Prospects of Codling Moth Management on Apples with Botanical Antifeedants and Repellents
Abstract
:1. Codling Moth Biology and Management
2. Bioassays Used in Experiments with Botanical Antifeedants and Repellents and Codling Moth Neonates
3. Tested Plants and Their Effects on Codling Moth Behavior
4. Prospects of Codling Moth Control with Botanicals: An Opinion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, D.; Chen, S.; Hao, M.; Fu, J.; Ding, F. Mapping the potential global codling moth (Cydia pomonella L.) distribution based on a machine learning method. Sci. Rep. 2018, 8, 13093. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, S.P.; Lacey, L.A.; Fritts, R., Jr. Optimizing use of codling moth granulovirus: Effects of application rate and spraying frequency on control of codling moth larvae in Pacific Northwest apple orchards. J. Econ. Entomol. 2005, 98, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M. Jabucni Smotavac, Biologija Kao Osnova za Njegovo Suzbitanje; Universitet u Beogradu: Beograd, Yugoslavia, 1957; pp. 39–46. [Google Scholar]
- Anonymous. Global Apple Market Reached $78B; Set to Continue Moderate Growth. Fruit Grower News. 2020. Available online: https://fruitgrowersnews.com/news/global-apple-market-reached-78m-set-to-continue-moderate-growth/ (accessed on 23 November 2022).
- Jackson, D.M. Codling moth egg distribution on unmanaged apple trees. Ann. Entomol. Soc. Am. 1979, 72, 361–368. [Google Scholar] [CrossRef]
- Anonymous. EPA’s Web Archive. Azinphos-Methyl Phase-Out. 2012. Available online: https://archive.epa.gov/pesticides/reregistration/web/html/phaseout_fs.html (accessed on 23 November 2022).
- Li, D. Toxic Spring: The Capriciousness of Cost-Benefit Analysis Under FIFRA’s Pesticide Registration Process and Its Effect on Farmworkers. Calif. Law Rev. 2015, 103, 1405–1447. [Google Scholar]
- Güngördü, A.; Uçkun, M. Comparative assessment of in vitro and in vivo toxicity of azinphos methyl and its commercial formulation. Environ. Toxicol. 2015, 30, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Wolfgang, S. 1988 Apple Orchard Summary; Rodale Research Center: Emmaus, PA, USA, 1989; pp. 30–31. [Google Scholar]
- Poullot, D.; Beslay, D.; Bouvier, J.C.; Sauphanor, B. Is attract- and kill technology potent against insecticide-resistant Lepidoptera? Pest Manag. Sci. 2001, 57, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Mazid, S.; Kalita, J.C.; Rajkhowa, R.C. A review on the use of biopesticides in insect pest management. Int. J. Sci. Adv. Technol. 2011, 1, 169–178. [Google Scholar]
- Seiber, J.N.; Coats, J.; Duke, S.O.; Gross, A.D. Biopesticides: State of the art and future opportunities. J. Agr. Food Chem. 2014, 62, 11613–11619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavela, R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects–a review. Plant Prot. Sci. 2016, 52, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides in the twenty-first century—Fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Suomi, D.; Brown, J.J.; Akre, R.D. Responses to plant extracts of neonatal codling moth larvae Cydia pomonella (L.) (Lepidoptera: Tortricidae: Olethreutinae). J. Entomol. Soc. Br. Columb. 1986, 83, 12–18. [Google Scholar]
- Landolt, P.J.; Hofstetter, R.W.; Biddick, L.L. Plant essential oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera: Tortricidae). Environ. Entomol. 1999, 28, 954–960. [Google Scholar] [CrossRef]
