Influence of Guar Meal from Pig Compound Feed on Productive Performance, Nitrogen Metabolism, and Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Treatments
2.3. Measurement and Sampling
2.4. Analytical Laboratory Procedure
2.5. CH4 (E-CH4 and M-CH4) and N2O Emissions
2.6. Statistical Analyses
3. Results
3.1. Feedstuff Chemical Composition
3.2. Growth Performance in the Biological Trial
3.3. N Digestibility
3.4. CH4 (E-CH4 and M-CH4) and N2O Emissions Estimated
3.5. Relationship between Input and Output Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pach, F.; Nagel, F. Replacing the substitute—Guar meal as an alternative for non-genetically modified soybean meal in the nutrition of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). Aquac. Nutr. 2017, 24, 666–672. [Google Scholar] [CrossRef]
- Karpiesiuk, K.; Kozera, W.; Bugnacka, D.; Woźniakowska, A.; Jarocka, B. The effect of partial replacement of soybean meal protein with guar (Cyamopsis tetragonoloba) meal protein on the cost-effectiveness of pig fattening. Ann. Warsaw Univ. Life Sci. SGGW Land Reclam. 2018, 57, 341–348. [Google Scholar] [CrossRef]
- Helm, E.T.; Patience, J.F.; Romoser, M.R.; Johnson, C.D.; Ross, J.W.; Gabler, N.K. Evaluation of increased fiber, decreased amino acids, or decreased electrolyte balance as dietary approaches to slow finishing pig growth rates. J. Anim. Sci. 2021, 99, skab164. [Google Scholar] [CrossRef]
- Hasan, M.S.; Humphrey, R.M.; Yang, Z.; Crenshaw, M.A.; Brett, J.; Liao, S.F. Effects of dietary inclusion of GuarPro F-71 on the growth performance and nutrient metabolism in young growing pigs. J. Appl. Anim. Nutr. 2020, 8, 143–149. [Google Scholar] [CrossRef]
- Sandhu, P.P.; Bains, K.; Singla, G.; Sangwan, R.S. Nutritional and functional properties of defatted, debittered and off-flavour free high protein guar (Cyamopsis tetragonoloba) meal flour. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 89, 695–701. [Google Scholar] [CrossRef]
- Janampet, R.S.; Malavath, K.K.; Neeradi, R.; Chedurupalli, S.; Thirunahari, R. Effect of feeding guar meal on nutrient utilization and growth performance in Mahbubnagar local kids. Vet. World 2016, 9, 1043–1046. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A. Evaluation of Chemical Composition of Cluster Bean (Cyamopsis tetragonoloba L.) Meal as an Alternative to Soybean Meal. Anim. Nutr. Feed Technol. 2017, 17, 457–467. [Google Scholar] [CrossRef]
- Sharma, S.L.; Singh, P.; Patil, A.K.; Sharma, J. Effect of feeding compressed complete feed block containing guar meal on blood biochemical profile of crossbred calves. J. Anim. Res. 2015, 5, 575–578. [Google Scholar] [CrossRef]
- Abdel-Wahab, W.; Sayed, S.K.; Sabek, R.A.M.; Abbas, M.S.; Sobhy, H.M. Effect of using Guar Korma Meal as a New Source of Protein on Productive Performance of Buffalos. Asian J. Anim. Sci. 2016, 10, 300–306. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Abou-Elkhair, R.M. Potential Application of Guar Meal in Broiler Diet. Asian J. Anim. Vet. Adv. 2016, 11, 280–287. [Google Scholar] [CrossRef]
- Reddy, E.T.; Reddy, V.R.; Preetham, C.; Rao, S.V.R.; Rao, D.S. Effect of dietary inclusion of graded levels of toasted guar meal on performance, nutrient digestibility, carcass traits, and serum parameters in commercial broiler chickens. Trop. Anim. Health Prod. 2017, 49, 1400–1414. [Google Scholar] [CrossRef]
- Peng, P.; Tang, X.; Deng, D.; Fang, R. The Nutritive Value of Guar Meal and its Effect on Growth Performance of Meat Ducks. Pakistan J. Zool. 2020, 52, 1001–1006. [Google Scholar] [CrossRef]
- Salehpour, M.; Qazvinian, K.; Cadavez, A.P.V. Effects of feeding different levels of guar meal on performance and blood metabolites in Holstein lactating cows. Sci. Papers. Ser. D Anim. Sci. 2012, LV, 73–77. Available online: https://animalsciencejournal.usamv.ro/index.php/scientific-papers/88-a13 (accessed on 18 October 2023).
