Soil Erosion Modeling and Monitoring
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Arrúe, J.L.; Cantero-Martínez, C.; Fanlo, R.; Iglesias, A.; Álvaro-Fuentes, J. Carbon Management in Dryland Agricultural Systems. A Review. Agron. Sustain. Dev. 2015, 35, 1319–1334. [Google Scholar] [CrossRef]
- Emmerson, M.; Morales, M.; Oñate, J.; Batáry, P.; Berendse, F.; Liira, J.; Aavik, T.; Guerrero, I.; Bommarco, R.; Eggers, S.; et al. How Agricultural Intensification Affects Biodiversity and Ecosystem Services. Adv. Ecol. Res. 2016, 55, 43–97. [Google Scholar]
- Selmy, S.A.H.; Abd Al-Aziz, S.H.; Jiménez-Ballesta, R.; García-Navarro, F.J.; Fadl, E. Modeling and Assessing Potential Soil Erosion Hazards Using USLE and Wind Erosion Models in Integration with GIS Techniques: Dakhla Oasis, Egypt. Agriculture 2021, 11, 1124. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Saharkhiz, M.A.; Pradhan, B.; Ahmad, N. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto Int. 2016, 31, 1158–1177. [Google Scholar] [CrossRef]
- Labrière, N.; Locatelli, B.; Laumonier, Y.; Freycon, V.; Bernoux, M. Soil erosion in the humid tropics: A systematic quantitative review. Agric. Ecosyst. Environ. 2015, 203, 127–139. [Google Scholar] [CrossRef]
- Oppeltová, P.; Kasal, P.; Krátký, F.; Hajšlová, J. Analysis of Selected Water Quality indicators from Runoff during Potato Cultivation after Natural Precipitation. Agriculture 2021, 11, 1220. [Google Scholar] [CrossRef]
- Lefrancq, M.; Jadas-Hécart, A.; La Jeunesse, I.; Landry, D.; Payraudea, S. High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts. Sci. Total Environ. 2017, 587, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Martínez Fernández, J.; Fitz, C.; Esteve Selma, M.A.; Guaita, N.; Martínez-López, J. Modelización del efecto de los cambios de uso del suelo sobre los flujos de nutrientes en cuencas agrícolas costeras: El caso del Mar Menor (Sudeste de España). Ecosistemas 2013, 22, 84–94. [Google Scholar] [CrossRef]
- Balková, M.; Kubalíková, L.; Prokopová, M.; Sedlák, P.; Bajer, A. Ecosystem services of vegetation features as the multifunction anti-erosion measures in the Czech Republic in 2019 and its 30-year prediction. Agriculture 2021, 11, 105. [Google Scholar] [CrossRef]
- Zhao, P.; Xing, J.; Hu, C.; Guo, W.; Wang, L.; He, X.; Xu, Z.; Wang, X. Feasibility of Near-Infrared Spectroscopy for Rapid Detection of Available Nitrogen in Vermiculite Substrates in Desert Facility Agriculture. Agriculture 2022, 12, 411. [Google Scholar] [CrossRef]
- Yin, H.Y.; Cao, Y.T.; Marelli, B.; Zeng, X.Q.; Mason, A.J.; Cao, C.Y. Smart agriculture systems: Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2170156. [Google Scholar] [CrossRef]
- Linaza, M.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I.G.; Barriguinha, A.; Moysiadis, T.; et al. Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy 2021, 11, 1227. [Google Scholar] [CrossRef]
- Chen, S.Y.; Han, J.G.; Wang, Y.W.; Li, S.T.; Chang, S.J. Effects of matriconditioning with vermiculite on germination and germination speed of zoysia grass seed samples. Acta Agrestia Sin. 2007, 3, 254–258. [Google Scholar]
