A Systematic Review of Agricultural Sustainability Indicators
Abstract
:1. Introduction
2. Research Background
2.1. Sustainable Agriculture
2.2. Social Dimension
2.3. Economic Dimension
2.4. Environment Dimension
- Themes related to local or global impacts, which have consequences on the functional units used to express the indicators [50];
- Themes according to the action chain, namely the ultimate goal (e.g., human health), the process to achieve the goal (e.g., balance of environmental function), and the means (e.g., protecting environmental compartment) [51];
- Themes based on goal-oriented frameworks (where themes are goals to be achieved) and frameworks oriented towards system properties (where themes are system properties) [52].
3. Methods
4. Discussion
5. Conclusions and Future Research Areas
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elawama, A.S.A.B. The Influence of Natural and Human Factors on the Sustainability of Agriculture in Azzawia Libya; Universiti Sains Malaysia Penang: Penang, Malaysia, 2016. [Google Scholar]
- Devaux, A.; Torero, M.; Donovan, J.; Horton, D. Agricultural Innovation and Inclusive Value-Chain Development: A Review. J. Agribus. Dev. Emerg. Econ. 2018, 8, 99–123. [Google Scholar] [CrossRef] [Green Version]
- Maja, M.M.; Samuel, F.A. The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Sarah, W.R.; Rubenstein, M.; Crozier, L.; Gaichas, S.; Griffis, R.; Halofsky, J.; Hyde, K.J.; Morelli, T.L.; Morisette, J.; Muñoz, R. Climate Change Effects on Biodiversity, Ecosystems, Ecosystem Services, and Natural Resource Management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar]
- Nightingale, J.A.; Eriksen, S.; Taylor, M.; Forsyth, T.; Pelling, M.; Newsham, A.; Boyd, E.; Brown, K.; Harvey, B.; Jones, L. Beyond Technical Fixes: Climate Solutions and the Great Derangement. Clim. Dev. 2020, 12, 343–352. [Google Scholar] [CrossRef]
- Xin, Z.; Yao, G.; Vishwakarma, S.; Dalin, C.; Komarek, A.; Kanter, D.; Davis, K.F.; Pfeifer, K.; Zhao, J.; Zou, T. Quantitative Assessment of Agricultural Sustainability Reveals Divergent Priorities among Nations. One Earth 2021, 4, 1262–1277. [Google Scholar]
- Cinzia, C.; Jayaraman, R.; Abdelaziz, F.B.; La Torre, D. Environmental Sustainability and Multifaceted Development: Multi-Criteria Decision Models with Applications. Ann. Oper. Res. 2020, 293, 405–432. [Google Scholar]
- Di Fazio, S.; Giuseppe, M. Historic Rural Landscapes: Sustainable Planning Strategies and Action Criteria. The Italian Experience in the Global and European Context. Sustainability 2018, 10, 3834. [Google Scholar]
- Lluís, S.-M.; Tomaino, L.; Dernini, S.; Berry, E.; Lairon, D.; de la Cruz, J.N.; Bach-Faig, A.; Donini, L.; Medina, F.-X.; Belahsen, R. Updating the Mediterranean Diet Pyramid Towards Sustainability: Focus on Environmental Concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar]
- Lanfranchi, M.; Giannetto, C.; Abbate, T.; Dimitrova, V. Agriculture and the Social Farm: Expression of the Multifunctional Model of Agriculture as a Solution to the Economic Crisis in Rural Areas. Bulg. J. Agric. Sci. 2015, 21, 711–718. [Google Scholar]
- Marc, M.; Duru, M.; Therond, O. A Social-Ecological Framework for Analyzing and Designing Integrated Crop–Livestock Systems from Farm to Territory Levels. Renew. Agric. Food Syst. 2017, 32, 43–56. [Google Scholar]
- Trimmer, J.T.; Daniel, C.M.; Jeremy, S.G. Resource Recovery from Sanitation to Enhance Ecosystem Services. Nat. Sustain. 2019, 2, 681–690. [Google Scholar] [CrossRef]
- Ben, P.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar]
- Alain, P.; Lefebvre, O.; Balogh, L.; Barberi, P.; Batello, C.; Bellon, S.; Gaifami, T.; Gkisakis, V.; Lana, M.; Migliorini, P. A Green Deal for Implementing Agroecological Systems: Reforming the Common Agricultural Policy of the European Union. Landbauforschung 2020, 70, 83–93. [Google Scholar]
- Hasanshahi, H.; Hooshang, I.; Ameri, Z.D.; Kh, K. Measure and Comparison of Economic, Social and Ecological Sustainability of Farming Systems in the Marvdasht Plain. Desert 2015, 20, 231–239. [Google Scholar]
- Komlavi, A.; Kabo-bah, A.; Zwart, S. Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar]
- Ana, T.; Marta-Costa, A.; Fragoso, R. Principles of Sustainable Agriculture: Defining Standardized Reference Points. Sustainability 2021, 13, 4086. [Google Scholar]
- Abhishek, R.; Jhariya, M.K.; Khan, N.; Banerjee, A.; Meena, R.S. Ecological Intensification for Sustainable Development. In Ecological Intensification of Natural Resources for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 137–170. [Google Scholar]
- Khanh, C.N.T. Driving Factors for Green Innovation in Agricultural Production: An Empirical Study in an Emerging Economy. J. Clean. Prod. 2022, 368, 132965. [Google Scholar] [CrossRef]
- Adam, J.V.; Aizen, M.; Cordeau, S.; Garibaldi, L.; Garratt, M.P.; Kovács-Hostyánszki, A.; Lecuyer, L.; Ngo, H.; Potts, S. Transformation of Agricultural Landscapes in the Anthropocene: Nature’s Contributions to People, Agriculture and Food Security. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 193–253. [Google Scholar]
- Belay, B.S. Climate Change Vulnerability and Adaptation of Crop Producers in Sub-Saharan Africa: A Review on Concepts, Approaches and Methods. Environ. Dev. Sustain. 2022, 14, 1–35. [Google Scholar]
- Rudi, H.; Wyseure, G.; Panagea, I.; Alaoui, A.; Reed, M.; Van Delden, H.; Muro, M.; Mills, J.; Oenema, O.; Areal, F. Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe. Land 2022, 11, 780. [Google Scholar]
- Rachael, D.G.; Cammelli, F.; Ferreira, J.; Levy, S.; Valentim, J.; Vieira, I. Forests and Sustainable Development in the Brazilian Amazon: History, Trends, and Future Prospects. Annu. Rev. Environ. Resour. 2021, 46, 625–652. [Google Scholar]
- Kumar, M.R.; Meena, R.; Naik, B.; Meena, B.; Meena, S. Organic Farming-Concept, Principles, Goals & as a Sustainable Agriculture: A Review. Int. J. Chem. Stud. 2020, 8, 24–32. [Google Scholar]
- De Corato, U. Agricultural Waste Recycling in Horticultural Intensive Farming Systems by on-Farm Composting and Compost-Based Tea Application Improves Soil Quality and Plant Health: A Review under the Perspective of a Circular Economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, R.M. The (Un) Sustainability of the Land Use Practices and Agricultural Production in Eu Countries. Int. J. Environ. Stud. 2019, 76, 273–294. [Google Scholar] [CrossRef]
- Hansen, J.W. Is Agricultural Sustainability a Useful Concept? Agric. Syst. 1996, 50, 117–143. [Google Scholar] [CrossRef]