- Singh, N.; Arya, R.S.; Sharma, T.; Dhuria, R.K.; Garg, D.D. Effect of feeding of cluster bean (Cyamopsis tetragonoloba) straw based complete feed in loose and compressed form on rumen and haemato-biochemical parameters in Marwari sheep. Vet. Pract. 2008, 9, 110–115. Available online: https://www.semanticscholar.org/paper/Effect-of-feeding-of-clusterbean-(Cyamopsis-straw-Singh-Arya/8acff1d26ddd2a510cdd5ca763a6b1345d6ede8e (accessed on 18 October 2023).
- Abo Omar, J.; Zaazaa, A.; Sheqwarah, M.; Shanab, B.A.; Qaisi, W.; Abdallah, J. Effects of Guar (Cyamopsis tetragonoloba) Residues on the Performance and Nutrients Digestibility in Finishing Awassi Lambs. Open J. Anim. Sci. 2021, 11, 96–104. [Google Scholar] [CrossRef]
- Pachauri, V.C.; Upadhyaya, R.S. Nutritive Value of Cluster Bean (Cyamopsis tetragonoloba) Hay as Affected by Supplementation of Oat Grain in Goats. Indian J. Anim. Sci. 1986, 56, 154–155. Available online: https://www.scirp.org/%28S%28351jmbntvnsjt1aadkozje%29%29/reference/referencespapers.aspx?referenceid=2918065 (accessed on 18 October 2023).
- Philippe, F.X.; Laitat, M.; Canart, B.; Vandenheede, M.; Nicks, B. Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter. Livestock Sci. 2007, 111, 144–152. [Google Scholar] [CrossRef]
- Bälter, K.; Sjörs, C.; Sjölander, A.; Gardner, C.; Hedenus, F.; Tillander, A. Is a diet low in greenhouse gas emissions a nutritious diet?—Analyses of self-selected diets in the LifeGene study. Arch. Public Health 2017, 75, 17. [Google Scholar] [CrossRef]
- IPCC 2006 Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/. (accessed on 10 June 2023).
- Hăbeanu, M.; Lefter, N.A.; Toma, S.M.; Idriceanu, L.; Gheorghe, A.; Surdu, I. Nitrous oxide prediction in manure from pigs given mustard x grapeseed oil cakes as a replacement for sunflower meal. Arch. Zootech. 2021, 24, 47–57. [Google Scholar] [CrossRef]
- FAO. Global Livestock Environmental Assessment Model (GLEAM). Rome (Italy): Food and Agriculture Organization of the United Nations (FAO). 2017. Available online: www.fao.org/gleam/en (accessed on 20 January 2023).
- Liu, Z.; Powers, W.; Liu, H. Greenhouse gas emissions from swine operations: Evaluation of the Intergovernmental Panel on Climate Change approaches through meta-analysis. J. Anim. Sci. 2014, 91, 4017–4032. [Google Scholar] [CrossRef]
- Hăbeanu, M.; Gheorghe, A.; Lefter, A.N.; Untea, A.; Idriceanu, L.; Ranta, M.F. Assessment of certain nitrogen metabolism indicators, enteric CH4 and CO2 emitted through manure related to different diets in barrow. Arch. Zootech. 2020, 23, 129–142. [Google Scholar] [CrossRef]
- Yvon-Durocher, G.; Allen, P.; Bastviken, D.; Conrad, R.; Gudasz, C.; St-Pierre, A.; Thanh-Duc, N.; del Giorgio, P.A. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 2014, 507, 488–491. [Google Scholar] [CrossRef]
- Broucek, J. Nitrous oxide production from cattle and swine manure. J. Anim. Behav. Biometeorol. 2017, 5, 13–19. [Google Scholar] [CrossRef]
- Philippe, F.X.; Nicks, B. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ. 2014, 199, e10–e25. [Google Scholar] [CrossRef]
- Hlatini, V.A.; Ncobela, C.N.; Chimonyo, M. Nitrogen balance response to varying levels of dietary protein in slow-growing Windsnyer pigs. S. Afr. J. Anim. Sci. 2020, 50, 644–653. [Google Scholar] [CrossRef]
- Diaz, J.A.C.; Berry, D.P.; Rebeiz, N.; Metzler-Zebeli, B.U. Feed efficiency metrics in growing pigs. J. Anim. Sci. 2017, 95, 3037–3046. [Google Scholar] [CrossRef]
- Hăbeanu, M.; Lefter, N.A.; Gheorghe, A.; Untea, A.; Ropotă, M.; Grigore, D.M.; Varzaru, I.; Toma, S.M. Evaluation of Performance, Nitrogen Metabolism and Tissue Composition in Barrows Fed an n-3 PUFA-Rich Diet. Animals 2019, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- SR EN ISO 5983-2:2009; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content. International Organization for Standardization: Genève, Switzerland, 2009.
