Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Treatments
2.3. Crop Husbandry
2.4. Data Collection
2.4.1. Soil Properties
2.4.2. Nutrient Availability
2.4.3. Weed Infestation
2.5. Morphological and Yield-Related Traits
2.5.1. Cotton
2.5.2. Wheat
2.5.3. Canola
2.5.4. Egyptian Clover
2.6. Economic Analysis
2.7. Statistical Analysis
3. Results
3.1. Nutrient Availability
3.2. Weed Density
3.3. Yield-Related Attributes of Cotton
3.4. Yield-Related Attributes of Wheat
3.5. Yield-Related Attributes of Canola
3.6. Yield-Related Attributes of Egyptian Clover
3.7. Economic Returns/System Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GOP Economic Survey of Pakistan; Economic Advisory Wing: Islamabad, Pakistan, 2021.
- Kouser, S.; Spielman, D.J.; Qaim, M. Transgenic Cotton and Farmers’ Health in Pakistan. PLoS ONE 2019, 14, e0222617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem-Ullah, U.; Ramzan, M.; Bokhari, S.H.M.; Saleem, A.; Qayyum, M.A.; Iqbal, N.; Habib ur Rahman, M.; Fahad, S.; Saeed, S. Insect Pests of Cotton Crop and Management Under Climate Change Scenarios. In Environment, Climate, Plant and Vegetation Growth; Springer International Publishing: Cham, Switzerland, 2020; pp. 367–396. [Google Scholar]
- Zehr, U.B. Cotton: Biotechnological Advances; Springer Science & Business Media: Cham, Switzerland, 2010; Volume 65, ISBN 3642047963. [Google Scholar]
- Kouser, S.; Qaim, M. Valuing Financial, Health, and Environmental Benefits of Bt Cotton in Pakistan. Agric. Econ. 2013, 44, 323–335. [Google Scholar] [CrossRef]
- Arshad, M.; Suhail, A.; Asghar, M.; Tayyib, M.; Hafeez, F. Factors Influencing the Adoption of Bt Cotton in the Punjab, Pakistan. J. Agric. Soc. Sci. 2007, 11, 19. [Google Scholar]
- Khan, M.; Mahmood, H.Z.; Damalas, C.A. Pesticide Use and Risk Perceptions among Farmers in the Cotton Belt of Punjab, Pakistan. Crop Prot. 2015, 67, 184–190. [Google Scholar] [CrossRef]
- Tooker, J.F.; Pearsons, K.A. Newer Characters, Same Story: Neonicotinoid Insecticides Disrupt Food Webs through Direct and Indirect Effects. Curr. Opin. Insect Sci. 2021, 46, 50–56. [Google Scholar] [CrossRef]
- Ziółkowska, E.; Topping, C.J.; Bednarska, A.J.; Laskowski, R. Supporting Non-Target Arthropods in Agroecosystems: Modelling Effects of Insecticides and Landscape Structure on Carabids in Agricultural Landscapes. Sci. Total Environ. 2021, 774, 145746. [Google Scholar] [CrossRef]
- Peshin, R.; Hansra, B.S.; Singh, K.; Nanda, R.; Sharma, R.; Yangsdon, S.; Kumar, R. Long-Term Impact of Bt Cotton: An Empirical Evidence from North India. J. Clean. Prod. 2021, 312, 127575. [Google Scholar] [CrossRef]
- Rana, M.A. When Seed Becomes Capital: Commercialization of Bt Cotton in Pakistan. J. Agrar. Chang. 2021, 21, 702–719. [Google Scholar] [CrossRef]
- Cheema, H.M.N.; Khan, A.A.; Noor, K. Bt Cotton in Pakistan. In Genetically Modified Crops in Asia Pacific; CSIRO Publishing: Clayton, Australia, 2021; p. 91. [Google Scholar]
- Lv, N.; Liu, Y.; Guo, T.; Liang, P.; Li, R.; Liang, P.; Gao, X. The Influence of Bt Cotton Cultivation on the Structure and Functions of the Soil Bacterial Community by Soil Metagenomics. Ecotoxicol. Environ. Saf. 2022, 236, 113452. [Google Scholar] [CrossRef]
- Smyth, S.J.; Kerr, W.A.; Phillips, P.W.B. Global Economic, Environmental and Health Benefits from GM Crop Adoption. Glob. Food Sec. 2015, 7, 24–29. [Google Scholar] [CrossRef]
