Study on the Measurement and Influencing Factors of Rural Energy Carbon Emission Efficiency in China: Evidence Using the Provincial Panel Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Measurement of Carbon Emissions from Rural Energy
2.1.2. Measurement Method of Rural Energy Carbon Emission Efficiency and the Selection of Input–Output Indicators
2.1.3. Estimation Procedure and Variable Description
2.2. Data Sources
3. Research Results and Discussion
3.1. Spatial–Temporal Comparison of Rural Energy Carbon Emission Efficiency in China
3.1.1. The Overall Characteristics of China’s Rural Energy Carbon Emission Efficiency
3.1.2. Interprovincial Differences in Rural Energy Carbon Emission Efficiency in China
3.2. Analysis of Factors Influencing Rural Energy Carbon Emission Efficiency in China
4. Discussion
5. Conclusions
5.1. Main Research Findings
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- West, T.O.; Marland, G. A Synthesis of Carbon Sequestration, Carbon Emissions, and Net carbon Flux in Agriculture: Comparing Tillage Practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L. Agricultural Opportunities to Mitigate Greenhouse Gas Emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Wang, J. Modelling Carbon Dioxide Emissions from Agricultural Soils in Canada. Environ. Pollut. 2017, 230, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.M.; Li, Y.E.; Tao, X.P.; Peng, X.P.; Li, N. China Greenhouse Gas Emissions from Agricultural Activities and its Mitigation Strategy. Trans. Chin. Soc. Agric. Eng. 2008, 10, 269–273. [Google Scholar]
- Li, J.J. Research on Characteristics and Driving Factors of Agricultural Land Carbon Emission in Provinces of Minorities in China. China Popul. Resour. Environ. 2012, 22, 42–47. [Google Scholar]
- Lu, X.H.; Kuang, B.; Li, J.; Han, J.; Zhang, Z. Dynamic Evolution of Regional Discrepancies in Carbon Emissions from Agricultural Land Utilization: Evidence from Chinese Provincial Data. Sustainability 2018, 10, 552. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, B.X.; Weyers, S.L. Decoupling of Carbon Emissions from Agricultural Land Utilization from Economic Growth in China. Agric. Econ.–Czech 2020, 66, 510–518. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.B.; Li, B. Study on the Spatial-temporal Characteristics and Factor Decomposition of Agricultural Carbon Emissions Based on the Input Perspective: Taking Hubei Province as an Example. Res. Agric. Mod. 2011, 32, 752–755. [Google Scholar]
- Kong, L.; Zhu, L.Z. Study on the Carbon Emission Advantage of Potato Production: An Empirical Analysis Based on Agricultural Inputs and LMDI Model. J. Agrotech. Econ. 2016, 7, 111–121. [Google Scholar]
- Shao, G.L.; Kong, H.Z.; Yu, J.K.; Li, C. Study on the Decomposition of Carbon Emission Drivers of Marine Fisheries in China Based on LMDI Method. J. Agrotech. Econ. 2015, 6, 119–128. [Google Scholar]
- Zeng, B. Spatial Pattern and Influencing Factors of Carbon Emission Efficiency of Fishery Economy in the Yangtze River Economic Belt. Contemp. Econ. Manag. 2019, 41, 44–48. [Google Scholar]
