Biometric Trait Characterization and Multivariate Discriminant Analysis of Traditionally Bred Autochthonous Chickens in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection and Sampling Approaches
2.2. Biometric Traits and Body Weight Measurement
2.3. Statistical Analysis
2.3.1. Univariate Analysis
2.3.2. Multivariate Analysis
3. Results
3.1. Sexual Dimorphism and the District Effect
3.2. Age Group and District Effect
3.3. Phenotypic Correlations
3.4. Multivariate Discriminant Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Phenotypic Characterization of Animal Genetic Resources; Animal Production and Health Guidelines No. 11; Food and Agricultural Organization: Rome, Italy, 2012. [Google Scholar]
- Horst, P. Native fowl as reservoir for genomes and major genes with direct and indirect effects on the adaptability and their potential for tropically orientated breeding plans. Arch. Fuer Gefluegelkunde 1989, 53, 93–101. [Google Scholar]
- Pedersen, C. Productivity of Semi-Scavenging Chickens in Zimbabwe. Ph.D. Thesis, The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 2002. [Google Scholar]
- Aklilu, E.; Kebede, K.; Dessie, T.; Banerjee, A. Phenotypic characterization of indigenous chicken population in Ethiopia. Int. J. Interdiscip. Multidiscip. Stud. 2013, 1, 24–32. [Google Scholar]
- Demeke, S. Poultry Sector Country Review; Food and Agricultural Organizations, Animal Production and Health Division: Rome, Italy, 2008; Available online: ftp://ftp.fao.org/docrep/fao/011/ai320e/ai320e00.pdf (accessed on 1 December 2008).
- Dessie, T.; Dana, N.; Ayalew, W.; Hanotte, O. Current state of knowledge on indigenous chicken genetic resources of the tropics: Domestication, distribution and documentation of information on the genetic resources. World’s Poult. Sci. J. 2012, 68, 11–20. [Google Scholar] [CrossRef]
- Guèye, E.H.F. Village egg and fowl meat production in Africa. World’s Poult. Sci. J. 1998, 54, 73–86. [Google Scholar] [CrossRef]
- Ajayi, O.O.; Adeleke, M.A.; Sanni, M.T.; Yakubu, A.; Peters, S.O.; Imumorin, I.G.; Ozoje, M.O.; Ikeobi, C.O.N.; Adebambo, O.A. Application of principal component and discriminant analyses to morpho-structural indices of indigenous and exotic chickens raised under intensive management system. Trop. Anim. Health Prod. 2012, 44, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D. Introduction to Quantitative Genetics, 3rd ed.; Longman Scientifical Techniqual: London, UK, 1989. [Google Scholar]
- Lin, F.-B.; Zhu, F.; Hao, J.-P.; Yang, F.-X.; Hou, Z.-C. In vivo prediction of the carcass fatness using live body measurements in Pekin ducks. Poult. Sci. 2018, 97, 2365–2371. [Google Scholar] [CrossRef]
- Team, R.D.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Rotimi, E.; Egahi, J.; Adeoye, A. Phenotypic characterization of indigenous chicken population in Gwer-West, Benue State, Nigeria. World Sci. News 2016, 3, 343–353. [Google Scholar]