- Yang, L.L.; Yao, Q.F.; Liang, Q.; Lu, X.M. Research progress on soil nitrogen internal cycling response to ecological cover change. Chin. J. Econ. Agric. 2020, 28, 1543–1550. [Google Scholar]
- Xie, X.L.; Li, A.B. Identification of soil profile classes using depth-weighted visible near-infrared spectral reflectance. Geoderma 2018, 325, 90–101. [Google Scholar] [CrossRef]
- Lin, L.X.; Xue, F.C.; Wang, Y.J.; Liu, K.Q. Photography measured-value magnification improves local correlation maximization-complementary superiority method of hyperspectral analysis of soil total nitrogen. Catena 2018, 165, 106–114. [Google Scholar] [CrossRef]
- Picouet, A.P.; Gou, P.; Hyypio, R.; Castellari, M. Implementation of NIR technology for at-line rapid detection of sunflower oil adulterated with mineral oil. J. Food. Eng. 2018, 230, 18–27. [Google Scholar] [CrossRef]
- Maggioli, L.; Chamizo, S.; Román, R.; Asensio-Grima, C.; Cantón, Y. Coupling Sewage Sludge Amendment with Cyanobacterial Inoculation to Enhance Stability and Carbon Gain in Dryland Degraded Soils. Agriculture 2022, 12, 1993. [Google Scholar] [CrossRef]
- Smol, M.; Kulczycka, J.; Henclik, A.; Gorazda, K.; Wzorek, Z. The Possible Use of Sewage Sludge Ash (SSA) in the Construction Industry as a Way towards a Circular Economy. J. Clean. Prod. 2015, 95, 45–54. [Google Scholar] [CrossRef]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa-Hersztek, M.; Sylwester, T.; Stanek-Tarkowska, J. Fertilization Effects of Compost Produced from Maize, Sewage Sludge and Biochar on Soil Water Retention and Chemical Properties. Soil Tillage Res. 2020, 197, 104493. [Google Scholar] [CrossRef]
- Tella, M.; Bravin, M.N.; Thuriès, L.; Cazevieille, P.; Chevassus-Rosset, C.; Collin, B.; Chaurand, P.; Legros, S.; Doelsch, E. Increased Zinc and Copper Availability in Organic Waste Amended Soil Potentially Involving Distinct Release Mechanisms. Environ. Pollut. 2016, 212, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Rajkumar, M.; Oliveira, R.S.; Zhang, C.; Freitas, H. Potential of Plant Beneficial Bacteria and Arbuscular Mycorrhizal Fungi in Phytoremediation of Metal-Contaminated Saline Soils. J. Hazard. Mater. 2019, 379, 120813. [Google Scholar] [CrossRef]
- Raklami, A.; Tahiri, A.; Bechtaoui, N.; Abdelhay, E.G.; Pajuelo, E.; Baslam, M.; Meddich, A.; Oufdou, K. Restoring the Plant Productivity of Heavy Metal-Contaminated Soil Using Phosphate Sludge, Marble Waste, and Beneficial Microorganisms. J. Environ. Sci. 2021, 99, 210–221. [Google Scholar] [CrossRef]
- Cantón, Y.; Chamizo, S.; Rodriguez-Caballero, E.; Lázaro, R.; Roncero-Ramos, B.; Román, J.R.; Solé-Benet, A. Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance. Water 2020, 12, 720. [Google Scholar] [CrossRef]
- Chamizo, S.; Rodríguez-Caballero, E.; Román, J.R.; Cantón, Y. Effects of Biocrust on Soil Erosion and Organic Carbon Losses under Natural Rainfall. Catena 2017, 148, 117–125. [Google Scholar] [CrossRef]
- Rocha, F.; Esteban Lucas-Borja, M.; Pereira, P.; Muñoz-Rojas, M. Cyanobacteria as a Nature-Based Biotechnological Tool for Restoring Salt-Affected Soils. Agronomy 2020, 10, 1321. [Google Scholar] [CrossRef]