- Min, J.S.; Hu, H. Calculation of Greenhouse Gases Emission from Agricultural Production in China. China Popul. Resour. Environ. 2012, 22, 21–27. [Google Scholar]
- Tian, Y.; Zhang, J.B.; He, Y.Y. Research on Spatial-temporal Driving Factor of Agricultural Carbon Emissions in China. J. Integr. Agric. 2014, 6, 1393–1403. [Google Scholar] [CrossRef]
- Huang, X.Q.; Xu, X.C.; Wang, Q.Q.; Zhang, L.; Gao, X.; Chen, L.H. Assessment of Agricultural Carbon Emissions and Their Spatio-temporal Changes in China, 1997–2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef]
- Jin, S.Q.; Lin, Y.; Niu, K.Y. Driving Green Transformation of Agriculture with Low Carbon: Characteristics of Agricultural Carbon Emissions and Its Emission Reduction Path in China. Reform 2021, 5, 29–37. [Google Scholar]
- Han, H.B.; Zhong, Z.Q.; Guo, Y.; Xi, F.; Liu, S.L. Coupling and Decoupling Effects of Agricultural Carbon Emissions in China and Their Driving Factors. Environ. Sci. Pollut. Res. Int. 2018, 25, 25280–25293. [Google Scholar] [CrossRef]
- Wu, X.R.; Zhang, J.B.; You, L.Z. Marginal Abatement Cost of Agricultural Carbon Emissions in China: 1993–2015. China Agric. Econ. Rev. 2018, 10, 558–571. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Liu, Y.; Tian, M.M.; Ding, M.L.; Cao, L.H.; Zhang, Z.P.; Chuai, X.W.; Xiao, L.G.; Yao, L.G. Impacts of Water and Land Resources Exploitation on Agricultural Carbon Emissions: The Water-land-energy-carbon Nexus. Land Use Policy 2018, 72, 480–492. [Google Scholar] [CrossRef]
- Ali, B.; Ullah, A.; Klan, D. Does the Prevailing Indian Agricultural Ecosystem Cause Carbon Dioxide Emission? A Consent Towards Risk Reduction. Environ. Sci. Pollut. Res. 2021, 28, 4691–4703. [Google Scholar] [CrossRef]
- Li, G.Z.; Li, Z. An Empirical Study on the Decomposition of Carbon Emission Factors of Agricultural Energy Consumption in China Based on LMDI Model. J. Agrotech. Econ. 2010, 10, 66–71. [Google Scholar]
- Han, Y.F.; Zhang, L. A Study on Decomposition of Factors of Agricultural Carbon Emission Changes in China: LMDI Decomposition Method Based on Energy Consumption and Trade Perspective. Contemp. Econ. Res. 2013, 4, 47–52. [Google Scholar]
- Hu, J.B.; Wang, Q.S. A Study of Regional Differences in Carbon Emissions from Agricultural Energy Consumption in China Based on the Thayer Index. Guizhou Soc. Sci. 2019, 7, 108–117. [Google Scholar]
- Wei, W.; Wen, C.C.; Cui, Q.; Xie, W. The Impacts of Technological Advance on Agricultural Energy Use and Carbon Emission: An Analysis Based on GTAP-E Model. J. Agrotech. Econ. 2018, 2, 30–40. [Google Scholar]
- Tian, Y.; Yin, M.H. Does Technological Progress Promote Carbon Reduction in Agricultural Energy? A Test Based on Rebound Effect and Spatial Spillover Effect. Reform 2021, 12, 45–58. [Google Scholar]
- Wei, Y.M.; Liu, L.C.; Fan, Y.; Wu, G. The Impact of Lifestyle on Energy Use and Emission: An Empirical Analysis of China’s Residents. Energy Policy 2005, 1, 247–257. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.L. Carbon Emission Assessment of Renewable Energy Domestic Consumption of Rural Residents in China. China Popul. Resour. Environ. 2011, 21, 88–92. [Google Scholar]
