Cyclic Storage Chamber Ozonation as a Method to Inhibit Ethylene Generation during Plum Fruit Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Ozonation Procedure for Fruit during the Supply Chain Storage Stage
2.3. Measurement of Storage Gas Concentrations
2.4. Determination of Bioactive Compound Content
2.5. Determination of Soluble Solid Content and Titratable Acidity
2.6. Determination of the Activity of SAMS, MnSOD, and CAT Enzymes
2.7. Determination of Adenosine-5′-Triphosphate (ATP) Level
2.8. Statistical Analysis
3. Results and Discussion
3.1. Changes in Gas Concentrations in Storage Chambers
3.2. Activity of SAMS, MnSOD, and CAT Enzymes
3.3. Biochemical Indicators of Plum Fruit Ripeness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ezinne, O.; Charlton, K.E. A Systematic Review on the Health Effects of Plums (Prunus domestica and Prunus salicina). Phytother. Res. 2016, 30, 701–731. [Google Scholar] [CrossRef]
- Plich, H. Storage performance in plums (Prunus domestica L.) Treated with ethephon before harvest and with 1-MCP after harvest. Acta Hortic. 2008, 768, 135–142. [Google Scholar] [CrossRef]
- Panahirad, S.; Naghshiband-Hassani, R.; Ghanbarzadeh, B.; Zaare-Nahandi, F.; Mahna, N. Shelf Life Quality of Plum Fruits (Prunus domestica L.) Improves with Carboxymethylcellulose-based Edible Coating. HortSci. Horts 2019, 54, 505–510. [Google Scholar] [CrossRef]
- Vangdal, E.; Flatland, S.; Lunde Knutsen, I.; Larsen, H. Factors affecting storability and shelf life in plums (Prunus domestica L.). Acta Hortic. 2012, 968, 197–203. [Google Scholar] [CrossRef]
- Dilley, D.R. Controlled atmosphere storage—Chronology and technology. Acta Hortic. 2010, 857, 493–502. [Google Scholar] [CrossRef]
- Iannetta, P.P.M.; Laarhoven, L.; Medina-Escobar, N.; James, E.K.; McManus, M.T.; Davies, H.V.; Harren, F.J.M. Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiol. Plant. 2006, 127, 247–259. [Google Scholar] [CrossRef]
- Natha, A.; Mukhimb, K.; Swerb, T.; Debashis, D.; Vermaa, N.; Dekab, B.C.; Gangwar, B.M. A Review on Application of Ozone in the Food Processing and Packaging. J. Food Prod. Dev. Packag. 2014, 1, 7–21. [Google Scholar] [CrossRef]
- Rivas-Arancibia, S.; Hernández-Orozco, E.; Rodríguez-Martínez, E.; Valdés-Fuentes, M.; Cornejo-Trejo, V.; Pérez-Pacheco, N.; Dorado-Martínez, C.; Zequeida-Carmona, D.; Espinosa-Caleti, I. Ozone Pollution, Oxidative Stress, Regulatory T Cells and Antioxidants. Antioxidants 2022, 11, 1553. [Google Scholar] [CrossRef]
- Botondi, R.; Barone, M.; Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef]
- Matłok, N.; Gorzelany, J.; Stępień, A.E.; Figiel, A.; Balawejder, M. Effect of Fertilization in Selected Phytometric Features and Contents of Bioactive Compounds in Dry Matter of Two Varieties of Basil (Ocimum basilicum L.). Sustainability 2019, 11, 6590. [Google Scholar] [CrossRef]
- Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agric. Food Sci. 2019, 28, 35–44. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Balawejder, M. Effects of Post-Harvest Ozone Treatment on Some Molecular Stability Markers of Amelanchier alnifolia Nutt. Fruit during Cold Storage. Int. J. Mol. Sci. 2022, 23, 11152. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Skóra, B.; Balawejder, M. Quality and antioxidant activity of highbush blueberry fruit coated with starch-based and gelatine-based film enriched with cinnamon oil. Food Control 2022, 138, 109015. [Google Scholar] [CrossRef]