- Melesse, A.; Tadele, A.; Assefa, H.; Taye, K.; Kebede, T.; Taye, M.; Betsha, S. Assessing the morphological diversity of Ethiopian indigenous chickens using multivariate discriminant analysis of morphometric traits for sustainable utilization and conservation. Poult. Sci. J. 2021, 9, 61–72. [Google Scholar]
- Getu, A.; Alemayehu, K.; Wuletaw, Z. Phenotypic characterization of indigenous chicken ecotypes in the north Gondar zone, Ethiopia. Anim. Genet. Resour./Resour. Génétiques Anim. 2014, 54, 43–51. [Google Scholar] [CrossRef]
- Negassa, D.; Melesse, A.; Banerjee, S. Phenotypic characterization of indigenous chicken populations in Southeastern Oromia Regional State of Ethiopia. Anim. Genet. Resour./Resour. Génétiques Anim. 2014, 55, 101–113. [Google Scholar] [CrossRef]
- Halima, H. Phenotypic and Genetic Characterization of Indigenous Chicken Populations in Northwest Ethiopia. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2007. [Google Scholar]
- Aklilu, E. On-Farm Phenotypic Characterization of Indigenous Chicken and Chicken Production Systems in Horro and Jarso Districts, Oromia Regional State. Master’s Thesis, Haramaya University, Haramaya, Ethiopia, 2013. [Google Scholar]
- Alemu, Y.; Tadelle, D. The Status of Poultry Research and Development in Ethiopia, Research Bulletin No. 4, Poultry Commodity Research Program Debrezeit Agricultural Research Center; Alemaya University of Agriculture: Haramaya, Ethiopia, 1997; Volume 62. [Google Scholar]
- Rensch, B. Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonn. Zool. Beiträge 1950, 1, 58–69. [Google Scholar]
- Ojedapo, L.; Amao, S.; Ameen, S.; Adedeji, T.; Ogundipe, R.; Ige, A. Prediction of body weight and other linear body measurement of two commercial layer strain chickens. Asian J. Anim. Sci. 2012, 6, 13–22. [Google Scholar] [CrossRef]
- Yisma, A. On-Farm Phenotypic Characterization of Indigenous Chicken and Chicken Production Practices in North Shewa Zone. Master’s Thesis, Haramaya University, Haramaya, Ethiopia, 2015. [Google Scholar]
- Dumont, E.R. Bone density and the lightweight skeletons of birds. Proc. R. Soc. B Biol. Sci. 2010, 277, 2193–2198. [Google Scholar] [CrossRef]
- Melesse, A.; Negesse, T. Phenotypic and morphological characterization of indigenous chicken populations in southern region of Ethiopia. Anim. Genet. Resour./Resour. Génétiques Anim. 2011, 49, 19–31. [Google Scholar] [CrossRef]
- Guni, F.; Katule, A.; Mwakilembe, P. Characterization of local chickens in selected districts of the Southern Highlands of Tanzania: II. Production and Morphometric traits. Livest. Res. Rural Dev. 2013, 25, 25–190. [Google Scholar]