- AOAC 2001.11; Protein (Crude) in Animal Feed, Forage (Plant Tissue), Grain, and Oilseeds. Block Digestion Method Using Copper Catalyst and Steam Distillation into Boric Acid. AOAC International: Rockville, MD, USA, 2001.
- SR EN ISO 6865:2002; Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. International Organization for Standardization: Genève, Switzerland, 2002.
- SR EN ISO 16472:2006; Animal Feeding Stuffs—Determination of Amylase-Treated Neutral Detergent Fibre Content (aNDF). International Organization for Standardization: Genève, Switzerland, 2006.
- SR EN ISO 13906:2008; Animal Feeding Stuffs—Determination of Acid Detergent Fibre (ADF) and Acid Detergent Lignin (ADL) Contents. International Organization for Standardization: Genève, Switzerland, 2008.
- Vărzaru, I.; Untea, A.E.; Martura, T.; Olteanu, M.; Panaite, T.D.; Schitea, M.; Van, I. Development and validation of an RP-HPLC method for methionine, cysteine and lysine separation and determination in corn samples. Rev. Chim. 2013, 64, 673–679. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=22a2bd1ce31687e77ed00ae6401420434eedb30e (accessed on 18 October 2023).
- Gheorghe, A.; Lefter, N.A.; Idriceanu, L.; Ropotă, M.; Hăbeanu, M. Effects of dietary extruded linseed and Lactobacillus acidophilus on growth performance, carcass traits, plasma lipoprotein response, and caecal bacterial populations in broiler chicks. Ital. J. Anim. Sci. 2020, 19, 822–832. [Google Scholar] [CrossRef]
- 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (accessed on 10 June 2023).
- Hăbeanu, M.; Lefter, N.A.; Toma, S.M.; Dumitru, M.; Cismileanu, A.; Surdu, I.; Gheorghe, A.; Dragomir, C.; Untea, A. Changes in ileum and cecum volatile fatty acids and their relationship with microflora and enteric methane in pigs fed different fiber level. Agriculture 2022, 12, 451. [Google Scholar] [CrossRef]
- Charan, J.; Kantharia, N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013, 4, 303–306. [Google Scholar] [CrossRef]
- Milczarek, A.; Pachnik, M.; Osek, M.; and Swinarska, R. Rearing Performance and Carcass Composition of Broiler Chickens Fed Rations Containing Guar Meal at Graded Levels. Agriculture 2022, 12, 1385. [Google Scholar] [CrossRef]
- Karpiesiuk, K.; Kozera, W.; Daszkiewicz, T.; Lipiński, K.; Kaliniewicz, J.; Okorski, A.; Pszczółkowska, A.; Żak, G.; Matusevičius, P. The effect of dietary supplementation with guar (Cyamopsis tetragonoloba) meal protein on the quality and chemical composition of pig carcasses. Ann. Anim. Sci. 2023, 23, 1095–1104. [Google Scholar] [CrossRef]
- Parrini, S.; Aquilani, C.; Pugliese, C.; Bozzi, R.; Sirtori, F. Soybean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals 2023, 13, 494. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.; Eeckhaut, V.; Goossens, E.; Ducatelle, R.; Van Nieuwerburgh, F.; Poulsen, K.; Sampaio Baptista, A.A.; Loureiro Bracarense, A.P.F.R.; Van Immersee, F. Guar gum as galactomannan source induces dysbiosis and reduces performance in broiler chickens and dietary b-mannanase restores the gut homeostasis. Poult. Sci. 2023, 102, 102810. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.T.; Connor-Appleton, S.; Bailey, C.A.; Cartwright, A.L. Effects of guar meal by-product with and without β-mannanase Hemicell on broiler performance. Poult. Sci. 2005, 84, 1261–1267. [Google Scholar] [CrossRef]
- Owusu-Asiedu, A.; Patience, J.F.; Laarveld, B.; Van Kessel, A.G.; Simmins, P.H.; Zijlstra, R.T. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. J. Anim. Sci. 2006, 84, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Heo, P.S.; Lee, S.W.; Kim, D.H.; Lee, G.Y.; Kim, K.H.; Kim, Y.Y. Various levels of guar meal supplementation on growth performance and meat quality in growing-finishing pigs (Abstract). J. Anim. Sci. 2009, 87 (Suppl. 2), 144. Available online: https://www.feedipedia.org/node/4984 (accessed on 18 October 2023).
