRef]
- Vergiev, S. Tall Wheatgrass (Thinopyrum ponticum): Flood resilience, growth response to sea water immersion, and its capacity for erosion and flooding control of coastal areas. Environments 2019, 6, 103. [Google Scholar] [CrossRef]
- Iturralde Elortegui, M.; Berone, G.D.; Striker, G.G.; Martinefsky, M.J.; Monterubbianesi, M.G.; Assuero, S.G. Anatomical, morphological and growth responses of Thinopyrum ponticum plants subjected to partial and complete submergence during early stages of development. Funct. Plant Biol. 2020, 47, 757–768. [Google Scholar] [CrossRef]
- Smith, K.F. Tall wheatgrass (Thinopyrum ponticum (Podp.) Z.W. Liu + R.R.C. Wang): A neglected resource in Australian pasture. N. Z. J. Agric. Res. 1996, 39, 623–627. [Google Scholar] [CrossRef]
- Smith, K.F.; Kelman, W.M. Register of Australian herbage plant cultivars: Thinopyrum ponticum (Podp.) (tall wheatgrass) cv. Dundas. Aust. J. Exp. Agric. 2000, 40, 119–120. [Google Scholar]
- Tong, C.; Yang, G.; AoenBolige; Terigen; Li, H.; Li, B.; Li, Z.; Zheng, Q. Screening of salt-tolerant Thinopyrum ponticum under two coastal region salinity stress levels. Front. Genet. 2022, 13, 832013. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Zheng, Q.; Zhao, M.; Wang, J.; Li, B.; Li, Z. Salinity threshold of tall wheatgrass for cultivation in coastal saline and alkaline land. Agriculture 2023, 13, 337. [Google Scholar] [CrossRef]
- Falasca, S.L.; Miranda, C.; Alvarez, S.P. Agro-ecological zoning for tall wheatgrass (Thinopyrum ponticum) as a potential energy and forage crop in salt-affected and dry lands of Argentina. Arch. Crop Sci. 2017, 1, 10–19. [Google Scholar]
- Wang, H.; Zheng, C.; Ning, S.; Cao, C.; Li, K.; Dang, H.; Wu, Y.; Zhang, J. Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation. Agric. Water Manag. 2023, 286, 108383. [Google Scholar] [CrossRef]
- Oster, J.; Grattan, S. Drainage water reuse. Irrig. Drain. Syst. 2002, 16, 297–310. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M.; Poss, J.A.; Robinson, P.H.; Suarez, D.L.; Benes, S.E. Evaluation of salt-tolerant forages for sequential water reuse systems: I. Biomass production. Agric. Water Manag. 2004, 70, 109–120. [Google Scholar] [CrossRef]
- Suyama, H.; Benes, S.E.; Robinson, P.H.; Getachew, G.; Grattan, S.R.; Grieve, C.M. Biomass yield and nutritional quality of forage species under long-term irrigation with saline-sodic drainage water: Field evaluation. Anim. Feed. Sci. Technol. 2007, 135, 329–345. [Google Scholar] [CrossRef]
- Singh, A.; Quinn, N.; Benes, S.E.; Cassel, F. Policy-driven sustainable saline drainage disposal and forage production in the Western San Joaquin Valley of California. Sustainability 2020, 12, 6362. [Google Scholar] [CrossRef]
- Díaz Francisco, J.; Grattan, S.R. Performance of tall wheatgrass (Thinopyrum ponticum, cv. ‘Jose’) irrigated with saline-high boron drainage water: Implications on ruminant mineral nutrition. Agric. Ecosyst. Environ. 2009, 131, 128–136. [Google Scholar] [CrossRef]