- Fatima, A.-D.; Molinari, C. Interdisciplinarity: Practical Approach to Advancing Education for Sustainability and for the Sustainable Development Goals. Int. J. Manag. Educ. 2017, 15, 73–83. [Google Scholar]
- Jianguo, L.; Hull, V.; Godfray, C.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.; Chung, M.G.; Sun, J. Nexus Approaches to Global Sustainable Development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar]
- Nath, Y.A. Plant Microbiomes for Sustainable Agriculture: Current Research and Future Challenges. Plant Microbiomes Sustain. Agric. 2020, 25, 475–482. [Google Scholar]
- Yu, C.; Hu, W.; Chen, P.; Ruan, R. Household Biogas Cdm Project Development in Rural China. Renew. Sustain. Energy Rev. 2017, 67, 184–191. [Google Scholar]
- Hung, N.-V.; Pham, G.; Lam, S.; Pham-Duc, P.; Dinh-Xuan, T.; Jing, F.; Kittayapong, P.; Adisasmito, W.; Zinsstag, J.; Grace, D. International, Transdisciplinary, and Ecohealth Action for Sustainable Agriculture in Asia. Front. Public Health 2021, 9, 592311. [Google Scholar]
- Beyuo, A. Ngo Grassroots Participatory Approaches to Promoting Sustainable Agriculture: Reality or Myth in Ghana’s Upper-West Region? " Renew. Agric. Food Syst. 2020, 35, 15–25. [Google Scholar] [CrossRef]
- Sajid, S.; Großkinsky, D. Tackling Salinity in Sustainable Agriculture—What Developing Countries May Learn from Approaches of the Developed World. Sustainability 2019, 11, 4558. [Google Scholar]
- Judith, J.; Mann, S.; Rist, S. Social Sustainability in Agriculture–a System-Based Framework. J. Rural Stud. 2019, 65, 32–42. [Google Scholar]
- Golnaz, R.; Mohamed, Z.; Shamsudin, M.N. Can Halal Be Sustainable? Study on Malaysian Consumers’ Perspective. J. Food Prod. Mark. 2015, 21, 654–666. [Google Scholar]
- Pamela, D.; Manfè, V.; Romano, P. A Systematic Literature Review on Recent Lean Research: State-of-the-Art and Future Directions. Int. J. Manag. Rev. 2018, 20, 579–605. [Google Scholar]
- Di Cesare, S.; Silveri, F.; Sala, S.; Petti, L. Positive Impacts in Social Life Cycle Assessment: State of the Art and the Way Forward. Int. J. Life Cycle Assess. 2018, 23, 406–421. [Google Scholar] [CrossRef]
- Jean-Pascal, G.; El Akremi, A.; Swaen, V.; Babu, N. The Psychological Microfoundations of Corporate Social Responsibility: A Person-Centric Systematic Review. J. Organ. Behav. 2017, 38, 225–246. [Google Scholar]
- Lebacq, T.; Baret, P.V.; Stilmant, D. Sustainability Indicators for Livestock Farming. A Review. Agron. Sustain. Dev. 2013, 33, 311–327. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Charles, B.; Brouckaert, V.; Franchois, L.; Garcia Cidad, V.; Martin, H.; Erik, M.; Bart, M.; Reijnders, J. Safe—A Hierarchical Framework for Assessing the Sustainability of Agricultural Systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Van Calker, K.J.; Berentsen, P.B.M.; De Boer, I.J.M.; Giesen, G.W.J.; Huirne, R.B.M. Modelling Worker Physical Health and Societal Sustainability at Farm Level: An Application to Conventional and Organic Dairy Farming. Agric. Syst. 2007, 94, 205–219. [Google Scholar] [CrossRef]
- Rachel, A.B.; Al Kareem Yehya, A.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the Mena Region. Sustainability 2021, 13, 3223. [Google Scholar]
- Rosenberg, M.N. What Matters? The Role of Values in Transformations toward Sustainability: A Case Study of Coffee Production in Burundi. Sustain. Sci. 2022, 17, 507–518. [Google Scholar] [CrossRef]
- Osazefua Imhanzenobe, J. Managers’ Financial Practices and Financial Sustainability of Nigerian Manufacturing Companies: Which Ratios Matter Most? " Cogent Econ. Financ. 2020, 8, 1724241. [Google Scholar] [CrossRef]
- Tauqir, A.; Bhatti, A.A. Measurement and Determinants of Multi-Factor Productivity: A Survey of Literature. J. Econ. Surv. 2020, 34, 293–319. [Google Scholar]
- Mariia, K.; Pigosso, D.C.; McAloone, T. Towards the Ex-Ante Sustainability Screening of Circular Economy Initiatives in Manufacturing Companies: Consolidation of Leading Sustainability-Related Performance Indicators. J. Clean. Prod. 2019, 241, 118318. [Google Scholar]
- Hans, V.; Reijs, J.; Dijkshoorn-Dekker, M. Towards Sustainable and Circular Farming in the Netherlands: Lessons from the Socio-Economic Perspective; Wageningen Economic Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Yingqun, M.; Liu, Y. Turning Food Waste to Energy and Resources Towards a Great Environmental and Economic Sustainability: An Innovative Integrated Biological Approach. Biotechnol. Adv. 2019, 37, 107414. [Google Scholar]
- Jan Christian, K.; Wulf, C.; Zapp, P. Environmental Impacts of Power-to-X Systems-a Review of Technological and Methodological Choices in Life Cycle Assessments. Renew. Sustain. Energy Rev. 2019, 112, 865–879. [Google Scholar]
- Foster, G. Circular Economy Strategies for Adaptive Reuse of Cultural Heritage Buildings to Reduce Environmental Impacts. Resour. Conserv. Recycl. 2020, 152, 104507. [Google Scholar] [CrossRef]
- Pierre, C.; Mubaya, C.; Descheemaeker, K.; Öborn, I.; Bergkvist, G. Avenues for Improving Farming Sustainability Assessment with Upgraded Tools, Sustainability Framing and Indicators. A Review. Agron. Sustain. Dev. 2021, 41, 1–20. [Google Scholar]
- Celina, S.; Prost, M.; Cerf, M.; Prost, L. Exchanges among Farmers’ Collectives in Support of Sustainable Agriculture: From Review to Reconceptualization. J. Rural Stud. 2021, 83, 268–278. [Google Scholar]
- Kumar, P.M. Site Suitability Analysis for Agricultural Land Use of Darjeeling District Using Ahp and Gis Techniques. Model. Earth Syst. Environ. 2016, 2, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gurkan, B.; Mumusoglu, S.; Zengin, D.; Karabulut, E.; Yildiz, B.O. The Prevalence and Phenotypic Features of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Hum. Reprod. 2016, 31, 2841–2855. [Google Scholar]
- Ileana, I.; Angevin, F.; Bockstaller, C.; Catarino, R.; Curran, M.; Messéan, A.; Schader, C.; Stilmant, D.; Van Stappen, F.; Vanhove, P. An Actor-Oriented Multi-Criteria Assessment Framework to Support a Transition Towards Sustainable Agricultural Systems Based on Crop Diversification. Sustainability 2020, 12, 5434. [Google Scholar]
- Arun, K.-C.; Pant, A.; Aggarwal, P.; Vasireddy, V.V.; Yadav, A. Stakeholders Prioritization of Climate-Smart Agriculture Interventions: Evaluation of a Framework. Agric. Syst. 2019, 174, 23–31. [Google Scholar]