- Lyu, Z.; Shao, N.; Akinyemi, T.; Whitman, W.B. Methanogenesis. Curr. Biol. 2018, 28, R719–R736. Available online: https://www.cell.com/current-biology/pdf/S0960-982230623-7.pdf (accessed on 18 October 2023). [CrossRef]
- Ma, T.; Deng, K.; Diao, O. Prediction of methane emission from sheep based on data measured in vivo from open-circuit respiratory studies. Asian-Australas J. Anim. Sci. 2019, 32, 1389–1396. [Google Scholar] [CrossRef]
- Kpogo, A.L.; Jose, J.; Panisson, J.C.; Agyekum, A.K.; Predicala, B.Z.; Alvarado, A.C.; Agnew, J.M.; Sprenger, C.J.; Beaulieu, A.D. Greenhouse gases and performance of growing pigs fed wheat-based diets containing wheat millrun and a multi-carbohydrase enzyme. J. Anim. Sci. 2021, 99, skab213. [Google Scholar] [CrossRef]
- Le Goff, G.; Le Groumellec, L.; van Milgen, J.; Dubois, S.; Noblet, J. Digestibility and metabolic utilisation of dietary energy in adult sows: Influence of addition and origin of dietary fibre. Br. J. Nutr. 2002, 87, 325–335. [Google Scholar] [CrossRef]
- Jarret, G.; Martinez, J.; Dourmad, J.Y. Effect of biofuel co-products in pig diets on the excretory patterns of N and C and on the subsequent ammonia and methane emissions from pig effluent. Animals 2011, 5, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, D.; Zhang, l.; Zhong, R.; Liu, Z.; Liu, L.; Chen, L.; Zhang, H. Supplementation of non-starch polysaccharide enzymes cocktail in a corn-miscellaneous meal diet improves nutrient digestibility and reduces carbon dioxide emissions in finishing pigs. Animals 2020, 10, 232. [Google Scholar] [CrossRef] [PubMed]
Items (g * kg feed−1) | SM | GM-50% | GM-100% |
---|---|---|---|
Maize | 499.1 | 520.3 | 517.3 |
Wheat | 150.0 | 150.0 | 150.0 |
Rice bran | 110.0 | 110.0 | 110.0 |
Soybean meal (44%) | 120.0 | 50.0 | - |
Guar meal | - | 50.0 | 100.0 |
Sunflower meal | 80.0 | 80.0 | 85.0 |
DL-methionine | 0.9 | 0.6 | 0.1 |
L-Lysine-HCl | 2.4 | 2.1 | 1.2 |
Calcium carbonate | 16.7 | 16.2 | 15.4 |
Monocalcium phosphate | 5.9 | 5.8 | 6.0 |
Sodium chloride | 4.0 | 4.0 | 4.0 |
Choline premix | 1.0 | 1.0 | 1.0 |
Vitamin and trace mineral mixture 1 | 10.0 | 10.0 | 10.0 |
Analyzed composition (g * kg−1 as feed bases) | |||
DM | 881.0 | 882.0 | 883.0 |
CP | 155.2 | 151.6 | 155.9 |
EE | 38.8 | 39.9 | 40.5 |
Crude fiber | 47.6 | 47.7 | 49.5 |
NDF | 139.5 | 153.0 | 168.2 |
ADF | 57.5 | 63.0 | 70.5 |
Ca | 8.0 | 8.0 | 8.0 |
P | 6.0 | 6.0 | 6.0 |
Lys | 8.8 | 8.8 | 8.8 |
Met + Cys | 6.7 | 6.7 | 6.7 |
Calculated composition (g * kg−1 as feed bases) 2 | |||
ME, Mj as feed basis | 12.6 | 12.8 | 12.9 |