- Hutchison, W.D.; Burkness, E.C.; Mitchell, P.D.; Moon, R.D.; Leslie, T.W.; Fleischer, S.J.; Abrahamson, M.; Hamilton, K.L.; Steffey, K.L.; Gray, M.E.; et al. Areawide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers. Science 2010, 330, 222–225. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Gambhir, G.; Dass, A.; Tripathi, A.K.; Singh, A.; Jha, A.K.; Yadava, P.; Choudhary, M.; Rakshit, S. Genetically Modified Crops: Current Status and Future Prospects. Planta 2020, 251, 91. [Google Scholar] [CrossRef]
- Di Lelio, I.; Barra, E.; Coppola, M.; Corrado, G.; Rao, R.; Caccia, S. Transgenic Plants Expressing Immunosuppressive DsRNA Improve Entomopathogen Efficacy against Spodoptera littoralis Larvae. J. Pest Sci. 2022, 95, 1413–1428. [Google Scholar] [CrossRef]
- Katta, S.; Talakayala, A.; Reddy, M.K.; Addepally, U.; Garladinne, M. Development of Transgenic Cotton (Narasimha) Using Triple Gene Cry2Ab-Cry1F-Cry1Ac Construct Conferring Resistance to Lepidopteran Pest. J. Biosci. 2020, 45, 31. [Google Scholar] [CrossRef]
- Klümper, W.; Qaim, M. A Meta-Analysis of the Impacts of Genetically Modified Crops. PLoS ONE 2014, 9, e111629. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Chandra, A.; Pandey, K.C. Bacillus thuringiensis (Bt) Transgenic Crop: An Environment Friendly Insect-Pest Management Strategy. J. Environ. Biol. 2008, 29, 641–653. [Google Scholar]
- Tokel, D.; Genc, B.N.; Ozyigit, I.I. Economic Impacts of Bt (Bacillus thuringiensis) Cotton. J. Nat. Fibers 2022, 19, 4622–4639. [Google Scholar] [CrossRef]
- Halford, N.G.; Shewry, P.R. Genetically Modified Crops: Methodology, Benefits, Regulation and Public Concerns. Br. Med. Bull. 2000, 56, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Kuzma, J.; Grieger, K. Community-Led Governance for Gene-Edited Crops. Science 2020, 370, 916–918. [Google Scholar] [CrossRef]
- Sendhil, R.; Nyika, J.; Yadav, S.; Mackolil, J.; Prashat, G.R.; Workie, E.; Ragupathy, R.; Ramasundaram, P. Genetically Modified Foods: Bibliometric Analysis on Consumer Perception and Preference. GM Crops Food 2022, 13, 65–85. [Google Scholar] [CrossRef]
- Liu, J.; Liang, Y.; Hu, T.; Zeng, H.; Gao, R.; Wang, L.; Xiao, Y. Environmental Fate of Bt Proteins in Soil: Transport, Adsorption/Desorption and Degradation. Ecotoxicol. Environ. Saf. 2021, 226, 112805. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, H.; Liu, D.; Hao, J.; Liu, H.; Lu, X. Effects of Toxin from Bacillus thuringiensis (Bt) on Sorption of Pb (II) in Red and Black Soils: Equilibrium and Kinetics Aspects. J. Hazard. Mater. 2018, 360, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Sarkar, B.; Owens, G.; Thakur, J.K.; Manna, M.C.; Niazi, N.K.; Jayaraman, S.; Patra, A.K. Impact of Genetically Modified Crops on Rhizosphere Microorganisms and Processes: A Review Focusing on Bt Cotton. Appl. Soil Ecol. 2020, 148, 103492. [Google Scholar] [CrossRef]
- Stotzky, G. Persistence and Biological Activity in Soil of the Insecticidal Proteins from Bacillus thuringiensis, Especially from Transgenic Plants. Plant Soil 2005, 266, 77–89. [Google Scholar] [CrossRef]
- Sarkar, B.; Patra, A.K.; Purakayastha, T.J.; Megharaj, M. Assessment of Biological and Biochemical Indicators in Soil under Transgenic Bt and Non-Bt Cotton Crop in a Sub-Tropical Environment. Environ. Monit. Assess. 2009, 156, 595–604. [Google Scholar] [CrossRef]
