Multi-Sample Detection of Soil Nitrate Nitrogen Using a Digital Microfluidic Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Instruments
2.3. Digital Microfluidic Chip Design
2.4. 3D-Printed Microfluidic Design
2.5. Device Setup
2.6. Soil Nitrate Nitrogen Detection Methods
3. Results and Discussion
3.1. Principle of Digital Microfluidic Multi-Sample Driving
3.2. Determination of Experimental Parameters for 3D-Printed Microfluidic Devices
3.3. Digital Microfluidic Droplet Driving Process
3.4. Soil Nitrate Nitrogen Markers and Determination of Detection Limits
3.5. Soil Sample Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.T.; Xiao, J.H.; Li, L.; Guo, J.F.; Zhang, M.X.; An, Y.Y.; He, J.M. Ethylene Acts as a Local and Systemic Signal to Mediate UV-B-Induced Nitrate Reallocation to Arabidopsis Leaves and Roots via Regulating the ERFs-NRT1.8 Signaling Module. Int. J. Mol. Sci. 2022, 23, 9068. [Google Scholar] [CrossRef] [PubMed]
- Larrea-Alvarez, M.; Purton, S. The Chloroplast of Chlamydomonas reinhardtii as a Testbed for Engineering Nitrogen Fixation into Plants. Int. J. Mol. Sci. 2021, 22, 8806. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Konishi, N.; Kanno, K.; Yamaya, T.; Kojima, S. Transcriptional repressor IAA17 is involved in nitrogen use by modulating cytosolic glutamine synthetase GLN1;2 in Arabidopsis roots. Soil Sci. Plant Nutr. 2017, 63, 163–170. [Google Scholar] [CrossRef]
- Martinez-Dalmau, J.; Berbel, J.; Ordonez-Fernandez, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.H.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards:A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Dolfing, J.; Zhuang, S.; Wu, Y. Periphytic biofilms-mediated microbial interactions and their impact on the nitrogen cycle in rice paddies. Eco-Environ. Health 2022, 1, 172–180. [Google Scholar] [CrossRef]
- Penuelas, J.; Sardans, J. Human-driven global nutrient imbalances increase risks to health. Eco-Environ. Health 2023, 2, 246–251. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Wang, X.Y.; Qian, X.; Dixit, A.; Herman, B.; Lei, Y.; McCutcheon, J.; Li, B.K. Enhancing the Understanding of Soil Nitrogen Fate Using a 3D-Electrospray Sensor Roll Casted with a Thin-Layer Hydrogel. Environ. Sci. Technol. 2022, 56, 4905–4914. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Wang, X.Y.; Funk, T.; Rashid, I.; Herman, B.; Bompoti, N.; Mahmud, S.; Chrysochoou, M.; Yang, M.J.; Vadas, T.M.; et al. A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. Environ. Sci. Technol. 2022, 56, 13546–13564. [Google Scholar] [CrossRef]
- Kitic, G.; Krkljes, D.; Panic, M.; Petes, C.; Birgermajer, S.; Crnojevic, V. Agrobot Lala-An Autonomous Robotic System for Real-Time, In-Field Soil Sampling, and Analysis of Nitrates. Sensors 2022, 22, 4207. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Q.; Chen, M.; Wang, M.; Zhang, M. An ISE-based On-Site Soil Nitrate Nitrogen Detection System. Sensors 2019, 19, 4669. [Google Scholar] [CrossRef] [PubMed]
- Charbaji, A.; Heidari-Bafroui, H.; Rahmani, N.; Anagnostopoulos, C.; Faghri, M. A 3D Printed Lightbox for Enhancing Nitrate Detection in the Field Using Microfluidic Paper-Based Devices. Present. Innov. Microfluid. 2022, 3, 21. [Google Scholar]
- Ali, M.A.; Jiang, H.W.; Mahal, N.K.; Weber, R.J.; Kumar, R.; Castellano, M.J.; Dong, L. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuators B-Chem. 2017, 239, 1289–1299. [Google Scholar] [CrossRef]
