The Impact of Agricultural Global Value Chain Participation on Agricultural Total Factor Productivity
Abstract
:1. Introduction
2. Theoretical Framework and Research Hypotheses
2.1. The Direct Impact Pathways of Agricultural GVC Participation on Agricultural TFP
2.2. The Indirect Impact Pathways of Agricultural GVC Participation on Agricultural TFP
3. Materials and Methods
3.1. Measure of GVC Participation
3.2. Total Factor Productivity Index
3.3. Baseline Model
3.4. Sample Countries
4. Results and Discussion
4.1. Analysis of Agricultural TFP Index and Its Decomposition Indices
4.2. Baseline Model Estimates
4.3. Robustness Test Estimates
4.3.1. Replacing the Core Explanatory Variable
4.3.2. Replacing the Explainable Variable
4.3.3. Narrowing the Data Sample Period
4.4. Heterogeneity Test Estimates
4.4.1. Heterogeneity Test of Income Levels
4.4.2. Heterogeneity Test of Pathways to Participating in Agricultural GVCs
4.5. Mediation Effects Test
4.5.1. Technology Spillover Effects Test
4.5.2. Resource Allocation Effects Test
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Greenville, J.; Kawasaki, K.; Jouanjean, M. Value Adding Pathways in Agriculture and Food Trade: The Role of GVCs and Services; Organisation for Economic Co-Operation and Development: Paris, France, 2019. [Google Scholar]
- Greenville, J.; Kawasaki, K.; Jouanjean, M. Dynamic Changes and Effects of Agro–Food GVCs; Organisation for Economic Co-Operation and Development: Paris, France, 2019. [Google Scholar]
- United Nations Industrial Development Organization. Global Value Chains in the Agrifood Sector; United Nations Industrial Development Organization: Vienna, Austria, 2006. [Google Scholar]
- Lim, S.; Kim, S.W. Global Agricultural Value Chains and Employment Growth. J. Agric. Appl. Econ. Assoc. 2022, 4, 402–418. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, F.; Wu, P. Production and Trade of Agricultural Products in GVC: Features, Shackles and Countermeasures. Int. Bus. Res. 2016, 37, 44–52. [Google Scholar]
- Koopman, R.; Wang, Z.; Wei, S. Tracing Value–Added and Double Counting in Gross Exports; National Bureau of Economic Research: Cambridge, MA, USA, 2012. [Google Scholar]
- Yi, W. Decomposition of the Bilateral Agriculture Trade between China and America: Based on the Perspective of Global Value Chain. World Econ. Stud. 2018, 34, 3–11. [Google Scholar]
- Wang, Z.; Gehlhar, M.; Yao, S. A Globally Consistent Framework for Reliability: Based on Trade Statistics Reconciliation in the Presence of An Entrepôt. China Econ. Rev. 2010, 21, 161–189. [Google Scholar] [CrossRef]
- Ruan, Z. Research on International Competitiveness of Agriculture Based on GVC; Nanjing University of Science and Technology: Nanjing, China, 2021. [Google Scholar]
- Victor, K. Global Value Chains: Benefiting the Domestic Economy; Graduate Institute of International and Development Studies: Geneva, Switzerland, 2015. [Google Scholar]
- Yang, J. Research on the Relationship between Embedding Position of Agriculture in GVCs and Value–adding Capacity. Financ. Trade Res. 2017, 38, 39–47. [Google Scholar]
- Li, K.; Ma, T.; Huang, C. The Trend and Influence of Global Value Chain Reconstruction. Economist 2021, 11, 14–23. [Google Scholar]
- Zhou, B.; Li, T. An Examination of the Factors Influencing China’s Agricultural Global Value Chain Position. Stat. Decis. 2023, 39, 83–87. [Google Scholar]
- Fagerberg, J.; Lundvall, A.; Srholec, M. Global Value Chains, National Innovation Systems and Economic Development. Eur. J. Dev. Res. 2018, 30, 533–556. [Google Scholar] [CrossRef]
- Su, D.; Sheng, B.; Shao, C.; Chen, S. Global Value Chain, Industry Agglomeration and Firm Productivity’s Interactive Effect. Econ. Res. J. 2020, 55, 100–115. [Google Scholar]