- Fleming, D.; Musser, F.; Reisig, D.; Greene, J.; Taylor, S.; Parajulee, M.; Lorenz, G.; Catchot, A.; Gore, J.; Kerns, D.; et al. Effects of Transgenic Bacillus thuringiensis Cotton on Insecticide Use, Heliothine Counts, Plant Damage, and Cotton Yield: A Meta-Analysis, 1996–2015. PLoS ONE 2018, 13, e0200131. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Zhang, S.; Zhu, X.; Lu, L.; Wang, C.; LI, C.; Cui, J.; Zhou, Z. Effects of Soil Salinity on Rhizosphere Soil Microbes in Transgenic Bt Cotton Fields. J. Integr. Agric. 2017, 16, 1624–1633. [Google Scholar] [CrossRef] [Green Version]
- Dunfield, K.E.; Germida, J.J. Impact of Genetically Modified Crops on Soil- and Plant-Associated Microbial Communities. J. Environ. Qual. 2004, 33, 806. [Google Scholar] [CrossRef]
- Sarkar, B.; Patra, A.K.; Purakayastha, T.J. Transgenic Bt-Cotton Affects Enzyme Activity and Nutrient Availability in a Sub-Tropical Inceptisol. J. Agron. Crop Sci. 2008, 194, 289–296. [Google Scholar] [CrossRef]
- Sun, C.X.; Chen, L.J.; Wu, Z.J.; Zhou, L.K.; Shimizu, H. Soil Persistence of Bacillus thuringiensis (Bt) Toxin from Transgenic Bt Cotton Tissues and Its Effect on Soil Enzyme Activities. Biol. Fertil. Soils 2007, 43, 617–620. [Google Scholar] [CrossRef]
- Noman, A.; Bashir, R.; Aqeel, M.; Anwer, S.; Iftikhar, W.; Zainab, M.; Zafar, S.; Khan, S.; Islam, W.; Adnan, M. Success of Transgenic Cotton (Gossypium hirsutum L.): Fiction or Reality? Cogent Food Agric. 2016, 2, 1207844. [Google Scholar] [CrossRef]
- Flachs, A. Transgenic cotton: High hopes and farming reality. Nat. Plants 2017, 3, 16212. [Google Scholar] [CrossRef]
- Smyth, S.J. The Human Health Benefits from GM Crops. Plant Biotechnol. J. 2020, 18, 887–888. [Google Scholar] [CrossRef]
- Matloob, A.; Aslam, F.; Rehman, H.U.; Khaliq, A.; Ahmad, S.; Yasmeen, A.; Hussain, N. Cotton-Based Cropping Systems and Their Impacts on Production. In Cotton Production and Uses; Springer: Singapore, 2020; pp. 283–310. ISBN 9789811514722. [Google Scholar]
- Kroetsch, D.; Wang, C. Particle Size Distribution. Soil Sampl. Methods Anal. 2008, 2, 713–725. [Google Scholar]
- Dellavalle, N.B. Determination of Soil-Paste PH and Conductivity of Saturation Extract. In Reference Methods for Soil Analysis; Soil and Plant Analysis Council, Inc.: Athens, GA, USA, 1992; pp. 40–43. [Google Scholar]
- Cunniff, P.; AOAC International. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1997. [Google Scholar]
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating Soil Organic Carbon through Loss on Ignition: Effects of Ignition Conditions and Structural Water Loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Jafari, A.; Connolly, V.; Frolich, A.; Walsh, E.J. A Note on Estimation of Quality Parameters in Perennial Ryegrass by near Infrared Reflectance Spectroscopy. Ir. J. Agric. Food Res. 2003, 42, 293–299. [Google Scholar]
- CIMMYT. From Agronomic Data to Farmer Recommendations: An Economics Workbook; CIMMYT: Heroica Veracruz, Mexico, 1988; ISBN 9686127194. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Steel, R.; Torrei, J.; Dickey, D. Principles and Procedures of Statistics a Biometrical Approach; McGraw-Hill College: New York, NY, USA, 1997. [Google Scholar]