- Valdivia, R.O.; Tui, H.K.S.; Antle, J.M.; Subash, N.; Singh, H.; Nedumaran, S.; Hathie, I.; Ashfaq, M.; Nasir, J.; Vellingiri, G.; et al. Representative Agricultural Pathways: A Multi-Scale Foresight Process to Support Transformation and Resilience of Farming Systems. In Handbook Of Climate Change And Agroecosystems—Climate Change And Farming System Planning In Africa And South Asia: Agmip Stakeholder-driven Research (In 2 Parts); Rosenzweig, C., Mutter, C.Z., Contreras, E.M., Eds.; World Scientific: Singapore, 2021; Volume 5, pp. 47–102. [Google Scholar]
- Indre, S.-B.; Streimikiene, D.; Balezentis, T.; Skulskis, V. A Systematic Literature Review of Multi-Criteria Decision-Making Methods for Sustainable Selection of Insulation Materials in Buildings. Sustainability 2021, 13, 737. [Google Scholar]
- Sarkar, D.; Kar, S.K.; Chattopadhyay, A.; Rakshit, A.; Tripathi, V.K.; Dubey, P.K.; Abhilash, P.C. Low Input Sustainable Agriculture: A Viable Climate-Smart Option for Boosting Food Production in a Warming World. Ecol. Indic. 2020, 115, 106412. [Google Scholar] [CrossRef]
- Sheng, T.Y.; Li, E.; Bruwer, J.; Abdullah, A.; Cummins, J.; Radam, A.; Ismail, M.; Darham, S. Refining the Definition of Sustainable Agriculture: An Inclusive Perspective from the Malaysian Vegetable Sector. Maejo Int. J. Sci. Technol. 2012, 6, 379–396. [Google Scholar]
- Julie, I.; Maye, D.; Kirwan, J.; Curry, N.; Kubinakova, K. Interactions between Niche and Regime: An Analysis of Learning and Innovation Networks for Sustainable Agriculture across Europe. J. Agric. Educ. Ext. 2015, 21, 55–71. [Google Scholar]
- Thanh, N.; Nguyen, H.; Ho, H.; Nguyen, V.; Dao, T.T.; Nguyen, H.T. Assessing the Important Factors of Sustainable Agriculture Development: An Indicateurs De Durabilité Des Exploitations Agricoles-Analytic Hierarchy Process Study in the Northern Region of Vietnam. Sustain. Dev. 2021, 29, 327–338. [Google Scholar]
- Laure, L.; Diazabakana, A.; Bockstaller, C.; Desjeux, Y.; Finn, J.; Kelly, E.; Ryan, M.; Uthes, S. Measurement of Sustainability in Agriculture: A Review of Indicators. Stud. Agric. Econ. 2016, 118, 123–130. [Google Scholar]
- Alda, M.; Musaraj, A. Sustainable Rural Development and the Effects of Education, Demography and Access in the Agricultural Sector Structure and Efficiency. In Proceedings of the Paper presented at the CBU International Conference Proceedings 2019, Prague, Czech, 20–22 March 2019. [Google Scholar]
- Eshiet, I.; Ghose, B.; Owolabi, T.; Sanni, Y. Africa’s Demographic Structure and Achievement of Sustainable Development Goals 1–3. Development 2021, 4, 73–86. [Google Scholar]
- Patil, D.A. The Depeasantisation and Feminisation of Agriculture: Analysing Present and Exploring the Future Scenarios for Sustainable Agriculture in India. Asian J. Res. Soc. Sci. Humanit. 2017, 7, 79–87. [Google Scholar]
- Jiao, H.; Tichit, M.; Poulot, M.; Darly, S.; Li, S.; Petit, C.; Aubry, C. Comparative Review of Multifunctionality and Ecosystem Services in Sustainable Agriculture. J. Environ. Manag. 2015, 149, 138–147. [Google Scholar]
- Elisa, P.; Bedini, S. Enhancing Ecosystem Services in Sustainable Agriculture: Biofertilization and Biofortification of Chickpea (Cicer Arietinum L.) by Arbuscular Mycorrhizal Fungi. Soil Biol. Biochem. 2014, 68, 429–439. [Google Scholar]
- Christopher, D.M.; Hendrickson, M.; Siegel, M. Sociocultural Tensions and Wicked Problems in Sustainable Agriculture Education. Agric. Hum. Values 2017, 34, 591–606. [Google Scholar]
- Inga, C.M.; Newig, J. Governing Transitions Towards Sustainable Agriculture—Taking Stock of an Emerging Field of Research. Sustainability 2021, 13, 528. [Google Scholar]
- Syuaib, M.F. Sustainable Agriculture in Indonesia: Facts and Challenges to Keep Growing in Harmony with Environment. Agric. Eng. Int. CIGR J. 2016, 18, 170–184. [Google Scholar]
- Yonjoo, C.; Park, J.; Ju, B.; Han, S.J.; Moon, H.; Park, S.; Ju, A.; Park, E. Women Leaders’ Work-Life Imbalance in South Korean Companies: A Collaborative Qualitative Study. Hum. Resour. Dev. Q. 2016, 27, 461–487. [Google Scholar]
- Dong, Y.; Jia, Z.; Xue, J.; Sun, H.; Gui, D.; Liu, Y.; Zeng, X. Inter-Regional Coordination to Improve Equality in the Agricultural Virtual Water Trade. Sustainability 2018, 10, 4561. [Google Scholar]
- Correa, C.M. Implementing Farmers’ Rights Relating to Seeds. Res. Pap. 2017, 75, 1–25. [Google Scholar]
- Peschard, K. Farmers’ Rights and Food Sovereignty: Critical Insights from India. J. Peasant Stud. 2014, 41, 1085–1108. [Google Scholar] [CrossRef]
- Kimberly, B.; Schirmer, J.; Upton, P. Regenerative Farming and Human Wellbeing: Are Subjective Wellbeing Measures Useful Indicators for Sustainable Farming Systems? Environ. Sustain. Indic. 2021, 11, 100132. [Google Scholar]
- Abhishek, B.; Jha, U.C.; Godwin, I.; Varshney, R.K. Genomic Interventions for Sustainable Agriculture. Plant Biotechnol. J. 2020, 18, 2388–2405. [Google Scholar]
- Christian, G.; Baeumner, A. Biosensors to Support Sustainable Agriculture and Food Safety. TrAC Trends Anal. Chem. 2020, 128, 115906. [Google Scholar]
- Sara, N.G.; Osburn, B.; Jay-Russell, M. One Health for Food Safety, Food Security, and Sustainable Food Production. Front. Sustain. Food Syst. 2020, 1. [Google Scholar] [CrossRef]
- Rasul, G. A Framework for Addressing the Twin Challenges of Covid-19 and Climate Change for Sustainable Agriculture and Food Security in South Asia. Front. Sustain. Food Syst. 2021, 5, 679037. [Google Scholar] [CrossRef]
- Wael, M.S.; Beheiry, H.; Sétamou, M.; Simpson, C.; El-Mageed, T.A.; Rady, M.; Nelson, S. Biochar Implications for Sustainable Agriculture and Environment: A Review. South Afr. J. Bot. 2019, 127, 333–347. [Google Scholar]
- Pandey, G. Challenges and Future Prospects of Agri-Nanotechnology for Sustainable Agriculture in India. Environ. Technol. Innov. 2018, 299–307. [Google Scholar] [CrossRef]
- Kahtani, A.L.; Muneera, D.F.; Amr, F.; Kotb, A.A.; Fahad, A.-O.; Ahmed, M.E.; Emad, E.-D.; Ewais, M.H.; St-Arnaud, M.; Saad, E.-D.H.; et al. Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from Desert Plants and Their Application as Bioinoculants for Sustainable Agriculture. Agronomy 2020, 10, 1325. [Google Scholar]
- Tiziana, U.; Diazgranados, M.; Pironon, S.; Padulosi, S.; Liu, U.; Davies, L.; Howes, M.; Borrell, J.; Ondo, I.; Pérez-Escobar, O. Unlocking Plant Resources to Support Food Security and Promote Sustainable Agriculture. Plants People Planet 2020, 2, 421–445. [Google Scholar]
- Alexandre, D.; Carson, D. Sustainable Agriculture and Multifunctionality in South Australia’s Mid North Region. Aust. Geogr. 2020, 51, 509–534. [Google Scholar]