- Tang, H. Vertical Specialization and Labor Productivity: A Globalization Perspective. J. World Econ. 2014, 37, 25–52. [Google Scholar]
- Zhao, J.; Boasson, V. Productivity Gains from Offshore Outsourcing: Evidence from the Chinese Manufacturing Industry. China World Econ. 2015, 23, 104–122. [Google Scholar] [CrossRef]
- Nagengast, A.J.; Stehrer, R. Accounting for the Differences between Gross and Value Added Trade Balances. World Econ. 2016, 39, 1276–1306. [Google Scholar] [CrossRef]
- Costinot, A.; Jonathan, V.; Su, W. An Elementary Theory of Global Supply Chains. Rev. Econ. Stud. 2013, 80, 109–144. [Google Scholar] [CrossRef]
- Wang, J. Dynamic Effects of Multinational Outsourcing on the Local Enterprises Productivity in China. Financ. Trade Econ. 2014, 35, 94–104. [Google Scholar]
- Wang, Y.; Lin, H.; Lu, C. The Effect of Global Value Chain Embeddedness on Technical Progress: An Empirical Study on Panel Data of China’s Industries. China Ind. Econ. 2014, 32, 65–77. [Google Scholar]
- Lv, Y.; Huang, Y.; Chen, Y. The Effect of Global Value Chain Embeddedness on Productivity: An Analysis of its Impact and Mechanism. World Econ. 2017, 40, 28–51. [Google Scholar]
- He, N.; Xia, Y. The Effect of Equipment Manufacturing Industry Integration into Global Value Chain Technological Progress. Sci. Technol. Prog. Policy 2019, 36, 65–74. [Google Scholar]
- Hu, Z. Effect of International Intra–product Specialization on Productivity of Chinese Industry. China Ind. Econ. 2007, 25, 30–37. [Google Scholar]
- Liu, H.; Xie, Q. The Productivity of Emerging Economies’ Participation in Global Value Chain. J. Financ. Econ. 2017, 43, 18–31. [Google Scholar]
- Xiao, W. Has Participation in the Division of Labor in Global Value Chains Increased Total Factor Productivity. Soc. Sci. Guangxi 2017, 33, 106–110. [Google Scholar]
- Zhang, Y.; Hu, S. Vertical Specialization, Innovation and Green Total Factor Productivity: An Evidence of Manufacturing Industry. Forum Sci. Technol. China 2022, 38, 104–113. [Google Scholar]
- Chiarvesio, E.D.M.; Micelli, S. Global Value Chains and Open Networks: The Case of Italian Industrial Districts. Eur. Plan. Stud. 2010, 18, 333–350. [Google Scholar] [CrossRef]
- Lee, J.; Gereffi, G. The Co–Evolution of Concentration in Mobile Phone Global Value Chains and Its Impact on Social Uupgrading in Developing Countries; University of Manchester: Manchester, UK, 2013. [Google Scholar]
- Ge, J.; Fu, Y.; Xie, R.; Liu, Y.; Mo, W. The Effect of GVC Embeddedness on Productivity Improvement: From the Perspective of R&D and Government Subsidy. Technol. Forecast. Soc. Chang. 2018, 135, 22–31. [Google Scholar]
- Lv, Y.; Lv, Y. Does GVC Embedment Affect Manufacturing Enterprises Productivity: Based on The Doubly Robust Propensity Score Reweighted Regressions. Financ. Trade Econ. 2016, 37, 109–122. [Google Scholar]
- Hu, Y.; Yu, D. Global Value Chain Embedding, Technology Path Selection and Manufacturing High–Quality Development. Sci. Technol. Prog. Policy 2021, 38, 44–52. [Google Scholar]
- Yanikkaya, H.; Altun, A. Beyond Conventional Trade: Trade Openness Implications of Trade in Value Added. Singap. Econ. Rev. 2020, 66, 973–995. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, Q. Effect of Two–way Participation of Global Value Chains on Productivity: Empirical Research Based on the World—Output Database. Financ. Trade Res. 2019, 40, 26–42. [Google Scholar]
- Mattoo, A.; Wang, Z.; Wei, S. Trade in Value Added: Developing New Measures of Cross–Border Trade; Centre for Economic Policy Research and the World Bank: London, UK, 2013. [Google Scholar]
- Baldwin, R.E. Supply–Chain Trade: A Portrait of Global Patterns and Several Testable Hypotheses; National Bureau of Economic Research: Cambridge, MA, USA, 2013. [Google Scholar]
