Exploring Plant Tissue Culture and Steviol Glycosides Production in Stevia rebaudiana (Bert.) Bertoni: A Review
Abstract
:1. Introduction
2. Bibliometrics Analysis
3. Botanical Description and Cultivation of Stevia rebaudiana
4. Applications/Properties of SGs
4.1. Therapeutic
4.1.1. Antidiabetic Effect
4.1.2. Antihypertensive Effect
4.1.3. Anticancer and Antitumor Effect
4.1.4. Antimicrobial Activity
4.2. Food/Other
5. Toxicological Studies
6. Steviol Glycosides
6.1. Types of SGs
6.2. Biosynthetic Pathway and Its Associated Genes
6.2.1. Kaurene (Precursor) Synthesis in Plastids
6.2.2. Oxidation Reaction (Endoplasmic Reticulum)
6.2.3. Formation of Major SGs in Cytosol
7. Biotechnological Interventions
7.1. Strategies for In Vitro Morphogenesis/Multiplication of Stevia
7.1.1. Multiple Shoot Proliferation
7.1.2. Callus and Cell Suspension Cultures
7.1.3. Rhizogenesis
7.1.4. Somatic Embryogenesis
7.1.5. Nutrient Manipulation
7.2. Secondary Metabolite Production—Need and Methods
7.2.1. Effect of PGRs and Medium on SG Content
7.2.2. Effects of Nutrients
7.2.3. Effects of Elicitors (Biotic and Abiotic)
7.2.4. Mutagenic Effects
7.2.5. Physical Factors
Light
Abiotic Stress (Drought and Salinity)
7.2.6. Hairy Root Culture for Secondary Metabolite Production
7.3. Nanoparticles (NPs) Application for Secondary Metabolite Production
7.4. Genetic Transformation Studies
7.4.1. Trait Improvement
7.4.2. Characterization of SG Biosynthetic Genes and Elucidation of SG Biosynthetic Pathway Genes
7.4.3. Manipulation of SGs via Genetic Transformation
Technique | Plant Part | Extraction Solvent | Analyser | Column/TLC Plate | Mobile Phase | Elution/ Developer | Reference |
---|---|---|---|---|---|---|---|
ultrasonic-assisted | leaves (dried) | NADES 50 (lactic acid: glycerol: malic acid: glucose, 1:1:1:1) | UHPLC-PDA | [227] | |||
OH-AWE | leaves (dried) | water | HPLC (Shimadzu® SPD-M20A) | C18 column | acetone nitrite and deionized water | isocratic (50:50) | [228] |
ultrasonic-assisted | leaves (oven dried) | ethanol (60%) | HPLC | Eurosphere C-18 | water-methanol (90:10), acetonitrile and trifluoroacetic acid (65:35:0.01) | isocratic | [198] |
sonication | leaves and stems (dried) | methanol | UHPLC (LC–MS Shimadzu, 2020 system, Kyoto, Japan) | reverse phase C18 column | acetonitrile and water | isocratic (1:1) | [197] |
ultrasound with deep eutectic solvents | leaves (dried) | TEAC:EG with 10% water | HPTLC (Camag, Muttenz, Switzerland) | silica gel glass Plate 60 Å F254 | ethyl acetate/methanol/acetic acid (3:1:1) | acetic acid/sulfuric acid/absolute ethanol (1:1:10) | [229] |
heating and centrifugation | dried callus | ethanol (70%) | HPLC | C18 column | methanol and water | isocratic (70:30) | [114] |
pressurized hot water | leaves (dried) | water (extraction cells) | HPLC (Thermo Fisher Scientific, Waltham, MA, USA) | C18 column | A (potassium dihydrogen phosphate), B (acetonitrile) | gradient linear gradient (10–35% B-10 min), constant ratio (65% A: 35% B-15 min) linear gradient (35% to 75% B-10 min) constant ratio (25% A: 75% B-15 min) 90% A: 10% B-2 min | [230] |
heating and centrifugation | lyophilized samples | ethanol (70%) | RP-HPLC | C-18 reversed-phase column | acetonitrile and phosphate | isocratic (32:68) | [100] |
RSLDE | leaves (sun dried) | water | HPLC-DAD (Waters, Milford, MA, USA) | C18 column | water (A) and 99acetonitrile (B) | gradient 95–60% A, 0–20 min; 60% A, 20–25 min; 60–5% A, 25–30 min | [231] |