- Jennifer, H.; Barreteau, O.; Allen, C.; Magda, D. Managing Adaptively for Multifunctionality in Agricultural Systems. J. Environ. Manag. 2016, 183, 379–388. [Google Scholar]
- Sarah, V.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar]
- Burlakoti, M.; Rajbhandari, B.P. Sustainable Agriculture: Marketing Opportunities for the Products Grown with Ipm in Terai Districts. Nepal. J. Agric. Sci. 2016, 14, 175–182. [Google Scholar]
- Arnesh, T.; Dhamija, P. The Iot Research in Sustainable Agricultural Supply Chain Management: A Conceptual Framework. Int. J. E-Entrep. Innov. (IJEEI) 2019, 9, 1–14. [Google Scholar]
- Ashar, A.M.; Usman, M.; Faiz, T.; Umair, M.; Rizwan, M.; Ali, S.; Rehman, M.Z. Restoration of Degraded Soil for Sustainable Agriculture. In Soil Health Restoration and Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 31–81. [Google Scholar]
- Madiasworo, T. An Integrated and Sustainable Infrastructure Development to Improve the Quality of Rural Area in Peri-Urban. In Proceedings of the Paper presented at the IOP Conference Series: Earth and Environmental Science 2018, Surabaya, Indonesia, 18 October 2017. [Google Scholar]
- Mohan, S.M.; Soni, G.; Jain, R.; Sharma, M.K.; Yadav, V. A Framework for Managing the Agri-Fresh Food Supply Chain Quality in Indian Industry. Manag. Environ. Qual. Int. J. 2020, 32, 436–451. [Google Scholar]
- Aithal, P.S.; Shubhrajyotsna, A. Study of Various General-Purpose Technologies and Their Comparison Towards Developing Sustainable Society. Int. J. Manag. Technol. Soc. Sci. (IJMTS) 2018, 3, 16–33. [Google Scholar] [CrossRef]
- Sudsawasd, S.; Charoensedtasin, T.; Pholphirul, P. Does International Trade Enable a Country to Achieve Sustainable Development Goals? Empirical Findings from Two Research Methodologies. Int. J. Sustain. Dev. World Ecol. 2020, 27, 405–418. [Google Scholar] [CrossRef]
- Fullard, J. Relative Wages and Pupil Performance, Evidence from Timss. ISER Work. Pap. Ser. 2021, 7, 1–56. [Google Scholar]
- David, S.; Carr, J.; Dell’Angelo, J.; D’Odorico, P.; Fader, M.; Gephart, J.; Kummu, M.; Magliocca, N.; Porkka, M.; Puma, M.; et al. Resilience in the Global Food System. Environ. Res. Lett. 2017, 12, 025010. [Google Scholar]
- Artiom, V.; Morkunas, M.; Balezentis, T.; Streimikiene, D. Are Agricultural Sustainability and Resilience Complementary Notions? Evidence from the North European Agriculture. Land Use Policy 2022, 112, 105791. [Google Scholar]
- Colnago, P.; Dogliotti, S. Introducing Labour Productivity Analysis in a Co-Innovation Process to Improve Sustainability in Mixed Family Farming. Agric. Syst. 2020, 177, 102732. [Google Scholar] [CrossRef]
- Gholamhossein, A.; Sharifzadeh, M.S.; Damalas, C. Perceptions of the Beneficial and Harmful Effects of Pesticides among Iranian Rice Farmers Influence the Adoption of Biological Control. Crop Prot. 2015, 75, 124–131. [Google Scholar]
- Sharif, S.M.; Abdollahzadeh, G.; Damalas, C.; Rezaei, R.; Ahmadyousefi, M. Determinants of Pesticide Safety Behavior among Iranian Rice Farmers. Sci. Total Environ. 2019, 651, 2953–2960. [Google Scholar]
- Deepak, G.P.; Jhala, Y.; Shelat, H.; Vyas, R. Nanoparticles: The Next Generation Technology for Sustainable Agriculture. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: Berlin/Heidelberg, Germany, 2016; pp. 289–300. [Google Scholar]
- Sharma, K.K.; Singh, U.S.; Pankaj, S.; Ashish, K.; Lalan, S. Seed Treatments for Sustainable Agriculture-a Review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef] [Green Version]
- Wynne, W.; Annes, A. Farm Women and the Empowerment Potential in Value-Added Agriculture. Rural Sociol. 2016, 81, 545–571. [Google Scholar]
- Annet, A.M.; Jogo, W.; Damtew, E.; Mekonnen, K.; Thorne, P. Women Farmers’ Participation in the Agricultural Research Process: Implications for Agricultural Sustainability in Ethiopia. Int. J. Agric. Sustain. 2019, 17, 127–145. [Google Scholar]
- Gosetti, G. Sustainable Agriculture and Quality of Working Life: Analytical Perspectives and Confirmation from Research. Sustainability 2017, 9, 1749. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, R.; Pratiwi, P.A.; Handini, V.T.; Sunartomo, A.F.; Budiman, S.A. Agricultural Land Conversion, Land Economic Value, and Sustainable Agriculture: A Case Study in East Java, Indonesia. Land 2018, 7, 148. [Google Scholar]
- Mahbubur, R.M.; Hoover, B.M. Community Food Security Via Urban Agriculture: Understanding People, Place, Economy, and Accessibility from a Food Justice Perspective. J. Agric. Food Syst. Community Dev. 2012, 3, 143–160. [Google Scholar]
- Xingyi, Z.; Zhang, P.; Zhao, F.; Yu, G. Super Moisture Absorbent Gels for Sustainable Agriculture Via Atmospheric Water Irrigation. ACS Mater. Lett. 2020, 2, 1419–1422. [Google Scholar]
- Tomas, B.; Li, T.; Chen, X. Has Agricultural Labor Restructuring Improved Agricultural Labor Productivity in China? A Decomposition Approach. Socio-Econ. Plan. Sci. 2021, 76, 100967. [Google Scholar]
- Lijing, Z.; Hong, M.; Guo, X.; Qian, W. How Does Land Rental Affect Agricultural Labor Productivity? An Empirical Study in Rural China. Land 2022, 11, 653. [Google Scholar]
- David, C.; Wei, J.; Yan, T.; Guanghui, Y.; Qirong, S.; Qing, C. Improving Manure Nutrient Management Towards Sustainable Agricultural Intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar]
- Manikant, T.; Kumar, S.; Kumar, A.; Tripathi, P.; Kumar, S. Agro-Nanotechnology: A Future Technology for Sustainable Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018, 196–200. [Google Scholar]
- Maria, D.-S.; Diz, H. Towards Sustainability in European Agricultural Firms. In Advances in Human Factors, Business Management and Society. AHFE 2018. Advances in Intelligent Systems and Computing; Kantola, J.I., Nazir, S., Barath, T., Eds.; Springer Cham: Midtown Manhattan, NY, USA, 2019; Volume 783, pp. 161–168. [Google Scholar]
- Bazyli, C.; Matuszczak, A. A New Land Rent Theory for Sustainable Agriculture. Land Use Policy 2016, 55, 222–229. [Google Scholar]
- Boris, A.K.; Chernova, V.Y. Sustainable Agriculture in Russia: Research on the Dynamics of Innovation Activity and Labor Productivity. Entrep. Sustain. Issues 2019, 7, 814. [Google Scholar]
- Qian, Z.; Sun, Z.; Wu, F.; Deng, X. Understanding Rural Restructuring in China: The Impact of Changes in Labor and Capital Productivity on Domestic Agricultural Production and Trade. J. Rural Stud. 2016, 47, 552–562. [Google Scholar]
- Robertson, G.P. A Sustainable Agriculture? Daedalus 2015, 144, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. J. Agric. Food Chem. 2017, 66, 6487–6503. [Google Scholar]