- Niu, L.; Zhang, H.; Wu, Z.; Wang, Y.; Liu, H.; Wu, X.; Wang, W. Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PLoS ONE 2018, 13, e0202238. [Google Scholar] [CrossRef] [PubMed]
- Skóra, B.; Matuszewska, P.; Masicz, M.; Sikora, K.; Słomczewska, M.; Sołtysek, M.; Szychowski, K.A. Crosstalk between the aryl hydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor gamma (PPARγ) as a key factor in the metabolism of silver nanoparticles in neuroblastoma (SH-SY5Y) cells in vitro. Toxicol. Appl. Pharmacol. 2023, 458, 116339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, C.; Cheng, S.; Wei, B.; Liu, X.; Ji, S. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature. Food Chem. 2014, 164, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, K.; Pandey, S.; Malik, M.; Kaul, T. Fruit Ripening of Climacteric and Nonclimacteric Fruit. J. Environ. Appl. Biores. 2016, 4, 27–34. [Google Scholar]
- An, J.; Paull, R.E. Storage Temperature and Ethylene Influence on Ripening of Papaya Fruit. J. Am. Soc. Hortic. Sci. Jashs 1990, 115, 949–953. [Google Scholar] [CrossRef]
- De Poel, B.V.; Bulens, I.; Oppermann, Y.; Hertog, M.L.A.T.M.; Nicolai, B.M.; Sauter, M.; Geeraerd, A.H. S-adenosyl-l-methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. Physiol. Plant. 2012, 148, 176–188. [Google Scholar] [CrossRef]
- Roje, S. S-Adenosyl-L-methionine: Beyond the universal methyl group donor. Phytochemistry 2006, 67, 1686–1698. [Google Scholar] [CrossRef]
- Zhang, H.; Li, K.; Zhang, X.; Dong, C.; Ji, H.; Ke, R.; Ban, Z.; Hu, Y.; Lin, S.; Chen, C. Effects of ozone treatment on the antioxidant capacity of postharvest strawberry. RSC Adv. 2020, 63, 38142–38157. [Google Scholar] [CrossRef]
- Cozzolino, R.; Pace, B.; Palumbo, M.; Laurino, C.; Picariello, G.; Siano, F.; De Giulio, B.; Pelosi, S.; Cefola, M. Profiles of Volatile and Phenolic Compounds as Markers of Ripening Stage in Candonga Strawberries. Foods 2021, 10, 3102. [Google Scholar] [CrossRef]
- Tangpao, T.; Phuangsaujai, N.; Kittiwachana, S.; George, D.R.; Krutmuang, P.; Chuttong, B.; Sommano, S.R. Evaluation of Markers Associated with Physiological and Biochemical Traits during Storage of ‘Nam Dok Mai Si Thong’ Mango Fruits. Agriculture 2022, 12, 1407. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matłok, N.; Piechowiak, T.; Krempa, A.; Puchalski, C.; Balawejder, M. Cyclic Storage Chamber Ozonation as a Method to Inhibit Ethylene Generation during Plum Fruit Storage. Agriculture 2023, 13, 2274. https://doi.org/10.3390/agriculture13122274
Matłok N, Piechowiak T, Krempa A, Puchalski C, Balawejder M. Cyclic Storage Chamber Ozonation as a Method to Inhibit Ethylene Generation during Plum Fruit Storage. Agriculture. 2023; 13(12):2274. https://doi.org/10.3390/agriculture13122274
Chicago/Turabian StyleMatłok, Natalia, Tomasz Piechowiak, Amanda Krempa, Czesław Puchalski, and Maciej Balawejder. 2023. "Cyclic Storage Chamber Ozonation as a Method to Inhibit Ethylene Generation during Plum Fruit Storage" Agriculture 13, no. 12: 2274. https://doi.org/10.3390/agriculture13122274
APA StyleMatłok, N., Piechowiak, T., Krempa, A., Puchalski, C., & Balawejder, M. (2023). Cyclic Storage Chamber Ozonation as a Method to Inhibit Ethylene Generation during Plum Fruit Storage. Agriculture, 13(12), 2274. https://doi.org/10.3390/agriculture13122274