- Kovanci, O.B. Feeding and oviposition deterrent activities of microencapsulated cardamom oleoresin and eucalyptol against Cydia pomonella. Chil. J. Agr. Res. 2016, 76, 62–70. [Google Scholar] [CrossRef]
- Pszczolkowski, M.A.; Brown, J.J. Single experience learning of host fruit selection by lepidopteran larvae. Physiol. Behav. 2005, 86, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Durden, K.; Brown, J.J.; Pszczolkowski, M.A. Extracts of Ginkgo biloba or Artemisia species reduce feeding by neonates of codling moth, Cydia pomonella (Lepidoptera: Tortricidae), on apple in a laboratory bioassay. J. Entomol. Soc. Br. Columb. 2008, 105, 83–88. [Google Scholar]
- Durden, K.; Sellars, S.; Pszczolkowski, M.A. Preventing fruit infestation by codling moth neonates with Artemisia extracts. Pestycydy 2009, 1–4, 51–56. [Google Scholar]
- Durden, K.; Sellars, S.; Cowell, B.; Brown, J.J.; Pszczolkowski, M.A. Artemisia annua extracts, artemisinin and 1, 8-cineole, prevent fruit infestation by a major, cosmopolitan pest of apples. Pharm. Biol. 2011, 49, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Creed, C.; Mollhagen, A.; Mollhagen, N.; Pszczolkowski, M.A. Artemisia arborescens “Powis Castle” extracts and α-thujone prevent fruit infestation by codling moth neonates. Pharm. Biol. 2015, 53, 1458–1464. [Google Scholar] [CrossRef]
- Pszczolkowski, M.A.; Durden, K.; Sellars, S.; Cowell, B.; Brown, J.J. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydia pomonella) in apples. J. Agr. Food Chem. 2011, 59, 10879–10886. [Google Scholar] [CrossRef]
- Jackson, M.D. Searching behavior and survival of 1st-instar codling moths. Ann. Entomol. Soc. Am. 1982, 75, 284–289. [Google Scholar] [CrossRef]
- Asogwa, E.U.; Ndubuaku, T.C.N.; Ugwu, J.A.; Awe, O.O. Prospects of botanical pesticides from neem, Azadirachta indica for routine protection of cocoa farms against the brown cocoa mirid Sahlbergella singularis in Nigeria. J. Med. Plants Res. 2010, 4, 1–6. [Google Scholar]
- George, D.R.; Sparagano, O.A.E.; Port, G.; Okello, E.; Shiel, R.S.; Guy, J.H. Toxicity of plant essential oils to different life stages of the poultry red mite, Dermanyssus gallinae, and non-target invertebrates. Med. Vet. Entomol. 2010, 24, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Issakul, K.; Jatisatienr, A.; Pawelzik, E.; Jatisatienr, C. Potential of Mammea siamensis as a botanical insecticide: Its efficiency on diamondback moth and side effects on non-target organisms. J. Med. Plants Res. 2011, 5, 2149–2156. [Google Scholar]
- Pavela, R. Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J. Asia-Pac. Entomol. 2014, 17, 287–293. [Google Scholar] [CrossRef]
- Tembo, Y.; Mkindi, A.G.; Mkenda, P.A.; Mpumi, N.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.A.; Belmain, S.R. Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Front. Plant Sci. 2018, 9, 1425. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. (2013): Stability of essential oils: A review. Compr. Rev. in Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Fernandez-Perez, M.; Flores-Cespedes, F.; Daza-Fernandez, I.; Vidal-Pena, F.; Villafranca-Sanchez, M. Lignin and lignosulfonate-based formulations to protect pyrethrins against photodegradation and volatilization. Ind. Eng. Chem. Res. 2014, 53, 13557–13564. [Google Scholar] [CrossRef]