sonication | leaves | methanol | Plus HPLC (Thermo Scientific, Bremen, Germany) | RP C18 column | water (A) and acetonitrile (B) | gradient 65A/35B-0 to 1 min 63A/27B-4 min 60A/40B-2.5 min 5A/95B-0.5 min and for 3 min 65A/35B-1 min | [103] |
ultrasonic-assisted | leaves (dried) | ethanol (80%) | HPLC | silica based aminopropyl bonded sorbent column | acetonitrile and water | isocratic (80:20 v/v) | [232] |
7.5. Omics
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geuns, J.M.J.P. Stevioside. Phytochemistry 2003, 64, 913–921. [Google Scholar] [CrossRef]
- Strauss, S.J.T.R. The perfect sweetener. Technol. Rev. 1995, 98, 18–20. [Google Scholar]
- Tadhani, M.B.; Subhash, R. In vitro antimicrobial activity of Stevia rebaudiana Bertoni leaves. Trop. J. Pharm. Res. 2006, 5, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Islam, M.; Islam, M.; Akhtar, S. Cultivation and uses of stevia (Stevia rebaudiana Bertoni): A review. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12745–12757. [Google Scholar] [CrossRef]
- Schiatti-Sisó, I.P.; Quintana, S.E.; García-Zapateiro, L.A. Stevia (Stevia rebaudiana) as a common sugar substitute and its application in food matrices: An updated review. J. Food Sci. Technol. 2022, 1–10. [Google Scholar] [CrossRef]
- Marcinek, K.; Krejpcio, Z. Stevia rebaudiana Bertoni: Health promoting properties and therapeutic applications. J. Consum. Prot. Food Saf. 2016, 11, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 2010, 55, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Sunitha, V.; Wilsy, J.; Reginold, M. Antibacterial activity in medicinal plant (Stevia rebaudiana) using two solvents. Int. J. Rec. Scien. Res. 2015, 6, 5070–5071. [Google Scholar]
- Shukla, S.; Mehta, A.; Mehta, P.; Bajpai, V. Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Exp. Toxicol. Pathol. 2012, 64, 807–811. [Google Scholar] [CrossRef]
- Kedik, S.; Yartsev, E.; Stanishevskaya, I. Antiviral activity of dried extract of Stevia. Pharm. Chem. J. 2009, 43, 198–199. [Google Scholar] [CrossRef]
- Wang, T.; Guo, M.; Song, X.; Zhang, Z.; Jiang, H.; Wang, W.; Fu, Y.; Cao, Y.; Zhu, L.; Zhang, N. Stevioside plays an anti-inflammatory role by regulating the NF-κB and MAPK pathways in S. aureus-infected mouse mammary glands. Inflammation 2014, 37, 1837–1846. [Google Scholar] [CrossRef]
- Jain, P.; Kachhwaha, S.; Kothari, S. Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) Bertoni by using high copper levels in the culture medium. Sci. Hortic. 2009, 119, 315–319. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Soejarto, D.D. Botany of Stevia and Stevia rebaudiana. In Stevia: The Genus Stevia, 1st ed.; Kinghorn, A.D., Ed.; Taylor & Francis Inc.: New York, NY, USA, 2002; pp. 18–39. ISBN 978-0-4292-1748-7. [Google Scholar]
- Soejarto, D.D.; Kinghorn, A.D.; Farnsworth, N.R. Potential sweetening agents of plant origin. III. Organoleptic evaluation of Stevia leaf herbarium samples for sweetness. J. Nat. Prod. 1982, 45, 590–599. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, S.; Dhyani, D.; Ahuja, P.S. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011, 91, 1–27. [Google Scholar] [CrossRef]
- Tropicos.org Missouri Botanical Garden. Available online: https://tropicos.org (accessed on 18 December 2022).