N | 24.83 | 24.26 | 24.94 |
Lys d | 7.3 | 7.4 | 7.6 |
Met + Cys d | 5.6 | 5.6 | 5.7 |
Nutrients, % | SM 1 | GM 1 |
---|---|---|
Dry matter | 87.74 | 90.73 |
CP | 44.0 | 52.02 |
EE | 1.69 | 2.98 |
Fiber | 6.29 | 7.73 |
NDF | 12.44 | 39.92 |
ADF | 7.45 | 20.49 |
Main AA | ||
Lysine | 2.75 | 4.21 |
Met. | 0.64 | 1.11 |
Cyst. | 0.67 | 1.28 |
Met. + Cyst. | 1.31 | 2.38 |
Minerals | ||
Ca | 0.20 | 0.70 |
P | 0.60 | 0.60 |
Items 1 | SM | GM-50% | GM-100% | SEM | p-Value 2 |
---|---|---|---|---|---|
Intake, g * day−1 | |||||
Feed | 2550 | 2360 | 2168 | 86.92 | 0.18 |
N | 76.96 | 74.84 | 72.21 | 2.44 | 0.12 |
Fiber | 147.7 | 146.9 | 143.6 | 4.75 | 0.14 |
NDF | 413.9 | 399.2 | 287.8 | 16.02 | 0.29 |
ADF | 148.0 | 141.3 | 132.8 | 4.66 | 0.07 |
N balance, g * day−1 | |||||
Fecal N | 8.73 a | 7.08 b | 6.86 b | 0.25 | 0.01 |
Urinary N | 33.34 | 33.27 | 29.86 | 1.18 | 0.13 |
TNO | 42.07 | 40.35 | 36.72 | 1.41 | 0.11 |
NR | 34.89 | 34.49 | 35.48 | 1.06 | 0.12 |
N excretion of % intake | 54.65 a | 53.80 b | 50.67 c | 0.34 | 0.007 |
N digestibility, % | 88.63 a | 90.49 b | 90.46 b | 0.16 | <0.001 |
NPU | 45.34 a | 46.19 b | 49.33 c | 0.34 | <0.001 |
BVP | 51.0 a | 51.2 a | 54.5 b | 0.34 | 0.05 |
CTTAD | 0.89 a | 0.90 b | 0.90 b | 0.001 | 0.01 |
CAM | 0.45 a | 0.46 a | 0.49 b | 0.003 | <0.001 |
PUN, mg/dL | 26.61 | 26.84 | 27.27 | 0.62 | 0.19 |
Items 1 | SM | GM-50% | GM-100% | SEM | p-Value 2 |
---|---|---|---|---|---|
Intake, g * day−1 | |||||
DMI | 2216.0 | 2078.0 | 1929.0 | 7.62 | 0.19 |
TNO | 42.07 | 40.35 | 36.72 | 1.41 | 0.11 |
N ex. | 61.80 | 58.20 | 51.10 | 2.14 | 0.12 |
N2O (g CO2 Eq * day−1) | 39.41 | 37.80 | 34.40 | 1.32 | 0.13 |
N2O (g CO2 Eq. LU−1 * day−1) | 193.3 | 182.75 | 167.35 | 9.1 | 0.09 |
N2O (g CO2 Eq. ADG, kg−1 * day−1) | 42.78 | 39.44 | 36.45 | 1.7 | 0.19 |
N2O (g CO2 Eq. DMI, kg−1 * day−1) | 14.41 a | 13.88 b | 13.36 c | 0.08 | <0.001 |
E-CH4 (g CO2 Eq * day−1) | 41.87 a | 38.09 ab | 33.08 b | 1.24 | 0.007 |
E-CH4 (g CO2 Eq. LU−1 * day−1) | 205.39 a | 184.15 ab | 160.96 b | 6.91 | 0.005 |
E-CH4 (g CO2 Eq. ADG, kg−1 *day−1) | 45.46 a | 39.76 ab | 35.04 b | 1.77 | 0.024 |
E-CH4 (g CO2 Eq. DMI, kg−1 * day−1) | 15.31 a | 14.02 b | 12.90 c | 0.18 | <0.001 |
dRes (g, as DM bases) | 51.05 a | 46.73 b | 43.01 b | 0.61 | 0.007 |
VS (g * day−1) | 501 | 507 | 504 | 5.7 | 0.71 |
M-CH4 (g CO2 Eq * day−1) | 151.13 | 152.91 | 152.16 | 1.74 | 0.92 |
M-CH4 (g CO2 Eq. LU−1 * day−1) | 738.69 | 738.73 | 738.66 | 0.01 | 0.25 |
M-CH4 (g CO2 Eq. ADG, kg−1 * day−1) | 162.64 | 160.43 | 159.88 | 3.17 | 0.93 |