- Shingo, Y.; Yagi, H.; Kiminami, A.; Garrod, G. Farm Diversification and Sustainability of Multifunctional Peri-Urban Agriculture: Entrepreneurial Attributes of Advanced Diversification in Japan. Sustainability 2019, 11, 2887. [Google Scholar]
- Mirosław, B.; Jezierska-Thöle, A.; Rudnicki, R. The Impact of Rdp Measures on the Diversification of Agriculture and Rural Development—Seeking Additional Livelihoods: The Case of Poland. Agriculture 2021, 11, 253. [Google Scholar]
- Worku, K.G. Agroforestry and Farm Income Diversification: Synergy or Trade-Off? The Case of Ethiopia. Environ. Syst. Res. 2018, 6, 1–14. [Google Scholar]
- Štefan, B.; Knific, K. Farm Household Income Diversification as a Survival Strategy. Sustainability 2021, 13, 6341. [Google Scholar]
- Faisal, Z.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer Use for Sustainable Agriculture: Advantages and Limitations. Plant Sci. 2019, 289, 110270. [Google Scholar]
- Xianhua, T.; Na, S.; Guo, L.; Chen, J.; Ruan, Z. External Financing Efficiency of Rural Revitalization Listed Companies in China—Based on Two-Stage Dea and Grey Relational Analysis. Sustainability 2019, 11, 4413. [Google Scholar]
- Wale, E.; Chipfupa, U. Entrepreneurship Concepts/Theories and Smallholder Agriculture: Insights from the Literature with Empirical Evidence from Kwazulu-Natal, South Africa. Trans. R. Soc. South Afr. 2021, 76, 67–79. [Google Scholar] [CrossRef]
- Wang, G.; Shi, R.; Mi, L.; Hu, J. Agricultural Eco-Efficiency: Challenges and Progress. Sustainability 2022, 14, 1051. [Google Scholar] [CrossRef]
- Miguel, A.A.; Nicholls, C.; Montalba, R. Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability 2017, 9, 349. [Google Scholar]
- Rishikesh, S.; Singh, H.; Raghubanshi, A.S. Challenges and Opportunities for Agricultural Sustainability in Changing Climate Scenarios: A Perspective on Indian Agriculture. Trop. Ecol. 2019, 60, 167–185. [Google Scholar]
- Enric, T.; Galán, E.; Sacristán, V.; Cunfer, G.; Guzmán, G.; de Molina, G.; Krausmann, F.; Gingrich, S.; Padró, R.; Marco, I. Opening the Black Box of Energy Throughputs in Farm Systems: A Decomposition Analysis between the Energy Returns to External Inputs, Internal Biomass Reuses and Total Inputs Consumed (the Vallès County, Catalonia, C. 1860 and 1999). Ecol. Econ. 2016, 121, 160–174. [Google Scholar]
- Laura, P.-M.; Galdeano-Gómez, E.; Pérez-Mesa, J. Is Sustainability Compatible with Profitability? An Empirical Analysis on Family Farming Activity. Sustainability 2016, 8, 893. [Google Scholar]
- Ioannis, M.; Sundarakani, B.; Anastasiadis, F.; Ali, B. A Framework for Food Security Via Resilient Agri-Food Supply Chains: The Case of Uae. Sustainability 2022, 14, 6375. [Google Scholar]
- Majid, S.-J.; Cai, X. Reducing Food Loss and Waste to Enhance Food Security and Environmental Sustainability. Environ. Sci. Technol. 2016, 50, 8432–8443. [Google Scholar]
- Shahla, M.W.; Martinez, N. Conserving Natural Resources through Food Loss Reduction: Production and Consumption Stages of the Food Supply Chain. Int. Soil Water Conserv. Res. 2018, 6, 331–339. [Google Scholar]
- Thomas, S.J.; Snapp, S.; Place, F.; Sitko, N. Sustainable Agricultural Intensification in an Era of Rural Transformation in Africa. Glob. Food Secur. 2019, 20, 105–113. [Google Scholar]
- Nin-Pratt, A. Agricultural R&D Investment Intensity: A Misleading Conventional Measure and a New Intensity Index. Agric. Econ. 2021, 52, 317–328. [Google Scholar]
- Alisa, M.A.; Anasovna, S.G.; Alfirovna, Z.Z. Factors and Reserves of Increase of Efficiency of Agricultural Production. Int. J. Appl. Eng. Res. 2017, 12, 15821–15829. [Google Scholar]
- Dorward, A. Agricultural Labour Productivity, Food Prices and Sustainable Development Impacts and Indicators. Food Policy 2013, 39, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Marius, C.; Rădulescu, I.D.; Andrei, J.V.; Chivu, L.; Erokhin, V.; Gao, T. A Perspective on Agricultural Labor Productivity and Greenhouse Gas Emissions in Context of the Common Agricultural Policy Exigencies. Econ. Agric. 2021, 68, 53–67. [Google Scholar]
- Oliver, T.C.; Barham, B.; MacDonald, G.; Ramankutty, N.; Chavas, J.-P. Leveraging Total Factor Productivity Growth for Sustainable and Resilient Farming. Nat. Sustain. 2019, 2, 22–28. [Google Scholar]
- Deng, X.; Gibson, J. Improving Eco-Efficiency for the Sustainable Agricultural Production: A Case Study in Shandong, China. Technol. Forecast. Soc. Change 2019, 144, 394–400. [Google Scholar] [CrossRef]
- Vladimir, T.; Ivolga, A.; Lescheva, M. Enhancement of Land Tenure Relations as a Factor of Sustainable Agricultural Development: Case of Stavropol Krai, Russia. Sustainability 2014, 7, 164–179. [Google Scholar]
- Alexander, Z.; Esteves, M.; Baur, I.; Lips, M. Financial Ratios as Indicators of Economic Sustainability: A Quantitative Analysis for Swiss Dairy Farms. Sustainability 2018, 10, 2942. [Google Scholar]
- Woldegebrial, Z.; Van Huylenbroeck, G.; Tesfay, G.; Speelman, S. Smallholder Farmers’ Behavioural Intentions Towards Sustainable Agricultural Practices. J. Environ. Manag. 2017, 187, 71–81. [Google Scholar]
- Vine, M.; Hoag, D.; Pendell, D. The Adoption of Sustainable Agricultural Practices by Smallholder Farmers in Ethiopian Highlands: An Integrative Approach. Cogent Food Agric. 2018, 4, 1552439. [Google Scholar]
- Bekele, S.; Hellin, J.; Muricho, G. Improving Market Access and Agricultural Productivity Growth in Africa: What Role for Producer Organizations and Collective Action Institutions? Food Secur. 2011, 3, 475–489. [Google Scholar]
- Nakelet, O.H.; Isubikalu, P.; Obaa, B.B.; Ebanyat, P. Influence of University Entrepreneurship Training on Farmers’ Competences for Improved Productivity and Market Access in Uganda. Cogent Food Agric. 2018, 4, 1469211. [Google Scholar]
- Kopper, S.A.; Thomas, S.J. Market Access, Agro-Ecological Conditions, and Boserupian Agricultural Intensification Patterns in Kenya: Implications for Agricultural Programs and Research. World Dev. 2019, 124, 104649. [Google Scholar] [CrossRef]
- Belén, M.-A.; Martínez-Cuenca, M.-R.; Bermejo, A.; Legaz, F.; Quinones, A. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic Versus Mineral Fertilizers in Citrus Trees. PLoS ONE 2016, 11, e0161619. [Google Scholar]
- Julia, D.; Miteva, A.; Zaimova, D. Determinants and Directions of the Transition from Traditional to Sustainable Agriculture: The Bulgarian Case. In Proceedings of the CBU International Conference Proceedings 2019, Prague, Czech Republic, 20–22 March 2019; Volume 7, pp. 75–80. [Google Scholar]