- Flores-Cespedes, F.; Martinez-Dominguez, G.P.; Villafranca-Sanchez, M.; Fernandez-Perez, M. Preparation and characterization of Azadirachtin alginate-biosorbent based formulations: Water release kinetics and photodegradation study. J. Agr. Food Chem. 2015, 63, 8391–8398. [Google Scholar] [CrossRef]
- Amoabeng, B.W.; Gurr, G.M.; Gitau, C.W.; Nicol, H.I.; Munyakazi, L.; Stevenson, P.C. Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS ONE 2013, 8, e78651. [Google Scholar] [CrossRef]
- Mikenda, P.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.; Mtei, K.; Belmain, S.R. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 2015, 10, e0143530. [Google Scholar] [CrossRef]
- Hama-salih, F.M.; Raoof, A.M.; Rashed, R.J.; Hamid, J.S.; Qdir, A.F. Effect of foliar spray with thyme extract on codling moth (Cydia pomonella) control and some fruit quality of pear (Pyrus communis L.) Al-zafaraniyah selectee. J. Zankoy Sulaimani Part A 2014, 16, 125–129. [Google Scholar] [CrossRef]
- Khan, S.; Rehma, F.; Ali, M.; Shahzaman, M.M.; Maqbool, M.; Sheikh, U.A.A. Efficacy of Different Insecticides Against Cydia pomonella Infestation from Apple Orchards in Gilgit-Baltistan, Pakistan. Plant Prot. 2020, 4, 125–130. [Google Scholar] [CrossRef]
- Czynczyk, A.; Bielicki, P.; Mika, A.; Krawiec, A. A nine-year evaluation of several scab-resistant apple cultivars for organic fruit production. J. Fruit Ornam. Plant Res. 2011, 19, 87–97. [Google Scholar]
- Badowska-Czubik, T.; Rozpara, E.; Danelski, W.; Kowalska, J. Preparaty NeemAzal-T/S i Madex SC w zwalczaniu owocówki jabłkóweczki Laspeyresia pomonella. J. Res. Appl. Agr. Eng. 2011, 56, 20–22. [Google Scholar]
- Avilla, J.; Teixidò, A.; Velázquez, C.; Alvarenga, N.; Ferro, E.; Canela, R. Insecticidal activity of Maytenus species (Celastraceae) nortriterpene quinone methides against codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). J. Agr. Food Chem. 2000, 48, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef]
- Ikram, N.K.; Simonsen, H.T. A review of biotechnological artemisinin production in plants. Front. Plant Sci. 2017, 8, 1966. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Tech. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Chung, S.K.; Seo, J.Y.; Lim, J.H.; Park, H.H.; Yea, M.J.; Park, H.J. Microencapsulation of essential oil for insect repellent in food packaging system. J. Food Sci. 2013, 78, 709–714. [Google Scholar] [CrossRef]
- Benelli, G. Research in mosquito control: Current challenges for a brighter future. Parasitol. Res. 2015, 114, 2801–2805. [Google Scholar] [CrossRef]
- Mullin, C.; Chyb, S.; Eichenseer, H.; Hollister, B.; Frazier, J.L. Neuroreceptor mechanisms in insect gustation: A pharmacological approach. J. Insect Physiol. 1994, 40, 913–931. [Google Scholar] [CrossRef]
- González-Coloma, A.; Valencia, F.; Martín, N.; Hoffmann, J.J.; Hutter, L.; Marco, J.A.; Reina, M. Silphinene sesquiterpenes as model insect antifeedants. J. Chem. Ecol. 2002, 28, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Storer, N.; Porter, A.; Slater, R.; Nauen, R. Insecticide resistance management and industry: The origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Manag. Sci. 2021, 77, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- Pszczolkowski, M.A. Attraction of codling moth neonates to fruit presented on colored surfaces. J. Kansas Entomol. Soc. 2013, 86, 89–92. [Google Scholar] [CrossRef]