- Wang, C.B.; Zhang, L.X.; Li, G.S. Accounting for Carbon Emissions from Rural Energy Consumption in China. Trans. Chin. Soc. Agric. Eng. 2011, 27, 6–11. [Google Scholar]
- Liu, W.L.; Wang, C.; Mol, A.P.J. Rural Residential CO2 Emissions in China: Where is the Major Mitigation Potential? Energy Policy 2012, 51, 223–232. [Google Scholar] [CrossRef]
- Wan, W.Y.; Zhao, X.Y.; Wang, W.J.; Xue, B. Spatial-temporal Characteristics Analysis of Carbon Emissions from Domestic Energy of Rural Residents in China. Acta Ecol. Sin. 2017, 37, 6390–6401. [Google Scholar]
- Liu, L.N.; Qu, J.S.; Zeng, J.J.; Li, Y.; Qiu, J.L.; Wang, L. Application of Grey Correlation Analysis in the Analysis of Factors Influencing Carbon Emissions of Rural Households in China. Ecol. Environ. Sci. 2013, 22, 498–505. [Google Scholar]
- Zhang, H.S.; Li, S.P.; Peng, M. Identification of Regional Unevenness and Dynamics of Drivers of Carbon Emissions from Rural Energy Consumption in China. China Rural. Econ. 2022, 1, 112–134. [Google Scholar]
- Pan, J.H. Time Course and Strategic Path of Carbon Neutrality in China. Financ. Minds 2021, 6, 42–66+141. [Google Scholar]
- Jiang, J.H. Analysis of Residential Carbon Emission Intensity and Reflection on Energy Use Policies in Chinese Cities and Towns. Quant. Econ. Tech. Econ. Res. 2015, 32, 90–104. [Google Scholar]
- Tian, Y.; Yin, M.H. Re-measurement of Agricultural Carbon Emissions in China: Basic Status, Dynamic Evolution and Spatial Spillover Effects. China Rural. Econ. 2022, 3, 104–127. [Google Scholar]
- Färe, R.; Grosskopf, S. Directional Distance Functions and Slacks-based Measures of Efficiency. Eur. J. Oper. Res. 2010, 200, 320–322. [Google Scholar] [CrossRef]
- Qian, L.; Xiao, R.Q.; Chen, Z.W. A Study on Inter-provincial Agricultural Production Efficiency and Its Influencing Factors in China under Carbon Emission Constraints. Econ. Theory Bus. Manag. 2013, 9, 100–112. [Google Scholar]
- Tian, Y.; Zhang, J.B.; Chen, C.B. Study on The Spatial Heterogeneity and Influence Mechanism of Low-carbon Agriculture Development in China. J. China Univ. Geosci. Soc. Sci. Ed. 2016, 16, 33–44+156. [Google Scholar]
- Chen, X.H.; Wang, H.J. Research on Agricultural Production Efficiency in Guangdong Province Based on the Perspective of Eco-efficiency Evaluation. J. Agrotech. Econ. 2016, 4, 94–104. [Google Scholar]
- Li, G.C.; Fan, L.X.; Feng, Z.C. Capital Accumulation, Institutional Change and Agricultural Growth: An Empirical Estimation of Agricultural Growth and Capital Stock in China from 1978 to 2011. J. Manag. World 2014, 5, 67–79. [Google Scholar]