- Maja, Ž.; Prevolšek, B.; Pažek, K.; Rozman, Č.; Škraba, A. Developing a Diversification Strategy of Non-Agricultural Activities on Farms Using System Dynamics Modelling: A Case Study of Slovenia. Kybernetes 2021, 51, 33–56. [Google Scholar]
- Alicia, M.-R.; Izquierdo, R.S. Risk Management Tools for Sustainable Agriculture: A Model for Calculating the Average Price for the Season in Revenue Insurance for Citrus Fruit. Agronomy 2020, 10, 198. [Google Scholar]
- Boban, M.; Cirović, D.; Backovic-Vulić, T.; Dudić, B.; Gubiniova, K. Attracting Green Consumers as a Basis for Creating Sustainable Marketing Strategy on the Organic Market—Relevance for Sustainable Agriculture Business Development. Foods 2020, 9, 1552. [Google Scholar]
- Poveda, J. Insect Frass in the Development of Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2021, 41, 1–10. [Google Scholar] [CrossRef]
- Vibha, N.; Choudhary, M. A Review on Plant Growth Promoting Rhizobacteria Acting as Bioinoculants and Their Biological Approach Towards the Production of Sustainable Agriculture. J. Appl. Nat. Sci. 2015, 7, 540–556. [Google Scholar]
- Deepranjan, S.; Kar, S.K.; Chattopadhyay, A.; Rakshit, A.; Tripathi, V.K.; Dubey, P.K.; Abhilash, P.C. Low Input Sustainable Agriculture: A Viable Climate-Smart Option for Boosting Food Production in a Warming World. Ecol. Indic. 2020, 115, 106412. [Google Scholar]
- Hanuman, S.J.; Choudhary, K.; Nandal, D.; Yadav, A.K.; Poonia, T.; Singh, Y.; Sharma, P.; Jat, M.L. Conservation Agriculture-Based Sustainable Intensification of Cereal Systems Leads to Energy Conservation, Higher Productivity and Farm Profitability. Environ. Manag. 2020, 65, 774–786. [Google Scholar]
- Sheng, T.Y.; Brindal, M. Factors Influencing Farm Profitability. Sustain. Agric. Rev. 2015, 15, 235–255. [Google Scholar]
- Daniela, S. Profitability in the Context of the Needs and Requirements of Sustainable Farms Development. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2015, 15, 467–472. [Google Scholar]
- Scown, M.W.; Mark, V.B.; Kimberly, A.N. Billions in Misspent Eu Agricultural Subsidies Could Support the Sustainable Development Goals. One Earth 2020, 3, 237–250. [Google Scholar] [CrossRef]
- Hadi, V.; Liaghati, H.; Alipour, A. Developing an Ethics-Based Approach to Indicators of Sustainable Agriculture Using Analytic Hierarchy Process (Ahp). Ecol. Indic. 2016, 60, 644–654. [Google Scholar]
- Gabriel, A.S.; Nucu, A.E.A. The Impact of Working Capital Management on Firm Profitability: Empirical Evidence from the Polish Listed Firms. J. Risk Financ. Manag. 2020, 14, 9. [Google Scholar]
- Jainendra, P.; Maurya, P.; Singh, S.; Häder, D.-P.; Sinha, R. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Front. Environ. Sci. 2018, 6, 7. [Google Scholar]
- Bijesh, M.; Gyawali, B.; Paudel, K.; Poudyal, N.; Simon, M.; Dasgupta, S.; Antonious, G. Adoption of Sustainable Agriculture Practices among Farmers in Kentucky, USA. Environ. Manag. 2018, 62, 1060–1072. [Google Scholar]
- Nath, Y.A.; Kumar, R.; Kumar, S.; Kumar, V.; Sugitha, T.; Singh, B.; Chauahan, V.S.; Dhaliwal, H.S.; Saxena, A.K. Beneficial Microbiomes: Biodiversity and Potential Biotechnological Applications for Sustainable Agriculture and Human Health. J. Appl. Biol. Biotechnol. 2017, 5, 4–7. [Google Scholar]
- Divjot, K.; Rana, K.L.; Yadav, N.; Yadav, A.N.; Kumar, A.; Meena, V.S.; Singh, B.; Chauhan, V.S.; Dhaliwal, H.S.; Saxena, A.K. Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture. In Plant Growth Promoting Rhizobacteria for Agricultural Sustainability; Springer: Berlin/Heidelberg, Germany, 2019; pp. 19–65. [Google Scholar]
- Lisa, C.S.; Domeignoz-Horta, L.; Loaiza, V.; Laine, A.-L. Utilizing Principles of Biodiversity Science to Guide Soil Microbial Communities for Sustainable Agriculture. EcoEvoRxiv 2021, 4. [Google Scholar] [CrossRef]
- Thony, H.-L.; Labrador-Moreno, J.; Blanc o-Salas, J.; Ruiz-Téllez, T. A Framework to Incorporate Biological Soil Quality Indicators into Assessing the Sustainability of Territories in the Ecuadorian Amazon. Sustainability 2020, 12, 3007. [Google Scholar]
- Debarati, B.; Pal, S.; Purakayastha, T.; Chakraborty, K.; Yadav, R.; Akhtar, M. Soil Quality and Plant-Microbe Interactions in the Rhizosphere. Sustain. Agric. Rev. 2015, 17, 307–335. [Google Scholar]
- Aysha, F.; Vanclay, F. Farmer Responses to Climate Change and Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2010, 30, 11–19. [Google Scholar]
- Mohamed, K.E.; Al-Gaadi, K.; Hassaballa, A.; Tola, E. The Response of Potato Crop to the Spatiotemporal Variability of Soil Compaction under Centre Pivot Irrigation System. Soil Use Manag. 2020, 36, 212–222. [Google Scholar]
- de Lima, R.P.; da Silva, A.P.; Neyde, F.B.G.; da Silva, A.R.; Mário, M.R. Changes in Soil Compaction Indicators in Response to Agricultural Field Traffic. Biosyst. Eng. 2017, 162, 1–10. [Google Scholar] [CrossRef]
- Ekaterina, A.; Velikova, M. Developing a Complex Model for Sustainable Rural Development. New Knowl. J. Sci. 2017, 6. [Google Scholar]
- Julius, S.; Wachter, P.; Trautz, D. Crop Rotation and Management Tools for Every Farmer? The Current Status on Crop Rotation and Management Tools for Enabling Sustainable Agriculture Worldwide. Smart Agric. Technol. 2022, 3, 100086. [Google Scholar]
- Han-ming, H.E.; Liu, L.-N.; Munir, S.; Bashir, N.H.; Yi, W.; Jing, Y.; Li, A.C.-Y. Crop Diversity and Pest Management in Sustainable Agriculture. J. Integr. Agric. 2019, 18, 1945–1952. [Google Scholar]
- Li, L.; Hu, R.; Huang, J.; Bürgi, M.; Zhu, Z.; Zhong, J.; Lü, Z. A Farmland Biodiversity Strategy Is Needed for China. Nat. Ecol. Evol. 2020, 4, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Hong-Ge, C.; Zhang, Y.-H.P. New Biorefineries and Sustainable Agriculture: Increased Food, Biofuels, and Ecosystem Security. Renew. Sustain. Energy Rev. 2015, 47, 117–132. [Google Scholar]
- Magomedov, I.A.; Dzhabrailov, Z.A.; Bagov, A.M. Subsistence Agriculture and Global Warming. IOP Conf. Ser. Earth Environ. Sci. 2021, 667, 032109. [Google Scholar] [CrossRef]
- Zahra, A.; Bartolini, F.; Brunori, G. Economic Modeling of Climate-Smart Agriculture in Iran. New Medit 2019, 2019, 29–40. [Google Scholar]
- Pawlak, J. Methodological Assumptions to Assess the Economic Effects of Reduction in Greenhouse Gas Emission in Agriculture. Probl. Agric. Econ. 2017, 2, 138–150. [Google Scholar]