- Ali, M.A.; Mondal, K.; Wang, Y.F.; Jiang, H.W.; Mahal, N.K.; Castellano, M.J.; Sharma, A.; Dong, L. In situ integration of graphene foam-titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors. Lab Chip 2017, 17, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Baumbauer, C.L.; Goodrich, P.J.; Payne, M.E.; Anthony, T.; Beckstoffer, C.; Toor, A.; Silver, W.; Arias, A.C. Printed Potentiometric Nitrate Sensors for Use in Soil. Sensors 2022, 22, 4095. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Wang, X.R.; Chen, Y.C.; Jiao, Y.Y.; Mahal, N.K.; Moru, S.; Castellano, M.J.; Schnable, J.C.; Schnable, P.S.; Dong, L. Continuous Monitoring of Soil Nitrate Using a Miniature Sensor with Poly(3-octyl-thiophene) and Molybdenum Disulfide Nanocomposite. ACS Appl. Mater. Interfaces 2019, 11, 29195–29206. [Google Scholar] [CrossRef] [PubMed]
- Smolka, M.; Puchberger-Enengl, D.; Bipoun, M.; Klasa, A.; Kiczkajlo, M.; Smiechowski, W.; Sowinski, P.; Krutzler, C.; Keplinger, F.; Vellekoop, M.J. A mobile lab-on-a-chip device for on-site soil nutrient analysis. Precis. Agric. 2017, 18, 152–168. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Weber, R.J.; Kumar, R.; Dong, L. Nutrient Sensing Using Chip Scale Electrophoresis and In Situ Soil Solution Extraction. IEEE Sens. J. 2017, 17, 4330–4339. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Wang, R.J.; Jin, Z.; Guo, H.Y.; Liu, Y.; Chang, Y.J.; Chen, J.N.; Li, M.Y.; Chen, X.Y. Development of On-Site Rapid Detection Device for Soil Macronutrients Based on Capillary Electrophoresis and Capacitively Coupled Contactless Conductivity Detection (C4D) Method. Chemosensors 2022, 10, 84. [Google Scholar] [CrossRef]
- Li, F.; Smejkal, P.; Macdonald, N.P.; Guijt, R.M.; Breadmore, M.C. One-Step Fabrication of a Microfluidic Device with an Integrated Membrane and Embedded Reagents by Multimaterial 3D Printing. Anal. Chem. 2017, 89, 4701–4707. [Google Scholar] [CrossRef]
- Bleyen, N.; Albrecht, A.; De Canniere, P.; Wittebroodt, C.; Valcke, E. Non-destructive on-line and long-term monitoring of in situ nitrate and nitrite reactivity in a clay environment at increasing turbidity. Appl. Geochem. 2019, 100, 131–142. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, M.; Wang, X.M.; Yang, Q.L.; Wang, M.H.; Liu, G.; Yao, L. An All-Solid-State Nitrate Ion-Selective Electrode with Nanohybrids Composite Films for In-Situ Soil Nutrient Monitoring. Sensors 2020, 20, 2270. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Chen, T.L.; Xin, X.; Cai, Z.W.; Dong, C.; Lei, B. Multiplex detection of foodborne pathogens by real-time loop-mediated isothermal amplification on a digital microfluidic chip. Food Control 2022, 136, 108824. [Google Scholar] [CrossRef]
- Wang, A.Y.; Feng, X.; He, G.Y.; Xiao, Y.; Zhong, T.; Yu, X. Recent advances in digital microfluidic chips for food safety analysis: Preparation, mechanism and application. Trends Food Sci. Technol. 2023, 134, 136–148. [Google Scholar] [CrossRef]
- Lee, M.S.; Chang, Y.C.; Huang, H.Y.; Hsu, W.S. Single-type reporter multiplexing with A single droplet through bead-based digital microfluidics. J. Pharm. Biomed. Anal. 2022, 219, 114877. [Google Scholar] [CrossRef]
- Li, H.B.; Liu, X.M.; Zhu, F.J.; Ma, D.C.; Miao, C.Y.; Su, H.R.; Deng, J.; Ye, H.Y.; Dong, H.Y.; Bai, X.; et al. Spatial barcoding-enabled highly multiplexed immunoassay with digital microfluidics. Biosens. Bioelectron. 2022, 215, 114557. [Google Scholar] [CrossRef]
- Xie, M.; Chen, T.L.; Cai, Z.W.; Lei, B.; Dong, C. A digital microfluidic platform coupled with colorimetric loop-mediated isothermal amplification for on-site visual diagnosis of multiple diseases. Lab Chip 2023, 23, 2778–2788. [Google Scholar] [CrossRef]