- Fukyama, H.; Weber, W. A Directional Slacks-based Measure of Technical Inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Chung, Y.H.; Fare, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Lovell, C.A.K. Production Frontiers; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Cheng, L.L.; Zhang, J.B.; He, K. Study on the Impact of Multi-dimensional Urbanization on Agricultural Carbon Productivity and Its Regional Differentiation: An Empirical Study Based on SFA, Entropy Index and SDM. J. Cent. South Univ. Soc. Sci. 2018, 20, 107–116. [Google Scholar]
- Wu, G.Y.; Sun, X.J.; Yu, F.B.; Yang, L.S. Spatial Correlation Pattern and Influencing Factors of China’s Crop Production Carbon Productivity. China Popul. Resour. Environ. 2020, 31, 46–57. [Google Scholar]
- Huang, W.H.; Qi, C.J.; Huang, Y.Z.; Nie, F. Does Financial Support for Agriculture Improve Agricultural Carbon Productivity?—Analysis on the Mediating Effects of Planting Structure and Mechanization Level. Resour. Environ. Yangtze Basin 2022, 31, 2318–2332. [Google Scholar]
- Luo, Y.M.; Fan, L.M. The Spatial characteristics of rural infrastructure income enhancement in China: An Empirical study based on spatial correlation and spatial Heterogeneity. Manag. World 2012, 5, 71–87. [Google Scholar]
- Guo, X.M.; Zhang, Z.Y.; Kang, J.J. Research on Influencing Factors of energy efficiency in Chinese agricultural mechanization process. Soft Sci. 2012, 26, 51–56. [Google Scholar]
- Xu, X.B.; Li, C.; Guo, J.B.; Zhang, L.X. Land transfer scale, land management scale and carbon emissions from crop cultivation in whole life cycle: Evidence from rural development Survey in China. China Rural. Econ. 2022, 11, 40–58. [Google Scholar]
- Liu, M.H.; Xiao, G.A.; Zhong, T.L. Research on food sustainability under ecological constraints. Theory Pract. Financ. Econ. 2022, 43, 108–115. [Google Scholar]
- Yang, H.L.; Xiang, N.; Luo, Y.Y. Can digitalization of agricultural products circulation improve the living standards of rural residents: Empirical evidence from provincial panel data and Spatial Dubin Model. Macroecon. Res. 2022, 10, 88–102. [Google Scholar]
- Yao, C.S.; Xiao, Y.W.; Yang, Y.D. The Integrated Impacts of Rural Labor Transfer and Agricultural Mechanization on China’s Grain Production. Res. Agric. Mod. 2022, 43, 306–317. [Google Scholar]
- Zhu, Y.L.; Zhang, B.; Ma, Y.F. The Influence of Rural Labor Mobility on Household Consumption Structure. Consum. Econ. 2022, 38, 52–63. [Google Scholar]
- Hu, H.; Yang, Y.B. Research on farmers’ fertilizer application from the perspective of factor substitution: Based on farmers’ data from fixed observation points in rural China. Agrotech. Econ. 2015, 3, 84–91. [Google Scholar]
- Dong, M.; Xu, Z.Y. Analysis of Rural Household energy consumption structure and its Influencing factors: A case study of 1303 rural households in Shaanxi Province. J. Agric. For. Econ. Manag. 2018, 17, 45–53. [Google Scholar]
Variable | Unit | Sample | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|---|
Rural energy carbon emission efficiency | — | 450 | 1.054 | 0.114 | 0.694 | 2.157 |
Agricultural development level | 103 RMB/person | 450 | 1.338 | 0.680 | 0.255 | 5.678 |
Agricultural financial support | — | 450 | 0.107 | 0.035 | 0.014 | 0.190 |
Cultivated land use structure | — | 450 | 0.653 | 0.136 | 0.328 | 0.971 |