- Biewener, A.A. Muscle function in avian flight: Achieving power and control. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1496–1506. [Google Scholar] [CrossRef]
- Bell, D.; Weaver, W. Commercial Chicken Meat and Egg Production; Springer: Berlin, Germany, 2002. [Google Scholar]
- Kokoszyński, D.; Bernacki, Z.; Saleh, M.; Stęczny, K.; Binkowska, M. Body conformation and internal organs characteristics of different commercial broiler lines. Braz. J. Poult. Sci. 2017, 19, 47–52. [Google Scholar] [CrossRef]
- Brito, N.V.; Lopes, J.C.; Ribeiro, V.; Dantas, R.; Leite, J.V. Biometric characterization of the Portuguese autochthonous hens breeds. Animals 2021, 11, 498. [Google Scholar] [CrossRef]
- Olawunmi, O.; Salako, A.; Afuwape, A. Morphometric Differentiation and Asessment of Function of the Fulani and Yoruba Ecotype Indigenous Chickens of Nigeria. Int. J. Morphol. 2008, 26, 71067471. [Google Scholar] [CrossRef]
- Fayeye, T.; Ayorinde, K.; Ojo, V.; Adesina, O. Frequency and influence of some major genes on body weight and body size parameters of Nigerian local chickens. Livest. Res. Rural Dev. 2006, 18, 37. [Google Scholar]
- Adeniji, F.O.; Ayorinde, K.L. Prediction of body weight of broilers at different ages from linear body measurements. Niger. J. Anim. Prod. 1990, 17, 42–47. [Google Scholar] [CrossRef]
- Fayeye, T.R.; Hagan, J.K.; Obadare, A.R. Morphometric traits and correlation between body weight and body size traits in Isa Brown and IlorinEcotype chickens. Iran. J. Appl. Anim. Sci. 2014, 4, 609–614. [Google Scholar]
- Paxton, H.; Tickle, P.G.; Rankin, J.W.; Codd, J.R.; Hutchinson, J.R. Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb. PeerJ 2014, 2, 473. [Google Scholar] [CrossRef] [PubMed]
- Semakula, J.; Lusembo, P.; Kugonza, D.; Mutetikka, D.; Ssennyonjo, J.; Mwesigwa, M. Estimation of live body weight using zoometrical measurements for improved marketing of indigenous chicken in the Lake Victoria basin of Uganda. Livest. Res. Rural Dev. 2011, 23, 170. [Google Scholar]
- Vincent, S.; Yakubu, A.; Momoh, O.; OEgahi, J. Linear weight estimation tapes from predictive models for matured normal feathered Nigerian indigenous chickens. Development 2015, 27, 10. [Google Scholar]
- Ajayi, F.O.; Ejiofor, O.; Ironkwe, M.O. Estimation of body weight from linear body measurements in two commercial meat-type chicken. Glob. J. Agric. Sci. 2008, 7, 57–59. [Google Scholar] [CrossRef]
- Mendes, M. Multivariate multiple regression analysis based on principal component scores to study relationships between some pre-and post-slaughter traits of broilers. J. Agric. Sci. 2011, 17, 77–83. [Google Scholar]
- Putra, W.; Ilham, F. Principal component analysis of body measurements and body indices and their correlation with body weight in Katjang does of Indonesia. J. Dairy Vet. Anim. Res 2019, 8, 124–134. [Google Scholar]