- Robinson, B. Observations on the genus Stevia. Contrib. Gray Herb. Harv. Univ. 1930, 36–58. [Google Scholar] [CrossRef]
- Brandle, J.; Telmer, P.J.P. Steviol glycoside biosynthesis. Phytochemistry 2007, 68, 1855–1863. [Google Scholar] [CrossRef]
- Hossain, M.A.; Siddique, A.; Rahman, S.M.; Hossain, M.J. Chemical composition of the essential oils of Stevia rebaudiana Bertoni leaves. Arab. J. Chem. 2010, 5, 56–61. [Google Scholar]
- Gardana, C.; Simonetti, P.; Canzi, E.; Zanchi, R.; Pietta, P. etabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J. Agric. Food Chem. 2003, 51, 6618–6622. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Kumari, M.; Prakash, H.; Rao, G.; Solomon, S. Phytochemical and pharmacological importance of stevia: A calorie-free natural sweetener. Sugar Tech 2019, 21, 227–234. [Google Scholar] [CrossRef]
- Valio, I.; Rocha, R. Effect of photoperiod and growth regulator on growth and flowering of Stevia rebaudiana Bertoni. Jpn. J. Crop. Sci. 1977, 46, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Chalapathi, M.; Thimmegowda, S.; Sridhara, S.; Ramakrishna Parama, V.; Prasad, T. Natural non-calorie sweetener stevia (Stevia rebaudiana Bertoni)-A future crop of India. Crop. Res. Hisar 1997, 14, 347–350. [Google Scholar]
- Huxley, A.; Griffiths, M.; Levy, M. The new RHS dictionary of gardening. In Royal Horticultural Society; MacMillan Press: London, UK, 1992. [Google Scholar]
- Singh, S.; Rao, G. Stevia: The herbal sugar of 21st century. Sugar Tech. 2005, 7, 17–24. [Google Scholar] [CrossRef]
- Dwivedi, R. Unnurtured and untapped super sweet nonsacchariferous plant species in India. Curr. Sci. 1999, 76, 1454–1461. [Google Scholar]
- Marsolais, A.A.; Brandle, J.; Sys, E.A. Stevia Plant NamedRSIT 94-751. U.S. Patent Application 08/657,463, 18 August 1998. [Google Scholar]
- Jeppesen, P.B.; Gregersen, S.; Alstrup, K.; Hermansen, K.J.P. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: Studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 2002, 9, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Abudula, R.; Jeppesen, P.B.; Rolfsen, S.E.D.; Xiao, J.; Hermansen, K. Rebaudioside A potently stimulates insulin secretion from isolated mouse islets: Studies on the dose-, glucose-, and calcium-dependency. Metabolism 2004, 53, 1378–1381. [Google Scholar] [CrossRef]
- Chen, J.; Jeppesen, P.B.; Nordentoft, I.; Hermansen, K.J.M. Stevioside counteracts the glyburide-induced desensitization of the pancreatic beta-cell function in mice: Studies in vitro. Metabolism 2006, 55, 1674–1680. [Google Scholar] [CrossRef]
- Assaei, R.; Mokarram, P.; Dastghaib, S.; Darbandi, S.; Darbandi, M.; Zal, F.; Akmali, M.; Omrani, G. Hypoglycemic effect of aquatic extract of Stevia in pancreas of diabetic rats: PPARγ-dependent regulation or antioxidant potential. Avicenna J. Med. Biotechnol. 2016, 8, 65. [Google Scholar]
- Bhasker, S.; Madhav, H.; Chinnamma, M.J.P. Molecular evidence of insulinomimetic property exhibited by steviol and stevioside in diabetes induced L6 and 3T3L1 cells. Phytomedicine 2015, 22, 1037–1044. [Google Scholar] [CrossRef]
- Ahmad, U.; Ahmad, R. Anti diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in Streptozotocin-induced diabetes in albino rats. BMC Complement. Altern. Med. 2018, 18, 179. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Rebsdorf, A.; Anker, C.; Gregersen, S.; Hermansen, K.; Geuns, J.M.; Jeppesen, P.B. Steviol glucuronide, a metabolite of steviol glycosides, potently stimulates insulin secretion from isolated mouse islets: Studies in vitro. Endocrinol. Diabetes Metab. 2019, 2, e00093. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, R.A.; Abdel-Rahman, M.S.; Al Bayoumi, S.; Ali, L. Effect of stevia aqueous extract on the antidiabetic activity of saxagliptin in diabetic rats. J. Ethnopharmacol. 2021, 265, 113188. [Google Scholar] [CrossRef]