- Hummels, D.; Ishii, J.; Yi, K.M. The Nature and Growth of Vertical Specialization in World Trade. J. Int. Econ. 2001, 54, 75–96. [Google Scholar] [CrossRef]
- Jones, R.W.; Kierzkowski, H. A Framework for Fragmentation. In New Production Patterns in the World Economy; Arndt, S.W., Kierzkowski, H., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 17–34. [Google Scholar]
- Baldwin, J.R.; Caves, R.E. International Competition and Industrial Performance: Allocative Efficiency, Productive Efficiency, and Turbulence. In Freedom and Trade. Vol. 2, The Economics and Politics of International Trade; Gary, C., Ed.; Routledge: London, UK, 1998. [Google Scholar]
- Montalbano, P.; Nenci, S.; Salvatici, L. Trade, Value Chains and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Morales, C.; Cory, C.; Bozell, D.A. Comparative Efficiency Study between A Live Lecture and A Web–Based Live–Switched Multi–Camera Streaming Video Distance Learning Instructional Unit. In Proceedings of the 2001 Information Resources Management Association International Conference, Toronto, ON, Canada, 20–23 May 2001; pp. 63–66. [Google Scholar]
- Li, Z. The Role Mechanism and Promotion Path of Agricultural Industry Cluster Upgrading in the Perspective of Global Value Chain. Agric. Econ. 2021, 41, 13–15. [Google Scholar]
- Lawrence, R.Z.; Weinstein, D.E. Trade and Growth: Import–Led or Export–Led? Evidence from Japan and Korea; National Bureau of Economic Research: Cambridge, MA, USA, 1999. [Google Scholar]
- Sharma, M.S.; Sharma, M.V. Employee Engagement to Enhance Productivity in Current Scenario. Int. J. Commer. Bus. Manag. 2014, 3, 595–604. [Google Scholar]
- Coe, D.T.; Helpman, E. International R&D Spillovers. Eur. Econ. Rev. 1995, 39, 859–887. [Google Scholar]
- Hirotaka, T.; Shigemi, K.; Hidemichi, F.; Shunsuke, M.; Shogo, E. Impacts of Productive Efficiency Improvement in the Global Metal Industry on CO2 Emissions. J. Environ. Manag. 2019, 248, 109261. [Google Scholar]
- Evenson, R.; Westphal, L. Technological Change and Technology Strategy. In Handbook of Development Economics; Behrman, J., Srinivasan, T.N., Eds.; North–Holland: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Ma, Y. Agricultural Product Trade, Agricultural Technological Progress and Interregional Income Gap among Farmers in China. J. Int. Trade 2018, 44, 41–53. [Google Scholar]
- Tian, W.; Yu, M. Intermediate Goods Trade Liberalization and Firm R&D: An Empirical Analysis Based on Chinese Data. J. World Econ. 2014, 37, 90–112. [Google Scholar]
- Lampón, J.F.; De la Fuente, M.R.; Fraiz–Brea, J.A. The Dilemma of Domestic Suppliers on the Periphery of the Automotive Industry Global Value Chain. Kybernetes 2021, 51, 3637–3655. [Google Scholar] [CrossRef]
- Li, L.; Cheng, B.; Liu, B. The Impact of Global Value Chains Participation on Employment and Its Structure. J. Int. Trade 2017, 43, 27–37. [Google Scholar]
- Li, X.; Zhao, C.; Nie, J. OFDI and Corporations’ Heterogeneous Capacity Utilization. J. World Econ. 2017, 40, 73–97. [Google Scholar]
- Hatani, F. The Logic of Spillover Interception: The Impact of Global Supply Chains in China. J. World Bus. 2009, 44, 158–166. [Google Scholar] [CrossRef]
- Yan, Y. The GVC Evolution Path of Chinese and American Domestic–Owned and Foreign–Owned Enterprises. J. Xi’an Jiaotong Uni. Soc. Sci. 2021, 41, 29–38. [Google Scholar]
- Sha, W.; Li, Y. Reverse Technology Spillover Effects of OFDI, Knowledge Management and Regional Innovation Capabilities. World Econ. Stud. 2018, 34, 80–94. [Google Scholar]
- Gazaniol, A.; Peltrault, F. Outward FDI, Performance and Group Affiliation: Evidence from French Matched Firms. Econ. Bull. 2013, 33, 891–904. [Google Scholar]