- Zhao, Q.; Lu, C.; Wen, X.; Chen, A.; Han, Q. Studies on the soil improvement and Agropyron elongatum plantation by using salt water. Arid. Zone Res. 1997, 14, 73–75. [Google Scholar]
- Suyama, H.; Benes, S.E.; Robinson, P.H.; Grattan, S.R.; Grieve, C.M.; Getachew, G. Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation. Agric. Water Manag. 2007, 88, 159–172. [Google Scholar] [CrossRef]
- Bleby, T.M.; Aucote, M.; Kennett-Smith, A.K.; Walker, G.R.; Schachtman, D.P. Seasonal water use characteristics of tall wheatgrass [Agropyron elongatum (Host) Beauv.] in a saline environment. Plant Cell Environ. 1997, 20, 1361–1371. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X.; Luo, Y.; Cao, D.; Feng, H.; Zhang, X.; Yao, R. Agricultural water quality assessment and application in the Yellow River Delta. Agronomy 2023, 13, 1495. [Google Scholar] [CrossRef]
- Du, X.; Bian, X.; Zhang, W.; Yang, F.; Zhang, L. Effects of plastic-film mulching and nitrogen application on forage-oriented maize in the agriculture-animal husbandry ecotone in North China. Front. Agric. China 2008, 2, 266–273. [Google Scholar] [CrossRef]
- Gu, Y.; Han, C.; Kong, M.; Shi, X.; Zdruli, P.; Li, F. Plastic film mulch promotes high alfalfa production with phosphorus-saving and low risk of soil nitrogen loss. Field Crops Res. 2018, 229, 44–54. [Google Scholar] [CrossRef]
- Gu, Y.; Han, C.; Fan, J.; Shi, X.; Kong, M.; Shi, X.; Kadambot, H.M.S.; Zhao, Y.; Li, F. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop Res. 2018, 215, 94–103. [Google Scholar] [CrossRef]
- Lesch, S.M.; Suarez, D.L. Technical note: A short note on calculating the adjusted SAR index. Trans. ASABE 2009, 52, 493–496. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.I.; Raman, A.; Hodgkins, D.S.; David, M.; Helen, I.N. Salt accumulation and physiology of naturally occurring grasses in saline soils in Australia. Pedosphere 2015, 25, 501–511. [Google Scholar] [CrossRef]
- Ayars, J.E.; Soppe, R.W.; Shouse, P. Alfalfa production using saline drainage water. Irrig. Drain. 2011, 60, 123–135. [Google Scholar] [CrossRef]
- Feng, G.; Zhu, C.; Wu, Q.; Wang, C.; Zhang, Z.; Mwiya, R.M.; Zhang, L. Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model. Agric. Water Manag. 2021, 258, 107175. [Google Scholar] [CrossRef]
- Bazzigalupi, O.; Pistorale, S.M.; Andrés, A.N. Salinity tolerance during seed germination from naturalized populations of tall wheatgrass (Thinopyrum ponticum). Cienc. Investig. Agrar. 2008, 35, 277–285. [Google Scholar]
- Riedell, W.E. Growth and ion accumulation responses of four grass species to salinity. J. Plant Nutr. 2016, 39, 2115–2125. [Google Scholar] [CrossRef]
- Liu, Z.; Hou, P.; Zha, Y.; Muhammad, T.; Li, Y. Salinity threshold of desalinated saline water used for drip irrigating: The perspective of emitter clogging. J. Clean. Prod. 2022, 361, 132143. [Google Scholar] [CrossRef]