M-CH4 (g CO2 Eq. DMI, kg−1 * day−1) | 55.72 | 58.51 | 61.65 | 1.91 | 0.39 |
Pearson Correlation (r) | TNO, g/day | NR, g/day | % N Dig | N Excretion of % Intake | NPU | BVFP | N2O, Eq CO2 | E-CH4, Eq CO2 | M-CH4, Eq CO2 |
---|---|---|---|---|---|---|---|---|---|
Level of GM | −0.287 | 0.043 | 0.832 *** | −0.886 *** | 0.886 *** | 0.758 *** | −0.286 | −0.487 ** | 0.045 |
ADFI | 0.991 *** | 0.972 *** | 0.124 | 0.473 ** | −0.473 ** | −0.565 ** | 0.991 *** | 0.937 *** | 0.163 |
DMI g/zi | 0.990 *** | 0.974 *** | 0.130 | 0.467 ** | −0.467 ** | −0.560 *** | 0.990 *** | 0.934 *** | 0.164 |
Fiber intake, as DM bases | 0.972 *** | 0.992 *** | 0.183 | 0.381 * | −0.381 * | −0.479 ** | 0.972 *** | 0.898 *** | 0.166 |
ADF intake, as feed bases | 0.998 *** | 0.955 *** | 0.019 | 0.533 ** | −0.533 ** | −0.603 *** | 0.998 *** | 0.965 *** | 0.154 |
NDF intake, as feed bases | 0.849 *** | 0.968 *** | 0.456 * | 0.105 | −0.105 | −0.246 | 0.850 *** | 0.711 *** | 0.173 |
N intake, as feed bases | 0.989 *** | 0.980 *** | 0.101 | 0.452 * | −0.452 * | −0.535 ** | 0.989 *** | 0.933 *** | 0.160 |
N intake, as DM bases DM intake | 0.988 *** | 0.980 *** | 0.098 | 0.449 * | −0.449 * | −0.530 ** | 0.988 *** | 0.933 *** | 0.160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihaila, G.; Habeanu, M.; Lefter, N.; Gheorghe, A.; Dumitru, M.; Marin, I.; Vidu, L.; Nicolae, C.G.; Popa, D.; Marin, M. Influence of Guar Meal from Pig Compound Feed on Productive Performance, Nitrogen Metabolism, and Greenhouse Gas Emissions. Agriculture 2023, 13, 2156. https://doi.org/10.3390/agriculture13112156
Mihaila G, Habeanu M, Lefter N, Gheorghe A, Dumitru M, Marin I, Vidu L, Nicolae CG, Popa D, Marin M. Influence of Guar Meal from Pig Compound Feed on Productive Performance, Nitrogen Metabolism, and Greenhouse Gas Emissions. Agriculture. 2023; 13(11):2156. https://doi.org/10.3390/agriculture13112156
Chicago/Turabian StyleMihaila, Gabriel, Mihaela Habeanu, Nicoleta Lefter, Anca Gheorghe, Mihaela Dumitru, Iuliana Marin, Livia Vidu, Carmen Georgeta Nicolae, Dana Popa, and Monica Marin. 2023. "Influence of Guar Meal from Pig Compound Feed on Productive Performance, Nitrogen Metabolism, and Greenhouse Gas Emissions" Agriculture 13, no. 11: 2156. https://doi.org/10.3390/agriculture13112156
APA StyleMihaila, G., Habeanu, M., Lefter, N., Gheorghe, A., Dumitru, M., Marin, I., Vidu, L., Nicolae, C. G., Popa, D., & Marin, M. (2023). Influence of Guar Meal from Pig Compound Feed on Productive Performance, Nitrogen Metabolism, and Greenhouse Gas Emissions. Agriculture, 13(11), 2156. https://doi.org/10.3390/agriculture13112156