- Foudeh, A.M.; Brassard, D.; Tabrizian, M.; Veres, T. Rapid and multiplex detection of Legionella’s RNA using digital microfluidics. Lab Chip 2015, 15, 1609–1618. [Google Scholar] [CrossRef]
- Shih, S.C.C.; Mufti, N.S.; Chamberlain, M.D.; Kim, J.; Wheeler, A.R. A droplet-based screen for wavelength-dependent lipid production in algae. Energy Environ. Sci. 2014, 7, 2366–2375. [Google Scholar] [CrossRef]
- Gu, Z.; Wu, M.L.; Yan, B.Y.; Wang, H.F.; Kong, C. Integrated Digital Microfluidic Platform for Colorimetric Sensing of Nitrite. ACS Omega 2020, 5, 11196–11201. [Google Scholar] [CrossRef]
- Gu, Z.; Luo, J.J.; Ding, L.W.; Yan, B.Y.; Zhou, J.L.; Wang, J.G.; Wang, H.F.; Kong, C. Colorimetric Sensing with Gold Nanoparticles on Electrowetting-Based Digital Microfluidics. Micromachines 2021, 12, 1423. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Pamula, V.K.; Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 2004, 4, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Mudrik, J.M.; Wheeler, A.R. A guiding light: Spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides. Anal. Bioanal. Chem. 2015, 407, 7467–7475. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhu, J.M.; Hu, X.J.; Chen, L.F.; Zuo, Y.F.; Yang, Y.; Jiang, F.H.; Sun, C.J.; Zhao, W.H.; Han, X.T. Rapid nitrate determination with a portable lab-on-chip device based on double microstructured assisted reactors. Lab Chip 2021, 21, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Legiret, F.E.; Sieben, V.J.; Woodward, E.M.S.; Bey, S.; Mowlem, M.C.; Connelly, D.P.; Achterberg, E.P. A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method. Talanta 2013, 116, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Sieben, V.J.; Floquet, C.F.A.; Ogilvie, I.R.G.; Mowlem, M.C.; Morgan, H. Microfluidic colourimetric chemical analysis system: Application to nitrite detection. Anal. Methods 2010, 2, 484–491. [Google Scholar] [CrossRef]
- Nelson, G.L.; Lackey, H.E.; Bello, J.M.; Felmy, H.M.; Bryan, H.B.; Lamadie, F.; Bryan, S.A.; Lines, A.M. Enabling Microscale Processing: Combined Raman and Absorbance Spectroscopy for Microfluidic On-Line Monitoring. Anal. Chem. 2021, 93, 1643–1651. [Google Scholar] [CrossRef]
- Nelson, G.L.; Lines, A.M.; Bello, J.M.; Bryan, S.A. Online Monitoring of Solutions Within Microfluidic Chips: Simultaneous Raman and UV-Vis Absorption Spectroscopies. ACS Sensors 2019, 4, 2288–2295. [Google Scholar] [CrossRef]
- Alistar, M.; Gaudenz, U. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips. Bioengineering 2017, 4, 45. [Google Scholar] [CrossRef]
- Liu, D.; Yang, Z.H.; Zhang, L.Y.; Wei, M.L.; Lu, Y. Cell-free biology using remote-controlled digital microfluidics for individual droplet control. RSC Adv. 2020, 10, 26972–26981. [Google Scholar] [CrossRef]
- Lippmann, G. Relations entre les phénomènes électriques et capillaires. Ann. Chim. Phys. 1875, 5, 494–549. [Google Scholar]
- Beaton, A.D.; Cardwell, C.L.; Thomas, R.S.; Sieben, V.J.; Legiret, F.-E.; Waugh, E.M.; Statham, P.J.; Mowlem, M.C.; Morgan, H. Lab-on-Chip Measurement of Nitrate and Nitrite for In Situ Analysis of Natural Waters. Environ. Sci. Technol. 2012, 46, 9548–9556. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Connolly, J.; Khlystov, A.; Fair, R.B. Digital Microfluidics for the Detection of Selected Inorganic Ions in Aerosols. Sensors 2020, 20, 1281. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, A.M.; Hassan, S.U.; Warren, B.M.; Makris, K.; Evans, G.W.H.; Papadopoulou, E.; Coleman, S.; Niu, X.Z. A Droplet Microfluidic-Based Sensor for Simultaneous in Situ Monitoring of Nitrate and Nitrite in Natural Waters. Environ. Sci. Technol. 2019, 53, 9677–9685. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.H.; Qian, M.Y.; Liu, J.; Fang, Y.M. Low cost, portable voltammetric sensors for rapid detection of nitrate in soil. Electrochim. Acta 2023, 446, 142077. [Google Scholar] [CrossRef]