- IBM, Inc. SPSS Statistics for Windows (Version 20); IBM SPSS Inc.: Armonk, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Kranthi, K.R.; Stone, G.D. Long-Term Impacts of Bt Cotton in India. Nat. Plants 2020, 6, 188–196. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhou, G.; Zhu, G.; Ahmad, Z.; Song, X.; Hao, G.; Jamal, Y.; Ibrahim, M.E.H. Response of Leaf Characteristics of BT Cotton Plants to Ratio of Nitrogen, Phosphorus and Potassium. Pak. J. Bot. 2021, 53, 873–881. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123849052. [Google Scholar]
- Jones, M.L.M.; Wallace, H.L.; Norris, D.; Brittain, S.A.; Haria, S.; Jones, R.E.; Rhind, P.M.; Reynolds, B.R.; Emmett, B.A. Changes in Vegetation and Soil Characteristics in Coastal Sand Dunes along a Gradient of Atmospheric Nitrogen Deposition. Plant Biol. 2004, 6, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P.; Fu, Q.; Rengel, Z. Manganese Availability and Microbial Populations in the Rhizosphere of Wheat Genotypes Differing in Tolerance to Mn Deficiency. J. Plant Nutr. Soil Sci. 2003, 166, 712–718. [Google Scholar] [CrossRef]
- Hu, H.; Xie, M.; Yu, Y.; Zhang, Q. Transgenic Bt Cotton Tissues Have No Apparent Impact on Soil Microorganisms. Plant Soil Environ. 2013, 59, 366–371. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, M.; Glare, T.R.; Burgess, E.P.J.; Malone, L.A. Effects of Plants Genetically Modified for Insect Resistance on Nontarget Organisms. Annu. Rev. Entomol. 2005, 50, 271–292. [Google Scholar] [CrossRef] [Green Version]
- Beura, K.; Rakshit, A. Effect of Bt Cotton on Nutrient Dynamics under Varied Soil Type. Ital. J. Agron. 2011, 6, e35. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Manjhi, B.K.; Beura, K.S.; Rakshit, A. Decomposition Bt Cotton Residues Affecting Soil Microbial Activity under Varied Soils. Int. J. Agric. Environ. Biotechnol. 2015, 8, 359. [Google Scholar] [CrossRef]
- Shahzad, M.; Farooq, M.; Hussain, M. Weed Spectrum in Different Wheat-Based Cropping Systems under Conservation and Conventional Tillage Practices in Punjab, Pakistan. Soil Tillage Res. 2016, 163, 71–79. [Google Scholar] [CrossRef]
- Shahzad, M.; Hussain, M.; Jabran, K.; Farooq, M.; Farooq, S.; Gašparovič, K.; Barboricova, M.; Aljuaid, B.S.; El-Shehawi, A.M.; Zuan, A.T.K. The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.). Agronomy 2021, 11, 2088. [Google Scholar] [CrossRef]
- Tariq, M.; Abdullah, K.; Ahmad, S.; Abbas, G.; Rahman, M.H.; Khan, M.A. Weed Management in Cotton. In Cotton Production and Uses; Springer: Singapore, 2020; pp. 145–161. [Google Scholar]
- Farkas, A. Soil Management and Tillage Possibilities in Weed Control. Herbologia 2006, 7, 9–23. [Google Scholar]
- Mahajan, G.; Chauhan, B.S. The Role of Cultivars in Managing Weeds in Dry-Seeded Rice Production Systems. Crop Prot. 2013, 49, 52–57. [Google Scholar] [CrossRef]
- Rezakhanlou, A.; Mirshekari, B.; Zand, E.; Farahvash, F.; Baghestani, M.A. Evaluation of Competitiveness of Cotton Varieties to Cocklebur (Xanthium srumarium L.). J. Food Agric. Environ. 2013, 11, 308–311. [Google Scholar]
- Chandler, J.M.; Meredith, W.R. Yields of Three Cotton (Gossypium hirsutum) Cultivars as Influenced by Spurred Anoda (Anoda cristata) Competition. Weed Sci. 1983, 31, 303–307. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Carrière, Y.; Dennehy, T.J.; Morin, S.; Sisterson, M.S.; Roush, R.T.; Shelton, A.M.; Zhao, J.-Z. Insect Resistance to Transgenic Bt Crops: Lessons from the Laboratory and Field. J. Econ. Entomol. 2003, 96, 1031–1038. [Google Scholar] [CrossRef]