- Asensio-Amador, C.; Giménez, A.; Torres, J.L.; Monterroso, A.I.; Asensio, C. Tracking Wind Deposits on Fluvisols in a Citrus Orchard in Southeast Spain: A Test in Real Time. Agriculture 2022, 12, 2138. [Google Scholar] [CrossRef]
- Asensio, C.; Lozano, F.J.; Ortega, E.; Kikvidze, Z. Study on the effectiveness of an agricultural Technique based on aeoliandeposition, in a semiarid environment. Environ. Eng. Manag. J. 2015, 14, 1143–1150. [Google Scholar] [CrossRef]
- Colazo, J.C.; Buschiazzo, D.E. The impact of agriculture on soil texture due to wind erosion. Land Degrad. Dev. 2015, 26, 62–70. [Google Scholar] [CrossRef]
- Cao, G.; Chang, B.; Zhou, Z.; Hu, L.; Du, W.; Lv, J. Soil Aggregate Breakdown with Colloidal Particles Release and Transport in Soil: A Perspective from Column Experiments. Agriculture 2022, 12, 2155. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, J.; Wang, H.; Shi, L.; Zhuang, Y.; Fu, Q.; Chen, J.; Hu, H.; Huang, Q. Regulation of soil aggregate size under different fertilizations on dissolved organic matter, cellobiose hydrolyzing microbial community and their roles in organic matter mineralization. Sci. Total Environ. 2021, 755, 142595. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Xu, C.; Li, H.; Li, S.; Yu, Z.; Li, Y.; He, X. Particles interaction forces and their effects on soil aggregates breakdown. Soil Tillage Res. 2015, 147, 1–9. [Google Scholar] [CrossRef]
- Hu, F.; Liu, J.; Xu, C.; Wang, Z.; Liu, G.; Li, H.; Zhao, S. Soil internal forces initiate aggregate breakdown and splash erosion. Geoderma 2018, 320, 43–51. [Google Scholar] [CrossRef]
- Yu, Z.H.; Li, H.; Liu, X.M.; Xu, C.Y.; Xiong, H.L. Influence of soil electric field on water movement in soil. Soil Tillage Res. 2016, 155, 263–270. [Google Scholar] [CrossRef]
- Tang, Y.; Li, H.; Liu, X.; Zhu, H.; Tian, R. Unraveling the size distributions of surface properties for purple soil and yellow soil. J. Environ. Sci. 2015, 32, 81–89. [Google Scholar] [CrossRef]
- Abowaly, M.E.; Ali, R.A.; Moghanm, F.S.; Gharib, M.S.; Moustapha, M.E.; Elbagory, M.; Omara, A.E.-D.; Elmahdy, S.M. Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt. Agriculture 2023, 13, 76. [Google Scholar] [CrossRef]
- Abowaly, M.E.; Belal, A.-A.A.; Abd Elkhalek, E.E.; Elsayed, S.; Abou Samra, R.M.; Alshammari, A.S.; Moghanm, F.S.; Shaltout, K.H.; Alamri, S.A.M.; Eid, E.M. Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination Indices, GIS, and Multivariate Modeling. Sustainability 2021, 13, 8027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostazo, P.; Asensio-Amador, C.; Asensio, C. Soil Erosion Modeling and Monitoring. Agriculture 2023, 13, 447. https://doi.org/10.3390/agriculture13020447
Mostazo P, Asensio-Amador C, Asensio C. Soil Erosion Modeling and Monitoring. Agriculture. 2023; 13(2):447. https://doi.org/10.3390/agriculture13020447
Chicago/Turabian StyleMostazo, Penélope, Carlos Asensio-Amador, and Carlos Asensio. 2023. "Soil Erosion Modeling and Monitoring" Agriculture 13, no. 2: 447. https://doi.org/10.3390/agriculture13020447
APA StyleMostazo, P., Asensio-Amador, C., & Asensio, C. (2023). Soil Erosion Modeling and Monitoring. Agriculture, 13(2), 447. https://doi.org/10.3390/agriculture13020447