- Pfromm, P.H. Towards Sustainable Agriculture: Fossil-Free Ammonia. J. Renew. Sustain. Energy 2017, 9, 034702. [Google Scholar] [CrossRef]
- Massimiliano, A.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, Climate Change and Sustainability: The Case of Eu-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar]
- Suh, D.H. Declining Energy Intensity in the Us Agricultural Sector: Implications for Factor Substitution and Technological Change. Sustainability 2015, 7, 13192–13205. [Google Scholar] [CrossRef] [Green Version]
- Shu, W.; Ding, S. Efficiency Improvement, Structural Change, and Energy Intensity Reduction: Evidence from Chinese Agricultural Sector. Energy Econ. 2021, 99, 105313. [Google Scholar]
- Antonino, G.; Gristina, L.; Crescimanno, M.; Barone, E.; Novara, A. Towards More Efficient Incentives for Agri-Environment Measures in Degraded and Eroded Vineyards. Land Degrad. Dev. 2015, 26, 557–564. [Google Scholar]
- Yi, L.C.; Law, M.; Khetani, M.; Pollock, N.; Rosenbaum, P. Establishing the Cultural Equivalence of the Young Children’s Participation and Environment Measure (Yc-Pem) for Use in Singapore. Phys. Occup. Ther. Pediatr. 2016, 36, 422–439. [Google Scholar]
- Jindřich, Š.; Vintr, T.; Aulová, R.; Macháčková, J. Trade-Off between the Economic and Environmental Sustainability in Czech Dual Farm Structure. Agric. Econ. 2020, 66, 243–250. [Google Scholar]
- Mărunțelu, I. Research on the Small Peasant Individual Households in Romania within the Framework of Sustainable Agriculture. Sci. Pap. Ser. -Manag. Econ. Eng. Agric. Rural Dev. 2020, 20, 341–346. [Google Scholar]
- Dan, P.; Kong, F.; Zhang, N.; Ying, R. Knowledge Training and the Change of Fertilizer Use Intensity: Evidence from Wheat Farmers in China. J. Environ. Manag. 2017, 197, 130–139. [Google Scholar]
- Li, J.; Li, Z. Urbanization and the Change of Fertilizer Use Intensity for Agricultural Production in Henan Province. Sustainability 2016, 8, 186. [Google Scholar]
- Colin, S.; Gattinger, A.; Krauss, M.; Krause, H.-M.; Mayer, J.; Van Der Heijden, M.G.; Mäder, P. The Impact of Long-Term Organic Farming on Soil-Derived Greenhouse Gas Emissions. Sci. Rep. 2019, 9, 1–10. [Google Scholar]
- Mohamed, A.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar]
- Maryline, B.; Angeon, V.; Rudel, T. Tropical Grasslands: A Pivotal Place for a More Multi-Functional Agriculture. Ambio 2017, 46, 48–56. [Google Scholar]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, F.M.J.U.; Bernardo, L.V.M.; Filho, A.S.; Berezuk, A.G.; da Silva, L.F.; Ruviaro, C.F. Opportunity Cost of a Private Reserve of Natural Heritage, Cerrado Biome–Brazil. Land Use Policy 2019, 81, 49–57. [Google Scholar] [CrossRef]
- Annika, S.; McCrackin, M.; Swaney, D.; Linefur, H.; Gustafsson, B.; Howarth, R.; Humborg, C. Reducing Agricultural Nutrient Surpluses in a Large Catchment–Links to Livestock Density. Sci. Total Environ. 2019, 648, 1549–1559. [Google Scholar]
- Van Grinsven, H.J.M.; Jan, W.E.; De Vries, W.; Henk, W. Potential of Extensification of European Agriculture for a More Sustainable Food System, Focusing on Nitrogen. Environ. Res. Lett. 2015, 10, 025002. [Google Scholar] [CrossRef]
- Xiaoshi, Z.; Ma, W.; Li, G. Draft Animals, Farm Machines and Sustainable Agricultural Production: Insight from China. Sustainability 2018, 10, 3015. [Google Scholar]
- Brian, S.; Kienzle, J. Sustainable Agricultural Mechanization for Smallholders: What Is It and How Can We Implement It? Agriculture 2017, 7, 50. [Google Scholar]
- Beatriz, H.; Gerster-Bentaya, M.; Tzouramani, I.; Knierim, A. Advisory Services and Farm-Level Sustainability Profiles: An Exploration in Nine European Countries. J. Agric. Educ. Ext. 2019, 25, 117–137. [Google Scholar]
- Julie, R.; Martin, G.; Moraine, M.; Duru, M.; Therond, O. Designing Crop–Livestock Integration at Different Levels: Toward New Agroecological Models? " Nutr. Cycl. Agroecosystems 2017, 108, 5–20. [Google Scholar]
- Muhammad, U.; Makhdum, M.S.A. What Abates Ecological Footprint in Brics-T Region? Exploring the Influence of Renewable Energy, Non-Renewable Energy, Agriculture, Forest Area and Financial Development. Renew. Energy 2021, 179, 12–28. [Google Scholar]
- Liz, C.; de Wit, M.M.; DeLonge, M.; Iles, A.; Calo, A.; Getz, C.; Ory, J.; Munden-Dixon, K.; Galt, R.; Melone, B. Transitioning to Sustainable Agriculture Requires Growing and Sustaining an Ecologically Skilled Workforce. Front. Sustain. Food Syst. 2019, 3, 96. [Google Scholar]
- Nicoleta, R.J.; Moga, I.; Chiviu, A.; Marin, E. Waste Management in Agriculture and Wastewater Treatment Plants. J. Int. Sci. Publ. Ecol. Saf. (Online) 2020, 14, 65–74. [Google Scholar]
- El-Ghamry, A.M.; Fouda, K.F.; Sally, F.; El-Ezz, A. Organic Fertilizers Derived from Farm by-Products for Sustainable–A Review. J. Soil Sci. Agric. Eng. 2019, 10, 815–819. [Google Scholar]
- Schils René, L.M.; Conny, B.; Caroline, M.R.; Richard, M.F.; Valentin, H.K.; Mohamed, A.; Filippo, M.; Eszter, L.-K.; Hein, T.B.; Chiara, B. Permanent Grasslands in Europe: Land Use Change and Intensification Decrease Their Multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Radoslava, K.; Jaďuďová, J.; Makovníková, J.; Kizeková, M. Assessment of Relationships between Earthworms and Soil Abiotic and Biotic Factors as a Tool in Sustainable Agricultural. Sustainability 2016, 8, 906. [Google Scholar]
- Xin, Z.; Davidson, E.; Mauzerall, D.; Searchinger, T.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar]
- Adriana, L.A.; Weyers, S.; Goemann, H.; Peyton, B.; Gardner, R. Microalgae, Soil and Plants: A Critical Review of Microalgae as Renewable Resources for Agriculture. Algal Res. 2021, 54, 102200. [Google Scholar]
- Kumar, J.D.; Verma, J.P.; Prakash, S.; Meena, V.S.; Meena, R.S. Potassium as an Important Plant Nutrient in Sustainable Agriculture: A State of the Art. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–29. [Google Scholar] [CrossRef]
- Nadia, A.; Nordin, S.M.; Bahruddin, M.A.; Tareq, A.H. A State-of-the-Art Review on Facilitating Sustainable Agriculture through Green Fertilizer Technology Adoption: Assessing Farmers Behavior. Trends Food Sci. Technol. 2019, 86, 439–452. [Google Scholar]
- Lorenzo, R.; Rulli, M.C.; Davis, K.F.; Chiarelli, D.D.; Passera, C.; D’Odorico, P. Closing the Yield Gap While Ensuring Water Sustainability. Environ. Res. Lett. 2018, 13, 104002. [Google Scholar]
- Lorenzo, R.; Chiarelli, D.D.; Tu, C.; Rulli, M.C.; D’Odorico, P. Global Unsustainable Virtual Water Flows in Agricultural Trade. Environ. Res. Lett. 2019, 14, 114001. [Google Scholar]