- Bugliani, M.; Tavarini, S.; Grano, F.; Tondi, S.; Lacerenza, S.; Giusti, L.; Ronci, M.; Maidecchi, A.; Marchetti, P.; Tesi, M. Protective effects of Stevia rebaudiana extracts on beta cells in lipotoxic conditions. Acta Diabetol. 2022, 59, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, P.; Gregersen, S.; Rolfsen, S.; Jepsen, M.; Colombo, M.; Agger, A.; Xiao, J.; Kruhøffer, M.; Ørntoft, T.; Hermansen, K.J.M. Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki rat. Metabolism 2003, 52, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, S.; Jeppesen, P.B.; Holst, J.J.; Hermansen, K.J.M. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 2004, 53, 73–76. [Google Scholar] [CrossRef]
- Chowdhury, A.I.; Rahanur Alam, M.; Raihan, M.M.; Rahman, T.; Islam, S.; Halima, O. Effect of stevia leaves (Stevia rebaudiana Bertoni) on diabetes: A systematic review and meta-analysis of preclinical studies. Food Sci. Nutr. 2022, 10, 2868–2878. [Google Scholar] [CrossRef]
- Chan, P.; Xu, D.-Y.; Liu, J.-C.; Chen, Y.-J.; Tomlinson, B.; Huang, W.-P.; Cheng, J.-T. The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats. Life Sci. 1998, 63, 1679–1684. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.; Tomlinson, B.; Chen, Y.J.; Liu, J.C.; Hsieh, M.H.; Cheng, J.T. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br. J. Clin. Pharmacol. 2000, 50, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.-H.; Chan, P.; Sue, Y.-M.; Liu, J.-C.; Liang, T.H.; Huang, T.-Y.; Tomlinson, B.; Chow, M.S.S.; Kao, P.-F.; Chen, Y.-J. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: A two-year, randomized, placebo-controlled study. Clin. Ther. 2003, 25, 2797–2808. [Google Scholar] [CrossRef] [Green Version]
- Ferri, L.J.; Alves-Do-Prado, W.; Yamada, S.S.; Gazola, S.; Batista, M.R.; Bazotte, R.B. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother. Res. 2006, 20, 732–736. [Google Scholar] [CrossRef]
- Carrera-Lanestosa, A.; Acevedo-Fernandez, J.J.; Segura-Campos, M.R.; Velazquez-Martinez, R.; Moguel-Ordonez, Y. Antihypertensive, antihyperglycemic, and antioxidant effects of Stevia rebaudiana Bertoni (creole variety INIFAP C01) extracts on Wistar rats with induced metabolic syndrome. Nutr. Hosp. 2020, 37, 730–741. [Google Scholar] [PubMed]
- Villegas Vílchez, L.F.; Ascencios, J.H.; Dooley, T.P. GlucoMedix®, an extract of Stevia rebaudiana and Uncaria tomentosa, reduces hyperglycemia, hyperlipidemia, and hypertension in rat models without toxicity: A treatment for metabolic syndrome. BMC Complement. Med. Ther. 2022, 22, 62. [Google Scholar]
- Melis, M.; Sainati, A. Effect of calcium and verapamil on renal function of rats during treatment with stevioside. J. Ethnopharmacol. 1991, 33, 257–262. [Google Scholar] [CrossRef]
- Melis, M.; Rocha, S.; Augusto, A. Steviol effect, a glycoside of Stevia rebaudiana, on glucose clearances in rats. Braz. J. Biol. 2009, 69, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Ruiz, J.C.; Moguel-Ordoñez, Y.B.; Segura-Campos, M.R. Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2680–2690. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Matsui, H.; Shoda, T.; Uneyama, C.; Takada, K.; Takahashi, M.J.F.; Toxicology, C. Assessment of the carcinogenicity of stevioside in F344 rats. Food Chem. Toxicol. 1997, 35, 597–603. [Google Scholar] [CrossRef]
- Paul, S.; Sengupta, S.; Bandyopadhyay, T.; Bhattacharyya, A.J.N. Stevioside induced ROS-mediated apoptosis through mitochondrial pathway in human breast cancer cell line MCF-7. Nutr. Cancer 2012, 64, 1087–1094. [Google Scholar] [CrossRef]
- Ukiya, M.; Sawada, S.; Kikuchi, T.; Kushi, Y.; Fukatsu, M.; Akihisa, T. Cytotoxic and apoptosis-inducing activities of steviol and isosteviol derivatives against human cancer cell lines. Chem. Biodivers. 2013, 10, 177–188. [Google Scholar] [CrossRef]
- Gupta, E.; Kaushik, S.; Purwar, S.; Sharma, R.; Balapure, A.K.; Sundaram, S.J. Anticancer potential of steviol in MCF-7 human breast cancer cells. Pharmacogn. Mag. 2017, 13, 345. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xia, Y.; Sui, X.; Peng, Q.; Zhang, T.; Li, J.; Zhang, J. Steviol, a natural product inhibits proliferation of the gastrointestinal cancer cells intensively. Oncotarget 2018, 9, 26299. [Google Scholar] [CrossRef]