- Udeh, I.; Ogbu, C. Principal component analysis of body measurements in three strains of broiler chicken. Sci. World J. 2011, 6, 11–14. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. The multivariate normal distribution. In Applied Multivariate Statistical Analysis; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1982; pp. 150–173. [Google Scholar]
- Ceccobelli, S.; Di Lorenzo, P.; Lancioni, H.; Ibánez, L.M.; Tejedor, M.; Castellini, C.; Landi, V.; Martínez, A.M.; Bermejo, J.D.; Pla, J.V.; et al. Genetic diversity and phylogeographic structure of sixteen Mediterranean chicken breeds assessed with microsatellites and mitochondrial DNA. Livest. Sci. 2015, 175, 27–36. [Google Scholar] [CrossRef]
- Bila, L.; Tyasi, T.L.; Tongwane, T.W.; Mulaudzi, A.P. Correlation and Path Analysis of Body Weight and Biometric Traits of Ross 308 Breed of Broiler Chickens. J. World’s Poult. Res. 2021, 11, 344–351. [Google Scholar] [CrossRef]
- Yakubu, A.; Kuje, D.; Okpeku, M. Principal components as measures of size and shape in Nigerian indigenous chickens. Thai J. Agric. Sci. 2009, 42, 167–176. [Google Scholar]
Biometric Trait | Traits Measurement Descriptions |
---|---|
Body length | Extending from the tip of the beak to the tip of the tail (cloacae) |
Back length | From the insertion of the neck into the body to the base of the tail |
Chest circumference | The circumference around the deepest region of the breast |
Keel length | The length between vertices of the sternum leaning the bird on its back |
Neck length | The length between the nape and insertion of the neck into the body |
Shank length | The length between the hock joint to the spur of either leg |
Shank circumference | The circular measurement in the middle of the shank |
Wingspan length | The length between the tips of the right and left wings after a full stretch |
Effect | All Sex | District—Hen | District—Rooster | |||
---|---|---|---|---|---|---|
Biometric Traits and Body Weight | Hen (n = 544) | Rooster (n = 176) | Agarfa (n = 316) | Goba (n = 228) | Agarfa (n = 104) | Goba (n = 72) |
Chest circumference | 23.97 ± 1.2 b | 25.19 ± 1.2 a | 24.27 ± 0.9 a | 23.55 ± 1.35 b | 25.42 ± 1.1 a | 24.85 ± 1.27 b |
Back length | 16.8 ± 1.0 b | 17.71 ± 1.1 a | 17.34 ± 0.7 a | 16.05 ± 0.73 b | 18.11 ± 1.0 a | 17.13 ± 0.94 b |
Wingspan length | 42.14 ± 1.8 b | 43.86 ± 2.0 a | 42.83 ± 1.6 a | 41.19 ± 1.77 b | 44.29 ± 1.9 a | 43.23 ± 1.98 b |
Shank length | 7.72 ± 1.1 b | 8.54 ± 1.0 a | 8.38 ± 0.8 a | 6.8 ± 0.60 b | 8.8 ± 0.90 a | 8.17 ± 0.97 b |
Shank circumference | 3.84 ± 0.2 b | 3.98 ± 0.2 a | 3.85 ± 0.2 a | 3.82 ± 0.14 a | 4.02 ± 0.2 a | 3.92 ± 0.14 b |
Neck length | 10.06 ± 1.0 b | 11.3 ± 1.1 a | 10.23 ± 1.0 a | 9.82 ± 1.05 b | 11.49 ± 1.2 a | 11.02 ± 1.04 b |
Keel length | 9.34 ± 1.2 a | 9.54 ± 1.3 a | 9.73 ± 1.0 a | 8.79 ± 1.17 b | 9.89 ± 1.2 a | 9.03 ± 1.18 b |