- Heckel, D.G. How Do Toxins from Bacillus thuringiensis Kill Insects? An Evolutionary Perspective. Arch. Insect Biochem. Physiol. 2020.
- Tapp, H.; Stotzky, G. Insecticidal Activity of the Toxins from Bacillus thuringiensis Subspecies Kurstaki and Tenebrionis Adsorbed and Bound on Pure and Soil Clays. Appl. Environ. Microbiol. 1995, 61, 1786–1790. [Google Scholar] [CrossRef] [Green Version]
- Rui, Y.-K.; Yi, G.-X.; Zhao, J.; Wang, B.-M.; Li, Z.-H.; Zhai, Z.-X.; He, Z.-P.; Li, Q.X. Changes of Bt Toxin in the Rhizosphere of Transgenic Bt Cotton and Its Influence on Soil Functional Bacteria. World J. Microbiol. Biotechnol. 2005, 21, 1279–1284. [Google Scholar] [CrossRef]
- Wei, X.-D.; Zou, H.-L.; Chu, L.-M.; Liao, B.; Ye, C.-M.; Lan, C.-Y. Field Released Transgenic Papaya Affects Microbial Communities and Enzyme Activities in Soil. Plant Soil 2006, 285, 347–358. [Google Scholar] [CrossRef]
- Fang, M.; Motavalli, P.P.; Kremer, R.J.; Nelson, K.A. Assessing Changes in Soil Microbial Communities and Carbon Mineralization in Bt and Non-Bt Corn Residue-Amended Soils. Appl. Soil Ecol. 2007, 37, 150–160. [Google Scholar] [CrossRef]
Soil Properties | Unit | 2016–2017 | 2017–2018 |
---|---|---|---|
Organic matter content | % | 0.59 | 0.56 |
Total nitrogen (N) | kg ha−1 | 22.12 | 22.23 |
Available phosphorus (P) | kg ha−1 | 18.02 | 18.08 |
Available potassium (K) | kg ha−1 | 245.15 | 249.15 |
pH | 8.17 | 8.19 | |
EC | dS m−1 | 4.96 | 5.00 |
Silt | % | 54.15 | 54.00 |
Sand | % | 25.75 | 26.10 |
Clay | % | 20.10 | 19.90 |
Crops Name | Genotype Name | Planting Time * | Seed Rate (kg ha−1) | Fertilizer NPK (kg ha−1) | R × R (cm) | P × P (cm) | Harvesting Time |
---|---|---|---|---|---|---|---|
Cotton | GH Mubarik and CIM-616 (Bt) CIM-620 and CIM-554 (non-Bt) | 08 and 10 May | 25 | 250-175-125 (Bt) 200-145-100 (non-Bt) | 75 | 20 | Last picking in October |
Wheat | Galaxy-2013 | 13 and 16 November | 125 | 130-100-62 | 25 | 21 and 23 April | |
Canola | Hyola-420 | 12 and 13 November | 5 | 90-60-50 | 30 | 4-5 | 6 and 10 April |
Egyptian clover | Anmol berseem | 9 and 11 November | 25 | 22-115-0 | Last cutting in April |
Treatments | 2016–2017 | 2017–2018 | ||||
---|---|---|---|---|---|---|
Wheat | Egyptian Clover | Canola | Wheat | Egyptian Clover | Canola | |
Available nitrogen (kg ha−1) | ||||||
CIM-616 (Bt1) | 0.17 ± 0.001 a–c | 0.15 ± 0.003 c–e | 0.14 ± 0.001 de | 0.18 ± 0.003 ab | 0.16 ± 0.005 b–d | 0.16 ± 0.001 b–d |
GH-Mubarik (Bt2) | 0.19 ± 0.003 a | 0.14 ± 0.002 de | 0.16 ± 0.001 b–d | 0.19 ± 0.002 a | 0.16 ± 0.004 b–d | 0.17 ± 0.003 a–c |
CIM-620 (NBt1) | 0.18 ± 0.002 ab | 0.15 ± 0.001 c–e | 0.14 ± 0.004 de | 0.18 ± 0.001 ab | 0.14 ± 0.003 cd | 0.14 ± 0.002 d |
N-414 (NBt2) | 0.16 ± 0.004 b–d | 0.15 ± 0.002 c–e | 0.13 ± 0.002 e | 0.18 ± 0.002 ab | 0.16 ± 0.002 b–d | 0.16 ± 0.002 b–d |
LSD (p ≤ 0.05) | 0.020 | 0.020 | ||||
Available phosphorous (kg ha−1) | ||||||
CIM-616 (Bt1) | 19.36 ± 0.02 a–e | 19.50 ± 0.03 a–c | 19.38 ± 0.02 a–e | 19.40 ± 0.01a–c | 19.59 ± 0.07 a | 19.28 ± 0.04 b–d |
GH-Mubarik (Bt2) | 19.20 ± 0.04 de | 19.52 ± 0.02 ab | 19.24 ± 0.05 de | 19.10 ± 0.02 de | 19.42 ± 0.04 ab | 19.14 ± 0.06 de |
CIM-620 (NBt1) | 19.28 ± 0.06 c–e | 19.58 ± 0.07 a | 19.30 ± 0.04 b–e | 19.18 ± 0.06 de | 19.48 ± 0.02 ab | 19.20 ± 0.05 c–e |