Rural human capital level | Year | 450 | 7.612 | 0.646 | 5.477 | 9.741 |
Structure of rural labor force | — | 450 | 0.644 | 0.231 | 0.120 | 1.002 |
Consumption of rural residents | 103 RMB/person | 450 | 0.351 | 0.154 | 0.158 | 1.068 |
Urbanization level | % | 450 | 0.553 | 0.136 | 0.275 | 0.896 |
Year | MI | EC | TC | MATC | BTC | |||||
---|---|---|---|---|---|---|---|---|---|---|
Interannual Value | Accumulation Value | Interannual Value | Accumulation Value | Interannual Value | Accumulation Value | Interannual Value | Accumulation Value | Interannual Value | Accumulation Value | |
2005 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
2006 | 1.022 | 1.022 | 1.011 | 1.011 | 1.011 | 1.011 | 1.014 | 1.014 | 0.998 | 0.998 |
2007 | 1.005 | 1.027 | 1.004 | 1.015 | 1.000 | 1.012 | 0.994 | 1.008 | 1.006 | 1.004 |
2008 | 1.036 | 1.064 | 1.019 | 1.034 | 1.017 | 1.028 | 1.008 | 1.015 | 1.009 | 1.013 |
2009 | 1.031 | 1.097 | 1.006 | 1.041 | 1.025 | 1.054 | 1.018 | 1.034 | 1.007 | 1.020 |
2010 | 1.025 | 1.124 | 0.979 | 1.019 | 1.047 | 1.104 | 1.041 | 1.076 | 1.005 | 1.025 |
2011 | 1.022 | 1.149 | 1.057 | 1.077 | 0.967 | 1.067 | 0.961 | 1.034 | 1.007 | 1.032 |
2012 | 1.051 | 1.207 | 0.999 | 1.076 | 1.052 | 1.122 | 1.049 | 1.085 | 1.002 | 1.035 |
2013 | 1.056 | 1.275 | 0.993 | 1.068 | 1.064 | 1.194 | 1.063 | 1.152 | 1.002 | 1.036 |
2014 | 1.048 | 1.336 | 1.030 | 1.099 | 1.018 | 1.216 | 1.016 | 1.170 | 1.002 | 1.039 |
2015 | 1.053 | 1.407 | 1.027 | 1.129 | 1.025 | 1.246 | 1.023 | 1.197 | 1.002 | 1.041 |
2016 | 1.074 | 1.511 | 0.984 | 1.111 | 1.091 | 1.360 | 1.089 | 1.304 | 1.002 | 1.043 |
2017 | 1.074 | 1.623 | 1.011 | 1.124 | 1.062 | 1.444 | 1.057 | 1.378 | 1.005 | 1.048 |
2018 | 1.070 | 1.737 | 0.884 | 0.994 | 1.210 | 1.747 | 1.201 | 1.654 | 1.008 | 1.056 |
2019 | 1.059 | 1.840 | 1.049 | 1.042 | 1.010 | 1.765 | 1.005 | 1.663 | 1.005 | 1.062 |
2020 | 1.102 | 2.028 | 0.982 | 1.023 | 1.123 | 1.982 | 1.127 | 1.873 | 0.997 | 1.058 |
Mean Value | 1.048 | — | 1.002 | — | 1.047 | — | 1.043 | — | 1.004 | — |
Province | MI | EC | TC | MATC | BTC | |||||
---|---|---|---|---|---|---|---|---|---|---|
Value | Ranking | Value | Ranking | Value | Ranking | Value | Ranking | Value | Ranking | |
Beijing | 1.024 | 25 | 0.971 | 26 | 1.054 | 11 | 1.129 | 12 | 0.934 | 21 |
Tianjin | 1.035 | 20 | 1.005 | 11 | 1.030 | 25 | 1.206 | 4 | 0.853 | 27 |
Hebei | 1.089 | 3 | 1.012 | 5 | 1.077 | 4 | 1.054 | 23 | 1.021 | 2 |
Shanxi | 1.028 | 23 | 0.994 | 23 | 1.035 | 24 | 1.033 | 26 | 1.002 | 10 |
Inner Mongolia | 1.005 | 30 | 0.956 | 28 | 1.051 | 13 | 1.087 | 19 | 0.967 | 15 |
Liaoning | 1.035 | 19 | 0.974 | 25 | 1.063 | 7 | 1.099 | 14 | 0.967 | 16 |
Jilin | 1.005 | 29 | 0.991 | 24 | 1.015 | 29 | 1.298 | 2 | 0.781 | 29 |
Heilongjiang | 1.055 | 13 | 0.998 | 20 | 1.057 | 9 | 1.037 | 25 | 1.019 | 3 |
Shanghai | 1.073 | 5 | 0.969 | 27 | 1.107 | 2 | 1.089 | 18 | 1.017 | 4 |
Jiangsu | 1.070 | 7 | 1.001 | 16 | 1.069 | 5 | 1.149 | 8 | 0.931 | 22 |
Zhejiang | 1.065 | 8 | 1.004 | 12 | 1.061 | 8 | 1.134 | 11 | 0.936 | 20 |