Body length | 35.63 ± 1.1 b | 39.18 ± 1.2 a | 35.88 ± 1.1 a | 35.27 ± 1.11 b | 39.54 ± 0.9 a | 38.65 ± 1.38 b |
Body weight | 1.32 ± 0.2 b | 1.52 ± 0.2 a | 1.35 ± 0.2 a | 1.29 ± 0.16 b | 1.55 ± 0.2 a | 1.47 ± 0.18 b |
All | Agarfa | Goba | |||||||
---|---|---|---|---|---|---|---|---|---|
Group | AG-1 | AG-2 | AG-3 | AG-1 | AG-2 | AG-3 | AG-1 | AG-2 | AG-3 |
Hen | n = 166 | n = 285 | n = 93 | n = 124 | n = 147 | n = 45 | n = 42 | n = 138 | n = 48 |
CC | 23.89 ± 1.01 b | 23.92 ± 1.2 b | 24.27 ± 1.39 a | 24.07 ± 0.91 b | 24.29 ± 0.84 b | 24.77 ± 0.80 a | 23.36 ± 1.13 a | 23.53 ± 1.29 a | 23.79 ± 1.65 a |
BkL | 16.79 ± 0.89 a | 16.8 ± 0.9 a | 16.81 ± 1.11 a | 17.13 ± 0.67 a | 17.41 ± 0.64 b | 17.72 ± 0.69 c | 15.81 ± 0.69 b | 16.16 ± 0.75 a | 15.95 ± 0.66 ab |
WL | 41.83 ± 1.78 b | 42.24 ± 1.8 ab | 42.41 ± 1.92 a | 42.33 ± 1.55 c | 43.01 ± 1.43 b | 43.61 ± 1.54 a | 40.34 ± 1.60 b | 41.42 ± 1.84 a | 41.29 ± 1.53 a |
SL | 7.99 ± 1.09 a | 7.54 ± 1 b | 7.76 ± 1.1 ab | 8.45 ± 0.82 ab | 8.25 ± 0.74 b | 8.61 ± 0.81 a | 6.65 ± 0.57 b | 6.79 ± 0.58 ab | 6.96 ± 0.66 a |
SC | 3.85 ± 0.16 a | 3.84 ± 0.2 a | 3.82 ± 0.14 a | 3.85 ± 0.16 a | 3.85 ± 0.17 a | 3.82 ± 0.15 a | 3.82 ± 0.15 a | 3.83 ± 0.14 a | 3.81 ± 0.14 a |
NL | 9.79 ± 0.87 c | 10.06 ± 1 b | 10.52 ± 1.14 a | 9.87 ± 0.87 c | 10.27 ± 0.89 b | 11.09 ± 0.94 a | 9.54 ± 0.82 b | 9.84 ± 1.10 ab | 9.99 ± 1.06 a |
KL | 9.17 ± 0.99 b | 9.3 ± 1.1 b | 9.72 ± 1.38 a | 9.37 ± 0.87 c | 9.77 ± 0.89 b | 10.59 ± 0.94 a | 8.59 ± 1.09 a | 8.81 ± 1.17 a | 8.91 ± 1.22 a |
BL | 35.6 ± 1.06 a | 35.67 ± 1.1 a | 35.55 ± 1.32 a | 35.75 ± 1.02 b | 35.92 ± 1.05 ab | 36.12 ± 1.23 a | 35.15 ± 1.06 a | 35.4 ± 1.10 a | 35.02 ± 1.17 a |
BW | 1.32 ± 0.18 a | 1.32 ± 0.2 a | 1.34 ± 0.15 a | 1.34 ± 0.18 a | 1.36 ± 0.18 a | 1.34 ± 0.13 a | 1.25 ± 0.19 b | 1.28 ± 0.14 ab | 1.34 ± 0.17 a |
Rooster | n = 41 | n = 73 | n = 62 | n = 18 | n = 45 | n = 41 | n = 23 | n = 28 | n = 21 |
CC | 24.8 ± 1.17 b | 25.06 ± 1.2 b | 25.59 ± 1.2 a | 25.43 ± 0.97 a | 25.43 ± 0.97 a | 25.70 ± 1.16 a | 24.31 ± 1.09 b | 24.31 ± 1.09 ab | 25.38 ± 1.29 a |
BkL | 17.34 ± 1.12 b | 17.7 ± 1 ab | 17.95 ± 1.14 a | 18.11 ± 0.75 a | 18.11 ± 0.75 a | 18.15 ± 1.26 a | 16.74 ± 1.00 b | 16.74 ± 1.00 ab | 17.56 ± 0.75 a |
WL | 43.18 ± 2.05 b | 43.76 ± 2 ab | 44.42 ± 1.77 a | 44.13 ± 1.54 a | 44.13 ± 1.54 a | 44.47 ± 1.97 a | 42.43 ± 2.12 b | 42.43 ± 2.12 b | 44.33 ± 1.33 a |
SL | 8.1 ± 0.91 b | 8.53 ± 0.9 a | 8.85 ± 1.05 a | 8.54 ± 0.63 a | 8.54 ± 0.63 a | 9.01 ± 1.12 a | 7.76 ± 0.96 b | 7.76 ± 0.96 ab | 8.55 ± 0.85 a |
SC | 3.97 ± 0.19 a | 3.99 ± 0.2 a | 3.97 ± 0.16 a | 4.08 ± 0.21 a | 4.08 ± 0.21 a | 4.00 ± 0.16 a | 3.89 ± 0.13 a | 3.89 ± 0.13 a | 3.90 ± 0.14 a |
NL | 10.94 ± 1.07 b | 11.25 ± 1.1 ab | 11.6 ± 1.15 a | 11.18 ± 1.25 a | 11.18 ± 1.25 a | 11.76 ± 1.20 a | 10.75 ± 0.89 a | 10.75 ± 0.89 a | 11.28 ± 0.99 a |