- Yang, D.Y.R.; Chen, Y.C. The ODM Model and Co–evolution in the Global Notebook PC Industry: Evidence from Taiwan. Adv. Appl. Sociol. 2013, 3, 69–78. [Google Scholar] [CrossRef]
- Fosfuri, A.; Motta, M. Foreign Direct Investment and Spillovers through Workers’ Mobility. J. Int. Econ. 2001, 53, 205–222. [Google Scholar] [CrossRef]
- Bruno, P.; Frank, L. Does Foreign Direct Investment Transfer Technology Across Borders? Rev. Econ. Stat. 2001, 83, 490–497. [Google Scholar]
- Li, D.; Deng, M. Chinese Inter–Provincial OFDI, Spatial Spillover Effects, and Structural Upgrading of Domestic Industry: An Analysis Based on the Spatial Panel Durbin Model. J. Int. Trade 2016, 42, 121–133. [Google Scholar]
- Liu, J.; Liu, Y. Can Outward Foreign Direct Investment Improve the Resource Misallocation in China? China Ind. Econ. 2018, 36, 60–78. [Google Scholar]
- Jin, F.; Jin, R. Analysis on the Spatial Effects of Agricultural Industrial Structure on Agricultural Green Total Factor Productivity. J. Huazhong Agric. Uni. Soc. Sci. 2020, 40, 124–134. [Google Scholar]
- Pan, Q. An Study on the Influence of Global Value Chain Embeddedness on the Efficiency of Resource Allocation in China’s Manufacturing Industry; Shanghai Academy of Social Sciences: Shanghai, China, 2021. [Google Scholar]
- Wang, Y.; Zhao, Y. Processing Trade Import, Forward Linkage and Industrial Productivity: An Study Based on Non–competitive Input–output Table. World Econ. Stud. 2013, 29, 41–46. [Google Scholar]
- Ma, S.; Zheng, B. Review of the Relationship between the Export Behavior and Productivity in Chinese Enterprises: 2001–2007. J. Zhejiang Uni. Humanities Soc. Sci. 2010, 40, 144–153. [Google Scholar]
- Chen, Y.; Wang, H. Export, Back Linkages and Total Factor Productivity. Financ. Trade Res. 2011, 22, 46–51. [Google Scholar]
- Zhong, S.; Liang, J.; Mao, Y. The Impact Mechanisms of Global Value Chain Embedding on the Enhancement of Total Factor Productivity. J. Int. Trade 2021, 47, 110–125. [Google Scholar]
- Silva, T.C.; Tabak, B.M.; Cajueiro, D.O.; Dias, M.V.B. A Comparison of DEA and SFA Using Micro- and Macro-Level Perspectives: Efficiency of Chinese Local Banks. Phys. A 2017, 469, 216–223. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers. Econ. J. 1982, 92, 73–86. [Google Scholar] [CrossRef]
- World Bank WDI Database. Available online: https://data.worldbank.org/indicator?tab=all (accessed on 18 August 2022).
- United States Department of Agriculture (USDA) Database. Available online: https://www.ers.usda.gov/ (accessed on 18 August 2022).
- International Labour Organization (ILO) ILOSTAT Database. Available online: https://www.ilo.org/global/ (accessed on 18 August 2022).
- Food and Agriculture Organization of the United Nations (FAO) FAOSTAT Database. Available online: https://www.fao.org/faostat/en/#data/IG (accessed on 18 August 2022).
- Yi, Z.; Li, G.; Fan, L.; Gao, X. Climate Change, Science and Technology Stocks and Agricultural Productivity Growth. Chin. Rural Econ. 2016, 30, 16–28. [Google Scholar]
- Liu, H.; Lang, D. Institutional Impacts on Agricultural Involvement in Global Value Chains Specialization—Based on the Multinational Panel Data from the World Input–Output Tables. Int. Bus. 2019, 34, 11–20. [Google Scholar]
- Zhang, D.; Jiao, X. Agricultural Insurance, Total Factor Productivity in Agriculture and the Economic Resilience of Farm Households. J. South China Agric. Univ. Soc. Sci. 2022, 21, 82–97. [Google Scholar]
- Chen, Y.; Wang, Y. The Impact of Agricultural Import and Export Trade on Green Total Factor Productivity in China’s Agriculture. J. Commer. Econ. 2022, 41, 141–144. [Google Scholar]
- International Disaster Database (EM–DAT). Available online: https://emdat.be/ (accessed on 18 August 2022).