Scientific Name | Family | Common Name | Reference |
---|---|---|---|
Alium sativum L. | Liliaceae | Garlic | [15,16] |
Artemisia absinthium L. | Asteraceae | Absinthe wormwood | [15,19,20] |
Artemisia annua L. | Asteraceae | Sweet wormwood | [21] |
Artemisia arborescens L. | Asteraceae | Tree wormwood | [22] |
Artemisia arborescens x absinthium Hancock | Asteraceae | Powis Castle wormwood | [19,20] |
Artemisia ludoviciana Nutt. | Asteraceae | Silver wormwood | [19] |
Citrus limon Osbeck | Rutaceae | Lemon | [16] |
Elettaria cardamomum L. Ericameria nauseosa G.L. Nesom & G.I. Baird | Zingiberaceae Asteraceae | Cardamom Rabbitbrush | [17] [15] |
Eucalyptus globulus Labille | Myrtaceae | Eucalyptus | [16] |
Geranium viscosissimum Fisch. & C.A. Mey | Geraniaceae | Geranium | [15] |
Ginkgo biloba L. | Ginkgoaceae | Ginkgo | [19,24] |
Madia glomerata Hook | Asteraceae | Tarweed | [15] |
Lavandula angustifolia L. Pinus monticola Douglas | Lamiaceae Pinaceae | Lavender Western white pine | [16] [15] |
Pogostemon cablin Blanco | Lamiaceae | Patchouli | [16] |
Ruta graveolens L. Solanum dulcamara L. | Rutaceae Solanaceae | Rue Bittersweet | [16] [15] |
Tagetes glandulifera Schrank | Asteraceae | Tagetes | [16] |
Tanacetum vulgare L. Tropaoleum majus L. Veratrum californicum Durand | Asteraceae Cruciferae Liliaceae | Tansy Nasturtium False Hellebore | [15,16] [15] [15] |
Zingiber officinale Roscoe | Zingiberaceae | Ginger | [16] |
Plant Species | Antifeedant/Repellent Effects |
---|---|
Garlic | strong |
Absinthe wormwood | strong |
Tansy | strong |
False hellebore | strong |
Rabbitbrush | medium |
Tarweed | medium |
Western white pine | medium |
Bittersweet | medium |
Nasturtium | medium |
Geranium | medium |
Plant Species | Concentrations Tested (mg/mL) | Repellent Effects |
---|---|---|
Garlic | 0.1–100 | strong |
Tansy | 0.1–100 | strong |
Ginger | 10 | strong |
Patchouli | 0.1–100 | strong |
Rue | 0.1–100 | strong |
Eucalyptus | 10 | medium |
Lavender | 10 | weak |
Tagetes | 10 | weak |
Lemon | 10 | weak |
Plant Species | Concentrations Tested (mg/mL) | Antifeedant or Repellent Effects |
---|---|---|
Cardamom | 50–100 | weak |
Plant Species | Concentrations Tested (mg/mL) | Antifeedant or Repellent Effects | Reference |
---|---|---|---|
Ginkgo | 0.03–45 | strong | [19,24] |
Sweet wormwood | 0.1−10 | strong | [21] |
Tree wormwood | 0.1−10 | strong | [22] |
Silver wormwood | 10 | strong | [19] |
Powis Castle wormwood | 10 | strong | [19] |
Absinthe wormwood | 0.3–10 | medium | [19,20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pszczolkowski, M.A. Prospects of Codling Moth Management on Apples with Botanical Antifeedants and Repellents. Agriculture 2023, 13, 311. https://doi.org/10.3390/agriculture13020311
Pszczolkowski MA. Prospects of Codling Moth Management on Apples with Botanical Antifeedants and Repellents. Agriculture. 2023; 13(2):311. https://doi.org/10.3390/agriculture13020311
Chicago/Turabian StylePszczolkowski, Maciej A. 2023. "Prospects of Codling Moth Management on Apples with Botanical Antifeedants and Repellents" Agriculture 13, no. 2: 311. https://doi.org/10.3390/agriculture13020311
APA StylePszczolkowski, M. A. (2023). Prospects of Codling Moth Management on Apples with Botanical Antifeedants and Repellents. Agriculture, 13(2), 311. https://doi.org/10.3390/agriculture13020311