N-414 (NBt2) | 19.18 ± 0.04 e | 19.40 ± 0.03 a–d | 19.40 ± 0.03 a–d | 19.08 ± 0.05 e | 19.30 ± 0.03 a–d | 19.30 ± 0.04 a–d |
LSD (p ≤ 0.05) | 0.10 | 0.12 | ||||
Available potassium (kg ha−1) | ||||||
CIM-616 (Bt1) | 394 ± 6.1 b–d | 400 ± 4.3 ab | 394 ± 3.3 e | 402 ± 2.2 a–c | 404 ± 2.2 a–c | 406 ± 3.2 a–c |
GH-Mubarik (Bt2) | 388 ± 5.3 de | 396 ± 6.1 a–c | 394 ± 3.2 e | 408 ± 6.1 a | 402 ± 3.1 a–c | 404 ± 2.6 a–c |
CIM-620 (NBt1) | 390 ± 3.4 c–e | 398 ± 3.3 ab | 386 ± 8.3 de | 400 ± 3.4 bc | 402 ± 3.4 a–c | 402 ± 2.7 a–c |
N-414 (NBt2) | 392 ± 2.4 b–e | 402 ± 1.2 a | 390 ± 4.5 c–e | 400 ± 3.3 bc | 406 ± 4.3 ab | 400 ± 2.3 c |
LSD (p ≤ 0.05) | 7.58 | 6.30 | ||||
Available zinc (kg ha−1) | ||||||
CIM-616 (Bt1) | 1.46 ± 0.01 d | 1.60 ± 0.03 b | 1.44 ± 0.03 de | 1.56 ± 0.04 cd | 1.60 ± 0.02 bc | 1.48 ± 0.02 ef |
GH-Mubarik (Bt2) | 1.46 ± 0.02 d | 1.58 ± 0.02 bc | 1.40 ± 0.02 e | 1.50 ± 0.04 de | 1.62 ± 0.02 b | 1.42 ± 0.03 f |
CIM-620 (NBt1) | 1.58 ± 0.02 bc | 1.66 ± 0.01 a | 1.44 ± 0.04 c | 1.60 ± 0.03 bc | 1.68 ± 0.04 a | 1.56 ± 0.04 cd |
N-414 (NBt2) | 1.58 ± 0.01 bc | 1.68 ± 0.02 a | 1.56 ± 0.02 bc | 1.58 ± 0.02 bc | 1.68 ± 0.05 a | 1.58 ± 0.02 bc |
LSD (p ≤ 0.05) | 0.04 | 0.06 | ||||
Available iron (kg ha−1) | ||||||
CIM-616 (Bt1) | 7.62 ± 0.12 d–f | 7.42 ± 0.10 fg | 7.72 ± 0.09 c–e | 7.68 ± 0.11 de | 7.78 ± 0.13 c–e | 7.78 ± 0.10 c–e |
GH-Mubarik (Bt2) | 7.82 ± 0.14 b–e | 7.68 ± 0.11 de | 7.84 ± 0.11 b–d | 7.90 ± 0.12 bc | 8.04 ± 0.17 ab | 7.80 ± 0.14 c–e |
CIM-620 (NBt1) | 8.14 ± 0.19 a | 7.32 ± 0.09 g | 7.94 ± 0.11 a–c | 8.20 ± 0.16 a | 7.96 ± 0.11 bc | 7.80 ± 0.13 c–e |
N-414 (NBt2) | 8.04 ± 0.11 ab | 7.56 ± 0.14 ef | 7.60 ± 0.09 ef | 7.96 ± 0.10 bc | 7.84 ± 0.12 b–d | 7.62 ± 0.12 e |
LSD (p ≤ 0.05) | 0.24 | 0.20 | ||||
Soil organic matter (%) | ||||||
CIM-616 (Bt1) | 0.59 ± 0.02 a | 0.53 ± 0.04 c–e | 0.51 ± 0.02 de | 0.62 ± 0.01 ab | 0.62 ± 0.01 ab | 0.59 ± 0.01 cd |
GH-Mubarik (Bt2) | 0.58 ± 0.03 ab | 0.53 ± 0.04 c–e | 0.51 ± 0.02 de | 0.60 ± 0.02 bc | 0.63 ± 0.01 a | 0.60 ± 0.01 bc |
CIM-620 (NBt1) | 0.57 ± 0.04 a–c | 0.52 ± 0.03 de | 0.49 ± 0.01 ef | 0.59 ± 0.02 cd | 0.59 ± 0.01 cd | 0.57 ± 0.01 d |
N-414 (NBt2) | 0.58 ± 0.02 ab | 0.54 ± 0.04 b–d | 0.45 ± 0.02 f | 0.58 ± 0.01 cd | 0.58 ± 0.02 cd | 0.60 ± 0.01 bc |
LSD (p ≤ 0.05) | 0.04 | 0.03 |
Treatments | 2016–2017 | 2017–2018 | ||||
---|---|---|---|---|---|---|
Wheat | Egyptian Clover | Canola | Wheat | Egyptian Clover | Canola | |
Broadleaved weeds density (m−2) | ||||||
CIM-616 (Bt1) | 81.3 ± 3.1 b | 61.0 ± 3.1 f | 62.3 ± 2.8 f | 83.0 ± 3.4 cd | 66.7 ± 3.9 g | 65.0 ± 3.1 g |
GH-Mubarik (Bt2) | 68.7 ± 4.3 e | 60.3 ± 2.4 f | 64.0 ± 2.9 f | 74.3 ± 2.6 ef | 69.3 ± 5.2 fg | 72.7 ± 3.4 ef |
CIM-620 (NBt1) | 90.3 ± 3.4 a | 77.7 ± 2.8 bc | 75.3 ± 2.4 cd | 97.0 ± 6.3 a | 88.7 ± 2.8 b | 83.7 ± 5.1 bc |
N-414 (NBt2) | 76.0 ± 2.7 cd | 72.7 ± 3.3 de | 69.7 ± 1.4 e | 82.0 ± 4.7 cd | 81.0 ± 3.0 cd | 78.0 ± 3.1 de |
LSD (p ≤ 0.05) | 4.42 | 5.57 | ||||
Narrow-leaved weeds density (m−2) | ||||||
CIM-616 (Bt1) | 57.0 ± 2.2 a | 16.0 ± 3.6 e | 27.3 ± 2.1 c | 64.0 ± 4.6 a | 24.0 ± 3.4 e | 35.3 ± 4.4 c |
GH-Mubarik (Bt2) | 48.0 ± 3.3 b | 12.7 ± 3.4 ef | 20.3 ± 3.4d | 55.7 ± 3.3 b | 22.0 ±3.3 e | 28.0 ± 3.2 d |
CIM-620 (NBt1) | 56.0 ± 4.5 a | 11.7 ± 2.6 f | 24.3 ± 2.9 c | 66.3 ± 4.1 a | 21.7 ± 4.5 e | 34.3 ± 4.0 c |