- Wu, H.; Kang, S.; Li, X.; Guo, P.; Hu, S. Optimization-based water-salt dynamic threshold analysis of cotton root zone in arid areas. Water 2020, 12, 2449. [Google Scholar] [CrossRef]
- Temel, S.; Keskin, B.; Simşek, U.; Ibrahim, Y. Performance of some forage grass species in halomorphic soil. Turk. J. Field Crops 2015, 20, 131–141. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.I.; Raman, A.; Hodgkins, D.; Mitchell, D.; Nicol, H.I. Influence of high levels of Na+ and Cl− on ion concentration, growth, and photosynthetic performance of three salt-tolerant plants. Flora 2017, 228, 1–9. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M.; Poss, J.A.; Robinson, P.H.; Suarez, D.L.; Benes, S.E. Evaluation of salt-tolerant forages for sequential water reuse systems: III. Potential implications for ruminant mineral nutrition. Agric. Water Manag. 2004, 70, 137–150. [Google Scholar]
- Cun, G.S.; Robinson, P.H.; Benes, S.E. Bioavailability of selenium in ‘Jose’ tall wheatgrass (Thinopyrum ponticum var ‘Jose’) hay as a substitute for sodium selenite in the diets of dairy cattle. Sci. Total Environ. 2015, 518, 159–167. [Google Scholar] [CrossRef]
- Oster, J.; Sposito, G.; Smith, C.J. Accounting for potassium and magnesium in irrigation water quality assessment. Calif. Agric. 2016, 70, 71–76. [Google Scholar] [CrossRef]
- Vyshpolsky, F.; Qadir, M.; Karimov, A.; Mukhamedjanov, K.; Bekbaev, U.; Paroda, R.; AwHassan, A.; Karajeh, F. Enhancing the productivity of high-magnesium soil and water resources through the application of phosphogypsum in Central Asia. Land Degrad. Dev. 2008, 19, 45–56. [Google Scholar] [CrossRef]
ECw (dS m−1) | Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO42− | CO32− | HCO3− | B | Se | Mo | SAR a |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4.42 b | 1083 ± 8 c | 27.5 ± 0.1 c | 130.6 ± 0.8 c | 153.0 ± 0.6 c | 2373 ± 4 c | 371.7 ± 1.8 c | 22.5 ± 1.7 b | 378.2± 1.3 b | 0.45 ± 0.01 c | <0.01 | <0.01 | 30.46 ± 0.19 a |
5.42 b | 1376 ± 34 b | 40.2 ± 0.4 b | 142.1 ± 1.2 b | 177.4 ± 1.3 b | 3335 ± 25 b | 535.5 ± 1.5 b | 27.2 ± 0.0 b | 120.1 ± 1.7 c | 0.56 ± 0.03 b | <0.01 | <0.01 | 36.31 ± 0.76 b |
8.61 c | 1821 ± 24 a | 53.8 ± 1.4 a | 225.6 ± 2.9 a | 236.3 ± 1.0 a | 5815 ± 69 a | 632.4 ± 7.1 a | 54.9 ± 2.5 a | 415.7 ± 5.9 a | 0.65 ± 0.02 a | <0.01 | <0.01 | 40.39 ± 0.52 c |
Water Salinity ECw (dS m−1) | Irrigation Date (Day/ Month) | EC1:5 (dS m−1) | pH | Dry Matter Yield (kg ha−1) | ||||
---|---|---|---|---|---|---|---|---|
Sampling Dates (Day/Month) | Percentage Change (%) | Sampling Dates (Day/Month) | Percentage Change (%) | |||||
17/05 | 21/10 | 17/05 | 21/10 | |||||
CK a | - b | 0.69 ± 0.36 c | 0.64 ± 0.50 a | −7.2 | 8.44 ± 0.14 bc | 8.70 ± 0.24 c | 3.1 ** | 1839 ± 264 d |
4.36 | 27/05 | 0.36 ± 0.13 d | 0.21 ± 0.12 b | −41.7 ** | 8.74 ± 0.08 a | 8.90 ± 0.09 b | 1.8 ** | 3823 ± 676 c |