- Lee, J.; Gereffi, G. Global Value Chains, Rising Power Firms and Economic and Social Upgrading. Crit. Perspect. Int. Bus. 2015, 11, 319–339. [Google Scholar] [CrossRef]
- Kaplinsky, R. Globalization and Unequalization: What Can Be Learned from Value Chain Analysis? J. Dev. Stud. 2020, 37, 117–146. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Zhao, M.; Ci, M.; Ding, L. Participation in Global Value Chain and Its Impact on International Competitiveness for China’s Agricultural Products: Evidence Based on Enterprise Data. Chin. J. Agric. Resour. Reg. Plan. 2022, 43, 93–102. [Google Scholar]
- Lu, F.; Hu, P. Game Analysis on Low–Locked to Chinese Enterprises at the Global Value Network. China Ind. Econ. 2008, 26, 23–32. [Google Scholar]
- Liu, W.; Li, L.; Liu, Y. The Impact of Global Value Chain Embeddedness on Technological Sophistication of China’s Export. China Ind. Econ. 2014, 32, 83–95. [Google Scholar]
- Greenville, J.; Kawasaki, K.; Beaujeu, R. How Policies Shape Global Food and Agriculture Value Chains; Organisation for Economic Co–operation and Development: Paris, France, 2017. [Google Scholar]
- Liu, H.; Zhang, D.; Zou, H. Emerging Markets and Global Value Chain: An Perspective Based on Trade in Value–added. J. Cent. Uni. Financ. Econ. 2015, 35, 85–99. [Google Scholar]
- Bhushan, J. Global Value Chain Embeddedness, Labour Productivity and Employment in the Asia–Pacific Countries. Stud. Econ. Financ. 2020, 38, 339–360. [Google Scholar]
- Brandt, L.; Eric, T. The Fight for the Middle: Upgrading, Competition, and Industrial Development in China. World Dev. 2010, 38, 1555–1574. [Google Scholar] [CrossRef]
- Shen, J.H.; Zhang, L.; Lee, C.C.; Zhang, J.; Shen, L. Towards A Dynamic Model of the Industrial Upgrading with Global Value Chains. World Econ. 2021, 44, 2683–2702. [Google Scholar] [CrossRef]
- Constantinescu, C.; Mattoo, A.; Ruta, M. Does Vertical Specialization Increase Productivity? World Econ. 2019, 42, 2385–2402. [Google Scholar] [CrossRef]
- World Bank. World Development Report: Trading for Development in the Age of Global Value Chains; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Brandt, L.; Van, J.B.; Zhang, Y. Challenges of Working with the Chinese NBS Firm–Level Data. China Econ. Rev. 2014, 30, 339–352. [Google Scholar] [CrossRef]
- Ma, S.; Chen, Y.; Liu, M. Reverse Technology Spillover of Outward Foreign Direct Investment and the Promotion of Position of the Agricultural Global Value Chain: Evidence from G20. Int. Bus. Res. 2017, 38, 5–17. [Google Scholar]
- Xiao, L.; Xie, D. Foreign Technology Import and Growth of Local Innovation: Complementary or Substitution: An Analysis Based on Heterogeneous Absorptive Capacity. China Ind. Econ. 2016, 34, 75–92. [Google Scholar]
- Humphrey, J.; Schmitz, H. How Does Insertion in Global Value Chains Affect Upgrading in Industrial Clusters? Reg. Stud. 2002, 36, 1017–1027. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Analyses of Mediating Effects: The Development of Methods and Models. Adv. Psychol. Sci. 2014, 22, 5–19. [Google Scholar] [CrossRef]
- Kemeny, T. Does Foreign Direct Investment Drive Technological Upgrading. World Dev. 2010, 38, 1543–1554. [Google Scholar] [CrossRef]
Variables | Unit | Data Sources | Mean | Minimum | Maximum |