N-414 (NBt2) | 46.7 ± 2.6 b | 20.0 ± 2.9 d | 14.3 ± 1.7 ef | 55.7 ± 4.8 b | 28.0 ± 3.7 d | 25.0 ± 4.2 de |
LSD (p ≤ 0.05) | 3.47 | 3.53 | ||||
Total weeds density (m−2) | ||||||
CIM-616 (Bt1) | 138 ± 6 b | 77.0 ± 8 h | 89.7 ± 3 f | 147 ± 10 b | 90.7 ± 5 h | 100 ± 5 g |
GH-Mubarik (Bt2) | 116 ± 5 d | 73.0 ± 11 i | 84.3 ± 2 g | 130 ± 11 d | 91.3 ± 6 h | 100 ± 6 g |
CIM-620 (NBt1) | 146 ± 10 a | 89.3 ± 4 f | 99.7 ± 8 e | 163 ± 19 a | 110 ± 8 f | 118 ± 11 e |
N-414 (NBt2) | 122 ± 4 c | 92.7 ± 5 f | 84.0 ± 4 g | 137 ± 6 c | 109 ± 7 f | 103 ± 5 g |
LSD (p ≤ 0.05) | 3.84 | 5.43 |
Treatments | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 |
---|---|---|---|---|---|---|
Monopodial Branches (Plant−1) | Sympodial Branches (Plant−1) | Boll Weight (g) | ||||
CIM-616 (Bt1) | 1.78 ± 0.2 | 1.78 ± 0.3 | 23.6 ± 0.9 b | 26.0 ± 1.1 a | 3.2 ± 0.1 a | 3.2 ± 0.04 a |
GH-Mubarik (Bt2) | 1.67 ± 0.3 | 1.67 ± 0.4 | 22.3 ± 0.8 b | 25.6 ± 1.2 a | 3.1 ± 0.1 ab | 3.1 ± 0.02 b |
CIM-620 (NBt1) | 1.89 ± 0.3 | 1.89 ± 0.2 | 25.0 ± 1.4 a | 23.0 ± 0.8 b | 3.0 ± 0.05 bc | 3.0 ± 0.08 b |
N-414 (NBt2) | 1.67 ± 0.4 | 1.67 ± 0.3 | 22.0 ± 1.1 bc | 24.0 ± 1.2 b | 2.9 ± 0.04 c | 2.9 ± 005 c |
LSD (p ≤ 0.05) | NS | NS | 1.49 | 1.29 | 0.15 | 0.07 |
Seed cotton yield (kg ha−1) | Harvest index (%) | |||||
CIM-616 (Bt1) | 2892 ± 141 a | 2832 ± 221 | 32.7 ± 2.12 | 32.4 ± 1.9 | ||
GH-Mubarik (Bt2) | 2685 ± 123 b | 2635 ± 213 | 29.5 ± 2.21 | 29.4 ± 3.1 | ||
CIM-620 (NBt1) | 2645 ± 129 b | 2563 ± 303 | 33.9 ± 2.39 | 31.2 ± 2.2 | ||
N-414 (NBt2) | 2613 ± 147 b | 2570 ± 309 | 32.3 ± 2.53 | 31.1 ± 2.6 | ||
LSD (p ≤ 0.05) | 150.14 | NS | NS | NS |
Treatments | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 |
---|---|---|---|---|---|---|
Productive Tillers (m−2) | Grains (Spike−1) | 1000-Grain Weight (g) | ||||
CIM-616 (Bt1) | 189 ± 15 ab | 191 ± 17 ab | 55.7 ± 1.9 b | 56.0 ± 2.0 b | 36.2 ± 1.8 c | 36.8 ± 1.4 c |
GH-Mubarik (Bt2) | 181 ± 11 b | 176 ± 14 b | 53.3 ± 1.7 b | 53.9 ± 1.8 c | 37.9 ± 1.7 bc | 37.9 ± 1.6 bc |
CIM-620 (NBt1) | 197 ± 10 a | 201 ± 14 a | 59.5 ± 1.2 a | 58.8 ± 1.4 a | 40.2 ± 1.5 a | 40.7 ± 1.3 a |
N-414 (NBt2) | 202 ± 12 a | 202 ± 16 a | 59.1 ± 1.4 a | 58.1 ± 1.6 a | 39.8 ± 1.6 ab | 39.6 ± 2.3 ab |
LSD (p ≤ 0.05) | 14.4 | 14.4 | 2.4 | 1.7 | 2.0 | 1.8 |
Grain yield (t ha−1) | Biological yield (t ha−1) | Harvest index (%) | ||||
CIM-616 (Bt1) | 5.82 ± 0.8 | 5.95 ± 0.2 b | 17.6 ± 0.5 bc | 15.7 ± 0.4 bc | 33.1 ± 1.2 | 37.8 ± 2.1 |
GH-Mubarik (Bt2) | 5.98 ± 0.7 | 5.92 ± 0.1 b | 17.1 ± 0.6 c | 15.3 ± 0.5 c | 34.9 ± 1.6 | 38.8 ± 2.2 |
CIM-620 (NBt1) | 6.30 ± 0.7 | 6.26 ± 0.2 a | 18.2 ± 0.6 ab | 16.4 ± 0.6 ab | 34.6 ± 1.8 | 38.2 ± 2.1 |
N-414 (NBt2) | 6.21 ± 0.8 | 6.31 ± 0.2 a | 18.7 ± 0.5 a | 16.9 ± 0.5 a | 33.2 ± 2.0 | 37.4 ± 2.4 |
LSD (p ≤ 0.05) | NS | 0.25 | 0.86 | 0.86 | NS | NS |
Treatments | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 |
---|---|---|---|---|---|---|
Siliques (Plant−1) | Seeds (Silique−1) | 1000-Seed Weight (g) | ||||
CIM-616 (Bt1) | 106 ± 22 | 105 ± 7 ab | 26.7 ± 2.3 | 26.9 ± 3.7 | 2.77 ± 0.3 | 2.73 ± 0.4 |
GH-Mubarik (Bt2) | 103 ± 12 | 102 ± 9 b | 24.0 ± 3.4 | 25.0 ± 4.0 | 2.90 ± 0.4 | 2.85 ± 0.3 |
CIM-620 (NBt1) | 109 ± 6 | 109 ± 7 ab | 25.2 ± 3.6 | 25.8 ± 3.1 | 2.87 ± 0.6 | 2.90 ± 0.2 |
N-414 (NBt2) | 112 ± 16 | 113 ± 8 a | 26.3 ± 4.1 | 27.0 ± 3.3 | 2.83 ± 0.5 | 2.93 ± 0.5 |
LSD (p ≤ 0.05) | NS | 8.4 | NS | NS | NS | NS |