4.42 | 02/05 | 0.58 ± 0.07 c | 0.12 ± 0.01 b | −79.3 ** | 8.52 ± 0.08 b | 9.08 ± 0.08 a | 6.6 ** | 5838 ± 548 b |
5.42 | 24/04 | 1.20 ± 0.49 a | 0.69 ± 0.18 a | −42.5 ** | 8.28 ± 0.14 d | 8.68 ± 0.10 c | 4.8 ** | 5627 ± 242 b |
2.45 + 4.36 c | 26/04 + 25/05 | 0.91 ± 0.35 b | 0.24 ± 0.12 b | −73.6 ** | 8.42 ± 0.18 c | 8.84 ± 0.12 b | 5.0 ** | 6962 ± 196 a |
5.42 + 4.36 c | 26/04 + 28/05 | 0.76 ± 0.05 b | 0.24 ± 0.13 b | −68.4 ** | 8.53 ± 0.07 b | 9.10 ± 0.19 a | 6.7 ** | 4253 ± 461 c |
Variation Source | df | Plant Height | Dry Matter Yield | ||
---|---|---|---|---|---|
Mean Square | F | Mean Square | F | ||
Corrected Model | 27 | 2674.8 | 44.2 ** | 6,238,649 | 57.8 ** |
Intercept | 1 | 1,428,151.6 | 23,600.2 ** | 227,600,000 | 2110.5 ** |
Saline water irrigation | 1 | 16,417.7 | 271.3 ** | 13,137,343 | 121.8 ** |
Mulching | 1 | 41,883.0 | 692.1 ** | 126,500,000 | 1173 ** |
Fertilization | 6 | 610.6 | 10.1 ** | 672,596 | 6.2 ** |
Saline water irrigation × mulching | 1 | 496.5 | 8.2 ** | 8,854,228 | 82.1 ** |
Saline water irrigation × fertilization | 6 | 157.1 | 2.6 * | 83,811 | 0.8 |
Mulching × fertilization | 6 | 173.8 | 2.9 * | 959,185 | 8.9 ** |
Saline water irrigation × mulching × fertilization | 6 | 45.2 | 0.7 | 160,269 | 1.5 |
Irrigation Treatment a | Soil Depth | Mulching | EC1:5 (dS m−1) Sampled on Different Dates (Day/Month) | ||||
---|---|---|---|---|---|---|---|
2022 | 2023 | ||||||
17/05 | 21/06 | 21/10 | 10/12 | 23/02 | |||
Two irrigations | 0–10 cm | Plastic film mulching | 0.58 ± 0.24 c | 1.00 ± 0.20 ab | 0.40 ± 0.08 ab | 0.40 ± 0.04 e | 0.61 ± 0.17 bcd |
No mulching | 1.17 ± 0.17 a | 1.06 ± 0.03 a | 0.34 ± 0.04 b | 0.39 ± 0.08 e | 0.55 ± 0.23 de | ||
One irrigation | Plastic film mulching | 0.83 ± 0.43 b | 1.02 ± 0.16 ab | 0.44 ± 0.12 a | 0.46 ± 0.16 de | 0.49 ± 0.18 e | |
No mulching | 0.53 ± 0.20 c | 0.94 ± 0.04 b | 0.45 ± 0.23 a | 0.29 ± 0.07 f | 0.47 ± 0.10 e | ||
Two irrigations | 10–20 cm | Plastic film mulching | - | - | - | 0.58 ± 0.08 bc | 0.60 ± 0.07 bcd |
No mulching | - | - | - | 0.51 ± 0.08 cd | 0.56 ± 0.17 cde | ||
One irrigation | Plastic film mulching | - | - | - | 0.69 ± 0.11 a | 0.62 ± 0.13 bcd | |
No mulching | - | - | - | 0.53 ± 0.15 bcd | 0.63 ± 0.16 bcd | ||
Two irrigations | 20–30 cm | Plastic film mulching | - | - | - | 0.72 ± 0.14 a | 0.76 ± 0.11 a |
No mulching | - | - | - | 0.60 ± 0.11 b | 0.64 ± 0.13 bcd | ||
One irrigation | Plastic film mulching | - | - | - | 0.73 ± 0.15 a | 0.68 ± 0.11 ab | |
No mulching | - | - | - | 0.57 ± 0.08 bc | 0.66 ± 0.10 abc |
Irrigation Treatments a | Soil De pth | EC1:5 (dS m−1) Sampled on Different Dates (Day/Month) | Reduction b | ||||||
---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | ||||||
17/05 | 21/06 | 21/10 | 10/12 | 23/02 | 21/10 | 10/12 | 23/02 | ||
Two irrigations | 0–10 cm | 1.17 ± 0.17 a | 1.24 ± 0.15 a | 0.30 ± 0.09 b | 0.38 ± 0.15 c | 0.48 ± 0.15 c | 75.8% | 69.4% | 61.3% |