- Jianbo, S.; Zhu, Q.; Jiao, X.; Ying, H.; Wang, H.; Wen, X.; Xu, W.; Li, T.; Cong, W.; Liu, X. Agriculture Green Development: A Model for China and the World. Front. Agric. Sci. Eng. 2020, 7, 5–13. [Google Scholar]
- Silvia, A.-T.; Vidal-Raméntol, S.; Pujol-Valls, M.; Fernández-Morilla, M. Holistic Approaches to Develop Sustainability and Research Competencies in Pre-Service Teacher Training. Sustainability 2018, 10, 3698. [Google Scholar]
- Aguiar, J.B.; Ana, M.M.; Cristina, A.; Helena, M.R.; Joana, M. Water Sustainability: A Waterless Life Cycle for Cosmetic Products. Sustain. Prod. Consum. 2022, 32, 35–51. [Google Scholar] [CrossRef]
- Ching-Hung, L.; Liu, C.-L.; Trappey, A.J.; Mo, J.P.; Desouza, K. Understanding Digital Transformation in Advanced Manufacturing and Engineering: A Bibliometric Analysis, Topic Modeling and Research Trend Discovery. Adv. Eng. Inform. 2021, 50, 101428. [Google Scholar]
- Martyna, S.; Silveira, S. Technologies for Chemical Recycling of Household Plastics–A Technical Review and Trl Assessment. Waste Manag. 2020, 105, 128–138. [Google Scholar]
- Anushree, T.; Jabeen, F.; Talwar, S.; Sakashita, M.; Dhir, A. Facilitators and Inhibitors of Organic Food Buying Behavior. Food Qual. Prefer. 2021, 88, 104077. [Google Scholar]
- Yuanliang, J.; Wang, L.; Song, Y.; Zhu, J.; Qin, M.; Wu, L.; Hu, P.; Li, F.; Fang, L.; Chen, C. Integrated Life Cycle Assessment for Sustainable Remediation of Contaminated Agricultural Soil in China. Environ. Sci. Technol. 2021, 55, 12032–12042. [Google Scholar]
Dimension | Scale | ||
---|---|---|---|
Micro | Meso | Macro | |
Natural resource base | Field level soil fertility | Agroecosystems | Continental water and land resources |
Moisture | Regional land capability | Global climate | |
Crop production | Field yield | Regional production, | Global food and fiber supplies |
Land use patterns | |||
Economic return | Management farm level production costs | Regional economy, | Trade marketing |
Viability | Value of production, | Policies | |
Capital outlay | Politics | ||
Rural community | Farm level tenure | Rural community size and function | Global poverty |
Family involvement | Access to food | Hunger | |
Communication | Facilities | Equity |
Dimension | Indicators | References |
---|---|---|
Social | Acceptable agricultural practices | [40,60] |
Compatibility | [61,62] | |
Contribution to employment | [40,63,64] | |
Demographic structure | [65,66,67] | |
Ecosystem services | [40,68,69] | |
Education | [40,70,71] | |
Employment | [40,72] | |
Equality | [73,74] | |
Farmers’ rights | [6,75,76] | |
Farmers’ well-being | [6,73,77] | |
Food | [61,78] | |
Food safety | [61,79,80] | |
Health and nutrition | [6,81] | |
Health and Safety | [61,82,83] | |
Isolation | [40,84] | |
Knowledge | [61,85] | |
Life quality—consumers | [61] | |
Life quality—workers | [61] | |
Multifunctionality | [40,86,87] | |
Quality of life | [40,88] | |
Quality of product | [40,89,90,91] | |
Quality of rural areas | [40,92] | |
Quality of process | [40,93,94] | |
Relative wages | [95,96] | |
Resilience | [6,97,98] | |
Share of the family labor force | [99,100,101] | |
Social implication | [40] | |
Technology | [61,102,103] | |
Women empowerment | [104,105] | |
Working condition | [40,106] | |
Economic | Accessibility | [61,107,108,109] |
Agricultural activities | [40,60] | |
Agricultural labor productivity | [6,110,111] | |
Agricultural support | [6] | |
Animal feeding | [40,112,113] | |
Capital productivity | [114,115,116,117] | |
Cost | [61,118,119] | |
Credit availability | [6] | |
Diversification of activities | [120,121] | |
Diversification of income | [122,123] | |
Efficiency | [40,119,124] | |
External financing | [40,125] | |
External income | [40,126,127] | |
External inputs | [40,128,129,130] | |
Farm’s profitability | [40,131] | |
Farmer’s risks | [6] | |
Food loss | [6,132,133,134] | |
Income | [40,61] | |
Investment intensity | [135,136,137] | |
Labor productivity | [116,138,139] | |
Land productivity | [140,141,142] | |
Liquidity | [143,144,145] | |
Market access | [6,146,147,148] | |
Marketability | [40,61] | |
Mineral fertilizers | [40,149] | |
Non-agriculture activities | [40,150,151] | |
Price | [61,152,153] | |
Production | [40,154,155,156] | |
Profitability | [157,158,159] | |
Subsidies | [40,160,161] | |
Working capital level | [40,162] | |
Environment | Agriculture practices | [40,163,164] |
Biodiversity | [165,166,167] | |
Biological soil quality | [40,168] | |
Chemical soil quality | [40,169] | |
Climate change | [6,170] | |
Compaction measurements | [40,171,172] | |
Complex model | [40,173] | |
Crop protection intensity | [98] | |
Crop rotation | [40,174,175] | |
Culture reside management | [40] | |
Domestic biodiversity | [40,176] | |
Ecosystem | [61,68,177] | |
Emission of acidifying gasses | [40] | |
Emission of greenhouse gasses | [40,178,179,180] | |
Energy intensity | [181,182,183,184] | |
Environment measure | [40,185,186] | |
Farm structure | [40,187,188] | |
Fertilizer use intensity | [119,135,189,190] | |
Greenhouse gas emission intensity | [191,192] | |
Importance of grasslands | [40,193] | |
Land use and loss of biodiversity | [6,194,195] | |
Livestock density | [196,197] | |
Machine use | [40,198,199] | |
Nitrogen farm-gate balance | [40,200,201] | |
Non-renewable | [61,202,203] | |
Operational model | [40,68] | |
Organic carbon indicator | [40,204] | |
Organic fertilization | [40,149,205] | |
Permanent grasslands | [206,207] | |
Physical soil quality | [40] | |
Pollution | [6,208] | |
Renewable resources | [61,209] | |
Resources | [40,85] | |
Soil analysis | [40,210] | |
Soil cover | [40,199] | |
Soil health | [6] | |
Soil type | [40] | |
Soil fertility | [107] | |
Specific positive | [40,211] | |
Water availability | [6,212,213] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bathaei, A.; Štreimikienė, D. A Systematic Review of Agricultural Sustainability Indicators. Agriculture 2023, 13, 241. https://doi.org/10.3390/agriculture13020241
Bathaei A, Štreimikienė D. A Systematic Review of Agricultural Sustainability Indicators. Agriculture. 2023; 13(2):241. https://doi.org/10.3390/agriculture13020241
Chicago/Turabian StyleBathaei, Ahmad, and Dalia Štreimikienė. 2023. "A Systematic Review of Agricultural Sustainability Indicators" Agriculture 13, no. 2: 241. https://doi.org/10.3390/agriculture13020241
APA StyleBathaei, A., & Štreimikienė, D. (2023). A Systematic Review of Agricultural Sustainability Indicators. Agriculture, 13(2), 241. https://doi.org/10.3390/agriculture13020241