Biological yield (kg ha−1) | Seed yield (kg ha−1) | Harvest index (%) | ||||
CIM-616 (Bt1) | 4800 ± 343 | 5271 ± 234 | 1650 ± 212 b | 1797 ± 158 | 34.4 ± 2.2 | 34.1 ± 3.4 |
GH-Mubarik (Bt2) | 5132 ± 412 | 5070 ± 267 | 1700 ± 223 b | 1833 ± 123 | 33.2 ± 3.1 | 36.2 ± 2.1 |
CIM-620 (NBt1) | 5233 ± 345 | 5345 ± 312 | 1950 ± 201 a | 1850 ± 112 | 37.4 ± 2.6 | 34.7 ± 3.3 |
N-414 (NBt2) | 4876 ± 321 | 5478 ± 434 | 1900 ± 198 a | 1900 ± 121 | 39.1 ± 2.8 | 34.7 ± 3.1 |
LSD (p ≤ 0.05) | NS | NS | 197.7 | NS | NS | NS |
Treatments | Fresh Forage Yield (t ha−1) | Dry forage Yield (t ha−1) | Crude Protein (%) | |||
---|---|---|---|---|---|---|
2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 | |
CIM-616 (Bt1) | 28.3 ± 1.21 b | 30.7 ± 1.98 b | 2.91±0.11 b | 3.62 ± 0.09 b | 21.0 ± 1.2 b | 20.6 ± 1.7 b |
GH-Mubarik (Bt2) | 28.2 ± 1.26 b | 32.0 ± 2.02 b | 2.97 ± 0.17 b | 3.72 ± 0.16 ab | 20.2 ± 1.6 b | 20.3 ± 2.4 b |
CIM-620 (NBt1) | 34.1 ± 2.34 a | 34.8 ± 1.12 a | 3.50 ± 0.21 a | 3.87 ± 0.11 a | 24.0 ± 2.1 a | 22.3 ± 1.6 ab |
N-414 (NBt2) | 32.3 ± 2.31 a | 33.2 ± 1.63 ab | 3.35 ± 0.18 a | 3.76 ± 0.12 ab | 23.7 ± 1.9 a | 23.6 ± 1.2 a |
LSD (p ≤ 0.05) | 1.96 | 2.63 | 0.18 | 0.17 | 2.44 | 2.52 |
Treatments | 2016–2017 | 2017–2018 | ||||||
---|---|---|---|---|---|---|---|---|
TE | GI | NI | BCR | TE | GI | NI | BCR | |
Bt1 × Wheat | 1563.59 | 2607.75 | 1044.16 | 1.67 | 1563.59 | 2531.58 | 967.99 | 1.62 |
Bt2 × Wheat | 1563.59 | 2516.55 | 952.96 | 1.61 | 1563.59 | 2423.59 | 860.00 | 1.55 |
NBt1 × Wheat | 1629.85 | 2572.23 | 942.38 | 1.58 | 1629.85 | 2466.93 | 837.09 | 1.51 |
NBt2 × Wheat | 1629.85 | 2564.07 | 934.22 | 1.57 | 1629.85 | 2491.97 | 862.12 | 1.53 |
Bt1 × Canola | 1500.76 | 1979.11 | 478.35 | 1.32 | 1500.76 | 2009.13 | 508.37 | 1.34 |
Bt2 × Canola | 1500.76 | 1910.59 | 409.83 | 1.27 | 1500.76 | 1923.63 | 422.87 | 1.28 |
NBt1 × Canola | 1567.02 | 1966.87 | 399.85 | 1.26 | 1567.02 | 1904.60 | 337.59 | 1.22 |
NBt2 × Canola | 1567.02 | 1925.86 | 358.85 | 1.23 | 1567.02 | 1926.66 | 359.65 | 1.23 |
Bt1 × Egyptian clover | 1621.02 | 1989.23 | 368.21 | 1.23 | 1621.02 | 2016.24 | 395.22 | 1.24 |
Bt2 × Egyptian clover | 1621.02 | 1893.59 | 272.57 | 1.17 | 1621.02 | 1957.23 | 336.21 | 1.21 |
NBt1 × Egyptian clover | 1687.28 | 2010.18 | 322.90 | 1.19 | 1687.28 | 1987.73 | 300.45 | 1.18 |
NBt2 × Egyptian clover | 1687.28 | 1953.95 | 266.68 | 1.16 | 1687.28 | 1954.70 | 267.42 | 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marral, M.W.R.; Ahmad, F.; Ul-Allah, S.; Atique-ur-Rehman; Farooq, S.; Hussain, M. Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan. Agriculture 2023, 13, 276. https://doi.org/10.3390/agriculture13020276
Marral MWR, Ahmad F, Ul-Allah S, Atique-ur-Rehman, Farooq S, Hussain M. Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan. Agriculture. 2023; 13(2):276. https://doi.org/10.3390/agriculture13020276
Chicago/Turabian StyleMarral, Muhammad Waseem Riaz, Fiaz Ahmad, Sami Ul-Allah, Atique-ur-Rehman, Shahid Farooq, and Mubshar Hussain. 2023. "Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan" Agriculture 13, no. 2: 276. https://doi.org/10.3390/agriculture13020276
APA StyleMarral, M. W. R., Ahmad, F., Ul-Allah, S., Atique-ur-Rehman, Farooq, S., & Hussain, M. (2023). Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan. Agriculture, 13(2), 276. https://doi.org/10.3390/agriculture13020276