10–20 cm | - | 0.88 ± 0.08 c | 0.74 ± 1.08 a | 0.61 ± 0.16 ab | 0.62 ± 0.15 ab | 15.9% | 30.7% | 29.5% | |
20–30 cm | - | 0.85 ± 0.17 c | 0.49 ± 0.19 ab | 0.65 ± 0.14 a | 0.67 ± 0.10 a | 42.4% | 23.5% | 21.2% | |
One irrigation | 0–10 cm | 0.53 ± 0.20 b | 1.13 ± 0.18 ab | 0.32 ± 0.14 b | 0.39 ± 0.06 c | 0.58 ± 0.20 b | 71.7% | 65.5% | 48.7% |
10–20 cm | - | 1.05 ± 0.22 b | 0.57 ± 0.13 ab | 0.55 ± 0.09 b | 0.58 ± 0.13 b | 45.7% | 47.6% | 44.8% | |
20–30 cm | - | 1.16 ± 0.14 ab | 0.76 ± 0.09 a | 0.66 ± 0.14 a | 0.70 ± 0.13 a | 34.5% | 43.1% | 39.7% |
Water Salinity (dS m−1) | Salt Stress Phase | Leaching Phase | Dry Matter Yield (g plant−1) | Crude Protein Content (%) | |||||
---|---|---|---|---|---|---|---|---|---|
EC1:5 (dS m−1) | pH | Water Content (%) | EC1:5 (dS m−1) | pH | Water Content (%) | Leaf | Stem | ||
1.02 | 5.15 ± 1.69 d | 6.1 ± 0.2 a | 64.1 ± 10.1 c | 1.29 ± 0.28 b | 7.24 ± 0.15 ab | 120.2 ± 5.7 a | 44.74 ± 9.03 a | 13.58 ± 0.64 b | 9.32 ± 0.48 a |
5.79 | 8.60 ± 0.54 c | 6.2 ± 0.1 a | 81.9 ± 7.6 b | 1.46 ± 0.34 ab | 7.14 ± 0.09 c | 120.8 ± 8.8 a | 31.93 ± 6.85 b | 15.45 ± 1.52 a | 9.09 ± 0.59 a |
6.31 | 10.64 ± 0.51 b | 6.2 ± 0.2 a | 104.4 ± 9.0 a | 1.45 ± 0.21 ab | 7.16 ± 0.08 bc | 123.9 ± 7.4 a | 23.12 ± 5.29 bc | 14.31 ± 1.00 a | 8.99 ± 0.43 a |
8.61 | 11.97 ± 0.77 a | 6.3 ± 0.3 a | 98.7 ± 11.5 a | 1.44 ± 0.22 ab | 7.26 ± 0.15 a | 112.3 ± 6.7 b | 24.78 ± 8.13 bc | 14.11 ± 0.71 a | 9.10 ± 0.56 a |
9.60 | 12.06 ± 1.22 a | 6.1 ± 0.0 a | 104.9 ± 5.0 a | 1.52 ± 0.25 a | 7.30 ± 0.15 a | 120.1 ± 7.7 a | 22.00 ± 2.51 c | 14.25 ± 1.38 a | 8.80 ± 0.20 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Yin, J.; Ma, D.; Zheng, Q.; Li, H.; Wang, J.; Zhao, M.; Liu, X.; Li, Z. Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass in Edaphoclimatic Scenarios of the Coastal Saline–Alkaline Land around Bohai Sea. Agriculture 2023, 13, 2117. https://doi.org/10.3390/agriculture13112117
Li W, Yin J, Ma D, Zheng Q, Li H, Wang J, Zhao M, Liu X, Li Z. Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass in Edaphoclimatic Scenarios of the Coastal Saline–Alkaline Land around Bohai Sea. Agriculture. 2023; 13(11):2117. https://doi.org/10.3390/agriculture13112117
Chicago/Turabian StyleLi, Wei, Junliang Yin, Dongfang Ma, Qi Zheng, Hongwei Li, Jianlin Wang, Maolin Zhao, Xiaojing Liu, and Zhensheng Li. 2023. "Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass in Edaphoclimatic Scenarios of the Coastal Saline–Alkaline Land around Bohai Sea" Agriculture 13, no. 11: 2117. https://doi.org/10.3390/agriculture13112117
APA StyleLi, W., Yin, J., Ma, D., Zheng, Q., Li, H., Wang, J., Zhao, M., Liu, X., & Li, Z. (2023). Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass in Edaphoclimatic Scenarios of the Coastal Saline–Alkaline Land around Bohai Sea. Agriculture, 13(11), 2117. https://doi.org/10.3390/agriculture13112117