KL | 9.29 ± 1.08 b | 9.4 ± 1.3 ab | 9.86 ± 1.3 a | 9.58 ± 1.25 a | 9.58 ± 1.25 a | 10.16 ± 1.20 a | 9.06 ± 0.89 a | 9.06 ± 0.89 a | 9.27 ± 1.31 a |
BL | 38.73 ± 1.43 b | 39.18 ± 1.1 a | 39.47 ± 1.1 a | 39.39 ± 0.82 a | 39.39 ± 0.82 a | 39.68 ± 1.01 a | 38.21 ± 1.60 b | 38.21 ± 1.60 ab | 39.05 ± 1.17 a |
BW | 1.47 ± 0.2 a | 1.53 ± 0.2 a | 1.53 ± 0.17 a | 1.56 ± 0.13 a | 1.56 ± 0.13 a | 1.56 ± 0.17 a | 1.41 ± 0.22 b | 1.41 ± 0.22 b | 1.48 ± 0.14 a |
All Chickens | Hens | Rooster | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | PC1 | PC2 | Communalities | PC1 | PC2 | Comm | PC1 | PC2 | Communalities |
Chest circumference | 0.320 | −0.278 | 0.492 | 0.288 | 0.018 | 0.262 | 0.280 | −0.244 | 0.362 |
Back length | 0.398 | 0.187 | 0.668 | 0.454 | −0.164 | 0.680 | 0.370 | 0.488 | 0.814 |
Wingspan length | 0.366 | 0.250 | 0.601 | 0.394 | −0.246 | 0.559 | 0.362 | 0.449 | 0.743 |
Shank length | 0.372 | 0.148 | 0.572 | 0.409 | −0.134 | 0.549 | 0.390 | 0.017 | 0.551 |
Shank circumference | 0.199 | −0.505 | 0.440 | 0.047 | 0.691 | 0.557 | 0.232 | −0.414 | 0.423 |
Neck length | 0.378 | 0.164 | 0.597 | 0.375 | 0.379 | 0.608 | 0.391 | −0.364 | 0.731 |
Keel length | 0.317 | 0.458 | 0.633 | 0.425 | 0.293 | 0.669 | 0.398 | −0.347 | 0.734 |
Body length | 0.343 | −0.422 | 0.665 | 0.203 | −0.056 | 0.134 | 0.309 | 0.155 | 0.378 |
Body weight | 0.257 | −0.366 | 0.412 | 0.156 | −0.430 | 0.289 | 0.205 | 0.228 | 0.222 |
Eigenvalues | 3.971 | 1.109 | - | 3.621 | 1.337 | - | 3.156 | 1.151 | - |
% variance | 44.120 | 12.320 | - | 35.070 | 12.790 | - | 40.230 | 14.860 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekonnen, K.T.; Lee, D.-H.; Cho, Y.-G.; Son, A.-Y.; Seo, K.-S. Biometric Trait Characterization and Multivariate Discriminant Analysis of Traditionally Bred Autochthonous Chickens in Ethiopia. Agriculture 2023, 13, 2142. https://doi.org/10.3390/agriculture13112142
Mekonnen KT, Lee D-H, Cho Y-G, Son A-Y, Seo K-S. Biometric Trait Characterization and Multivariate Discriminant Analysis of Traditionally Bred Autochthonous Chickens in Ethiopia. Agriculture. 2023; 13(11):2142. https://doi.org/10.3390/agriculture13112142
Chicago/Turabian StyleMekonnen, Kefala Taye, Dong-Hui Lee, Young-Gyu Cho, Ah-Yeong Son, and Kang-Seok Seo. 2023. "Biometric Trait Characterization and Multivariate Discriminant Analysis of Traditionally Bred Autochthonous Chickens in Ethiopia" Agriculture 13, no. 11: 2142. https://doi.org/10.3390/agriculture13112142
APA StyleMekonnen, K. T., Lee, D. -H., Cho, Y. -G., Son, A. -Y., & Seo, K. -S. (2023). Biometric Trait Characterization and Multivariate Discriminant Analysis of Traditionally Bred Autochthonous Chickens in Ethiopia. Agriculture, 13(11), 2142. https://doi.org/10.3390/agriculture13112142