Anhui | 1.031 | 22 | 1.017 | 3 | 1.014 | 30 | 1.018 | 30 | 0.996 | 11 |
Fujian | 1.057 | 10 | 1.021 | 2 | 1.035 | 23 | 1.091 | 17 | 0.949 | 18 |
Jiangxi | 1.056 | 12 | 1.013 | 4 | 1.042 | 20 | 1.031 | 29 | 1.010 | 8 |
Shandong | 1.058 | 9 | 1.009 | 8 | 1.049 | 16 | 1.047 | 24 | 1.002 | 9 |
Henan | 1.071 | 6 | 1.002 | 15 | 1.069 | 6 | 1.055 | 22 | 1.013 | 6 |
Hubei | 1.056 | 11 | 1.006 | 10 | 1.050 | 15 | 1.033 | 27 | 1.016 | 5 |
Hunan | 1.044 | 17 | 0.999 | 19 | 1.046 | 17 | 1.033 | 28 | 1.012 | 7 |
Guangdong | 1.026 | 24 | 1.009 | 9 | 1.017 | 28 | 1.251 | 3 | 0.813 | 28 |
Guangxi | 1.020 | 27 | 1.000 | 17 | 1.020 | 27 | 1.152 | 7 | 0.885 | 24 |
Hainan | 1.024 | 26 | 1.003 | 13 | 1.021 | 26 | 1.714 | 1 | 0.595 | 30 |
Chongqing | 1.054 | 14 | 1.009 | 7 | 1.045 | 18 | 1.076 | 20 | 0.971 | 14 |
Sichuan | 1.035 | 18 | 0.999 | 18 | 1.036 | 21 | 1.094 | 16 | 0.948 | 19 |
Guizhou | 1.103 | 2 | 1.002 | 14 | 1.101 | 3 | 1.115 | 13 | 0.987 | 13 |
Yunnan | 1.082 | 4 | 1.025 | 1 | 1.056 | 10 | 1.065 | 21 | 0.991 | 12 |
Shaanxi | 1.046 | 16 | 0.996 | 22 | 1.051 | 14 | 1.142 | 10 | 0.920 | 23 |
Gansu | 1.053 | 15 | 1.010 | 6 | 1.043 | 19 | 1.183 | 6 | 0.882 | 25 |
Qinghai | 1.033 | 21 | 0.998 | 21 | 1.036 | 22 | 1.195 | 5 | 0.867 | 26 |
Ningxia | 1.135 | 1 | 0.954 | 30 | 1.190 | 1 | 1.148 | 9 | 1.036 | 1 |
Xinjiang | 1.006 | 28 | 0.955 | 29 | 1.053 | 12 | 1.098 | 15 | 0.959 | 17 |
Variables | Coefficients | SD | Z | |
---|---|---|---|---|
Agricultural industry | Agricultural development level | 0.046 *** | 0.014 | 3.27 |
Agricultural financial support | 0.264 | 0.249 | 1.06 | |
Cultivated land use structure | −0.187 ** | 0.086 | −2.18 | |
Rural labor force | Rural human capital level | −0.034 * | 0.018 | −1.89 |
Structure of rural labor force | 0.143 *** | 0.051 | 2.82 | |
Rural residents’ living | Rural residents’ consumption level | −0.278 ** | 0.130 | −2.14 |
Urbanization level | 0.574 *** | 0.140 | 4.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Wang, R.; Yin, M.; Zhang, H. Study on the Measurement and Influencing Factors of Rural Energy Carbon Emission Efficiency in China: Evidence Using the Provincial Panel Data. Agriculture 2023, 13, 441. https://doi.org/10.3390/agriculture13020441
Tian Y, Wang R, Yin M, Zhang H. Study on the Measurement and Influencing Factors of Rural Energy Carbon Emission Efficiency in China: Evidence Using the Provincial Panel Data. Agriculture. 2023; 13(2):441. https://doi.org/10.3390/agriculture13020441
Chicago/Turabian StyleTian, Yun, Rui Wang, Minhao Yin, and Huijie Zhang. 2023. "Study on the Measurement and Influencing Factors of Rural Energy Carbon Emission Efficiency in China: Evidence Using the Provincial Panel Data" Agriculture 13, no. 2: 441. https://doi.org/10.3390/agriculture13020441
APA StyleTian, Y., Wang, R., Yin, M., & Zhang, H. (2023). Study on the Measurement and Influencing Factors of Rural Energy Carbon Emission Efficiency in China: Evidence Using the Provincial Panel Data. Agriculture, 13(2), 441. https://doi.org/10.3390/agriculture13020441