- Charbaji, A.; Heidari-Bafroui, H.; Anagnostopoulos, C.; Faghri, M. Sensitive Detection of Nitrate using a Paper-based Microfluidic Device. In Proceedings of the Innovations in Microfluidics and Single Cell Analysis, Boston, MA, USA, 17–18 August 2020. [Google Scholar]
- Ferreira, F.T.S.M.; Mesquita, R.B.R.; Rangel, A.O.S.S. Novel microfluidic paper-based analytical devices (μPADs) for the determination of nitrate and nitrite in human saliva. Talanta 2020, 219, 121183. [Google Scholar] [CrossRef]
- Thongkam, T.; Hemavibool, K. An environmentally friendly microfluidic paper-based analytical device for simultaneous colorimetric detection of nitrite and nitrate in food products. Microchem. J. 2020, 159, 105412. [Google Scholar] [CrossRef]
Sample | Fiber Optic Spectrometer (mg/L) | UV Spectrophotometer (mg/L) | RSD (%) | Relative Error (%) |
---|---|---|---|---|
1 | 0.956 | 1.142 | 4.7 | 16.3 |
2 | 2.970 | 2.845 | 3.9 | 4.4 |
3 | 3.386 | 3.300 | 4.2 | 2.6 |
4 | 2.585 | 2.433 | 1.9 | 6.2 |
5 | 3.150 | 3.011 | 0.9 | 4.6 |
6 | 1.676 | 1.582 | 3.3 | 5.9 |
7 | 1.971 | 1.946 | 2.1 | 1.3 |
8 | 1.386 | 1.534 | 1.5 | 9.6 |
9 | 0.857 | 1.051 | 4.4 | 18.5 |
10 | 1.716 | 1.982 | 3.9 | 13.4 |
Sample | Nitrate Nitrogen Concentration (mg/L) | Amount Spiked (mg/L) | Amount Detected (mg/L) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|---|
11 | 1.485 | 1 | 2.510 | 102.5 | 1.86 |
12 | 1.693 | 1 | 2.642 | 94.9 | 0.76 |
13 | 1.293 | 1 | 2.302 | 100.9 | 0.60 |
14 | 1.575 | 1 | 2.621 | 104.6 | 2.52 |
Number of Samples per Test | Detection Range (mg/L) | Application Scenarios | Measurement Methods | Total Samples Consumption | LOD | Ref. |
---|---|---|---|---|---|---|
1 | 0.0993–99.77 | Soil | Impedance | 1 mL | 30 µg/L | [13] |
1 | 0–13.54 | Soil | Colorimetric Determination | - | 1.129 mg/L | [20] |
1 | 0.7–69.98 | Soil | Voltametric | - | 32.19 µg/L | [45] |
- | 0.993–9.93 | Aerosols | spectrometer | a few microliters | - | [43] |
In Situ | 0.000361–0.28 | Natural waters | Colorimetric | - | 361 ng/L | [42] |
1 | 0.0023–11.29 | Waters and other fields | Colorimetric | 95 µL | 120 µg/L | [46] |
6 | 2.8–16.79 | Human saliva | Colorimetric | 25 µL | 1.12 mg/L | [47] |
1 | 0.11–9.03 | Food | Colorimetric | 20 µL | 90 µg/L | [48] |
3 | 0.095–4 | Soil | UV-vis absorption | 40 µL | 95 µg/L | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Xia, Z.; Su, J.; Wang, R.; Chang, Y.; Huang, Q.; Wei, L.; Chen, X. Multi-Sample Detection of Soil Nitrate Nitrogen Using a Digital Microfluidic Platform. Agriculture 2023, 13, 2226. https://doi.org/10.3390/agriculture13122226
Hong Y, Xia Z, Su J, Wang R, Chang Y, Huang Q, Wei L, Chen X. Multi-Sample Detection of Soil Nitrate Nitrogen Using a Digital Microfluidic Platform. Agriculture. 2023; 13(12):2226. https://doi.org/10.3390/agriculture13122226
Chicago/Turabian StyleHong, Yan, Zhihao Xia, Jingming Su, Rujing Wang, Yongjia Chang, Qing Huang, Liman Wei, and Xiangyu Chen. 2023. "Multi-Sample Detection of Soil Nitrate Nitrogen Using a Digital Microfluidic Platform" Agriculture 13, no. 12: 2226. https://doi.org/10.3390/agriculture13122226
APA StyleHong, Y., Xia, Z., Su, J., Wang, R., Chang, Y., Huang, Q., Wei, L., & Chen, X. (2023). Multi-Sample Detection of Soil Nitrate Nitrogen Using a Digital Microfluidic Platform. Agriculture, 13(12), 2226. https://doi.org/10.3390/agriculture13122226