---|---|---|---|---|---|
Output Variable | |||||
Agricultural value added | USD 100 million | WDI Database | 358 | 1 | 10,300 |
Input Variables | |||||
Area of agricultural land | Square kilometers | WDI Database | 557,985 | 1090 | 5,290,000 |
Number of agricultural machinery | 1000 metric horsepower | USDA Database | 39,162 | 183 | 15,19,077 |
Number of agricultural laborers | People | ILOSTAT Database | 11,400,000 | 2514 | 364,000,000 |
Usage of agricultural fertilizers | Tons | FAOSTAT Database | 2,525,197 | 9230 | 55,200,000 |
Variables | Introduction | Data Sources | Mean | Minimum | Maximum |
---|---|---|---|---|---|
Gross domestic product (GDP) per capita/USD 1000 | WDI Database | 14.426 | 0.034 | 105.214 | |
Share of goods trade in GDP/% | WDI Database | 59.859 | 18.449 | 174.164 | |
Gross enrollment rate in tertiary education/% | WDI Database | 49.999 | 10.176 | 118.510 | |
Share of the urban population in the total population/% | WDI Database | 67.356 | 20.656 | 97.514 | |
Number of people affected by natural disasters/10,000 people | EM–DAT Database | 0.941 | 0.0001 | 850.997 | |
Government expenditure in agriculture/USD 100 million | FAOSTAT Database | 24.853 | 2.413 | 950.507 |
Income Groups | GNI per Capita | Countries |
---|---|---|
High-income countries (36 countries) | USD 12,375 or more | Australia, Austria, Belgium, Canada, Chile, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Japan, Latvia, Netherlands, New Zealand, Norway, Poland, Portugal, Republic of Korea, Saudi Arabia, Slovak Republic, Slovenia, Spain, Switzerland, United Kingdom, and the United States. |
Upper-middle-income countries (15 countries) | Between USD 3996 and USD 12,374 | Argentina, Brazil, Bulgaria, China, Colombia, Costa Rica, Croatia, Hungary, Kazakhstan, Lithuania, Luxembourg, Malaysia, Mexico, Peru, Romania, Russian Federation, South Africa, Thailand, and Turkey. |
Lower-middle-income countries (7 countries) | Between USD 1026 and USD 3995 | Cambodia, India, Indonesia, Morocco, Myanmar, Philippines, and Tunisia. |
Variables | TFP Index | TEC Index | TC Index | PTEC Index | SEC Index |
---|---|---|---|---|---|
Mean | 1.016 | 1.001 | 1.015 | 1.001 | 1.000 |
Minimum | 0.950 | 0.957 | 0.964 | 0.960 | 0.957 |
Maximum | 1.102 | 1.126 | 1.042 | 1.070 | 1.052 |
Standard deviation | 0.028 | 0.027 | 0.016 | 0.019 | 0.013 |
Number of countries with values greater than 1 | 44 | 23 | 51 | 18 | 24 |
Mean in high-income countries | 1.020 | 0.999 | 1.021 | 1.010 | 0.998 |
Mean in upper-middle-income countries | 1.014 | 0.999 | 1.015 | 0.998 | 1.001 |
Mean in lower-middle-income countries | 1.024 | 1.024 | 1.000 | 1.010 | 1.014 |
Variables | Fixed Effects | Random Effects | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
0.333 *** (6.17) | 0.528 *** (5.75) | 0.334 *** (5.98) | 0.429 *** (5.83) | |
0.106 * (1.74) | 0.027 * (1.67) | |||
Control variables | yes | yes | yes | yes |
Fixed countries | yes | yes | yes | yes |
Fixed years | yes | yes | yes | yes |
Constant | −0.382 ** (−2.30) | −0.521 ** (−2.28) | −0.113 *** (−2.73) | −0.105 ** (−1.91) |
Number of observations | 1044 | 1044 | 1044 | 1044 |
Hausman test | χ2 = 160.20 *** [0.000] |
Variables | Replacing the Core Explanatory Variable | Replacing the Explainable Variable | Narrowing the Data Sample Period |
---|---|---|---|
(5) | (6) | (7) | |
0.014 *** (2.71) | 0.339 *** (6.36) | ||
lnGVCt−1 | 0.531 *** (4.96) | ||
lnGVCt−2 | 0.412 *** (3.65) | ||
Control variables | yes | yes | yes |
Fixed countries | yes | yes | yes |
Fixed years | yes | yes | yes |
Constant | −0.212 ** (−2.64) | −0.285 ** (−2.24) | −0.558 ** (−2.07) |
F-statistic | 18.71 *** [0.000] | 17.38 *** [0.000] | 28.23 *** [0.000] |
Variables | High-Income Countries | Upper-Middle-Income Countries | Lower-Middle-Income Countries | ||||||
---|---|---|---|---|---|---|---|---|---|
(8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | |
0.322 *** (7.31) | 0.349 *** (2.83) | −0.036 (−1.36) | |||||||
0.057 ** (2.36) | 0.030 ** (2.43) | −0.110 (−0.07) | |||||||
0.037 ** (2.32) | 0.034 ** (2.22) | 0.003 * (1.75) | |||||||
Control variables | yes | yes | yes | yes | yes | yes | yes | yes | yes |
Constant | −0.320 ** (−2.26) | −0.377 ** (−2.02) | −1.862 ** (−2.11) | −0.411 ** (−2.43) | 0.083 ** (2.25) | −0.051 ** (−2.06) | −0.360 ** (−2.16) | −0.553 ** (−2.26) | −0.528 ** (−2.09) |
Fixed countries | yes | yes | yes | yes | yes | yes | yes | yes | yes |
Fixed years | yes | yes | yes | yes | yes | yes | yes | yes | yes |
F-statistic | 17.63 *** [0.000] | 8.24 *** [0.000] | 7.61 *** [0.000] | 23.21 *** [0.000] | 28.23 *** [0.000] | 27.61 *** [0.000] | 28.05 *** [0.000] | 18.43 *** [0.000] | 17.56 *** [0.000] |
Variables | Forward Agricultural GVC Participation | Backward Agricultural GVC Participation |
---|---|---|
(17) | (18) | |
lnGVCf | 0.046 ** (2.25) | |
lnGVCb | 0.071 ** (2.07) | |
Control variables | yes | yes |
Constant | −0.623 ** (−2.12) | −0.697 ** (−2.15) |
Fixed countries | yes | yes |
Fixed years | yes | yes |
F-statistic | 12.60 *** [0.000] | 13.21 *** [0.000] |
Variables | Technology Spillover Effects | Resource Allocation Effects | ||
---|---|---|---|---|
lnFDI | lnTFP | ln(K/L) | lnTFP | |
(19) | (20) | (21) | (22) | |
lnGVC | 0.028 ** (2.25) | 0.321 ** (2.38) | 0.097 ** (2.22) | 0.327 ** (2.44) |
lnFDI | 0.045 ** (2.01) | |||
ln(K/L) | 0.023 ** (2.09) | |||
Control variables | yes | yes | yes | yes |
Constant | 7.291 * (1.90) | 0.650 *** (2.86) | −6.531 *** (−6.28) | −0.516 ** (2.33) |
Fixed countries | yes | yes | yes | yes |
Fixed years | yes | yes | yes | yes |
F-statistic | 217.60 *** [0.000] | 23.20 *** [0.000] | 328.05 *** [0.000] | 24.50 *** [0.000] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Sun, Z. The Impact of Agricultural Global Value Chain Participation on Agricultural Total Factor Productivity. Agriculture 2023, 13, 2151. https://doi.org/10.3390/agriculture13112151
Zhang D, Sun Z. The Impact of Agricultural Global Value Chain Participation on Agricultural Total Factor Productivity. Agriculture. 2023; 13(11):2151. https://doi.org/10.3390/agriculture13112151
Chicago/Turabian StyleZhang, Defeng, and Zhilu Sun. 2023. "The Impact of Agricultural Global Value Chain Participation on Agricultural Total Factor Productivity" Agriculture 13, no. 11: 2151. https://doi.org/10.3390/agriculture13112151
APA StyleZhang, D., & Sun, Z. (2023). The Impact of Agricultural Global Value Chain Participation on Agricultural Total Factor Productivity. Agriculture, 13(11), 2151. https://doi.org/10.3390/agriculture13112151