- López, V.; Pérez, S.; Vinuesa, A.; Zorzetto, C.; Abian, O. Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside. Food Funct. 2016, 7, 2107–2113. [Google Scholar] [CrossRef] [PubMed]
- Ibrahem, E.S.; Ragheb, E.M.; Yousef, F.M.; Abdel-Azizand, M.F.; Alghamdi, B.A. Nutritional Value, Cytotoxic and Antimicrobial Activities of Stevia rebaudiana Leaf Extracts. J. Biochem. Technol. 2020, 11, 108–115. [Google Scholar]
- Jayaraman, S.; Manoharan, M.S.; Illanchezian, S.J. In-vitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Trop. J. Pharm. Res. 2008, 7, 1143–1149. [Google Scholar] [CrossRef] [Green Version]
- Iatridis, N.; Kougioumtzi, A.; Vlataki, K.; Papadaki, S.; Magklara, A. Anti-Cancer Properties of Stevia rebaudiana; More than a Sweetener. Molecules 2022, 27, 1362. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Sarwar, S.; Sabir, M.; Nisa, S.; Khan, T. Antimicrobial potential of Stevia rebaudiana leaves extract against selected bacterial and fungal strains. J. Adv. Nutr. Sci. Technol. 2021, 1, 157. [Google Scholar] [CrossRef]
- Gamboa, F.; Chaves, M. Antimicrobial potential of extracts from Stevia rebaudiana leaves against bacteria of importance in dental caries. Acta Odontol Lat. 2012, 25, 171–175. [Google Scholar]
- Singh, S.; Garg, V.; Yadav, D.; Beg, M.N.; Sharma, N.; Sciences, P. In vitro antioxidative and antibacterial activities of various parts of Stevia rebaudiana (Bertoni). Int. J. Pharm. Pharm. Sci. 2012, 4, 468–473. [Google Scholar]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Rojas, P.; Stucken, K.; Delporte, C.; Valenzuela-Barra, G.; Jagus, R.J.; Agüero, M.V.; Pasten, A.J.; Plants, A. Antioxidant, antimicrobial and anti-inflammatory potential of Stevia rebaudiana leaves: Effect of different drying methods. J. Appl. Res. Med. Aromat. Plants 2018, 11, 37–46. [Google Scholar] [CrossRef]
- Kant, R. Sweet proteins–potential replacement for artificial low calorie sweeteners. Nutr. J. 2005, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.K.; Guleria, P.J. Steviol glycosides from Stevia: Biosynthesis pathway review and their application in foods and medicine. Crit. Rev. Food Sci. Nutr. 2012, 52, 988–998. [Google Scholar] [CrossRef]
- Ribeiro, M.N.; Rodrigues, D.M.; Rocha, R.A.R.; Silveira, L.R.; Condino, J.P.F.; Júnior, A.C.; de Souza, V.R.; Nunes, C.A.; Pinheiro, A.C. Optimising a stevia mix by mixture design and napping: A case study with high protein plain yoghurt. Int. Dairy J. 2020, 110, 104802. [Google Scholar] [CrossRef]
- Savita, S.; Sheela, K.; Sunanda, S.; Shankar, A.; Ramakrishna, P. Stevia rebaudiana–A functional component for food industry. J. Hum. Ecol. 2004, 15, 261–264. [Google Scholar] [CrossRef]
- Gasmalla, M.A.A.; Yang, R.; Amadou, I.; Hua, X. Nutritional composition of Stevia rebaudiana Bertoni leaf: Effect of drying method. Trop. J. Pharm. Res. 2014, 13, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.K.; Samsher, N.; Goyal, R.K. Stevia (Stevia rebaudiana) a bio-sweetener: A review. Int. J. Food Sci. Nutr. 2010, 61, 1–10. [Google Scholar] [PubMed]
- Koyama, E.; Kitazawa, K.; Ohori, Y.; Izawa, O.; Kakegawa, K.; Fujino, A.; Ui, M. In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food Chem. Toxicol. 2003, 41, 359–374. [Google Scholar] [CrossRef]
- Putnik, P.; Bezuk, I.; Barba, F.J.; Lorenzo, J.M.; Polunić, I.; Bursać, D.K. Sugar reduction: Stevia rebaudiana Bertoni as a natural sweetener. In Agri-Food Industry Strategies for Healthy Diets and Sustainability; Academic Press: San Diego, CA, USA, 2020; pp. 123–152. [Google Scholar]
- Prakash, I.; DuBois, G.; Clos, J.; Wilkens, K.; Fosdick, L.J.F.; Toxicology, C. Development of rebiana, a natural, non-caloric sweetener. Food Chem. Toxicol. 2008, 46, S75–S82. [Google Scholar] [CrossRef]
- Jain, P.; Kachhwaha, S.; Kothari, S.; Research, P. Biotechnology and metabolic engineering of Stevia rebaudiana (Bert.) Bertoni: Perspective and possibilities. Int. J. Life Sci. Biotechnol. Pharma Res. 2014, 3, 15. [Google Scholar]
- Geuns, J.M. Safety evaluation of Stevia and stevioside. Stud. Nat. Prod. Chem. 2002, 27, 299–319. [Google Scholar]
- Geuns, J.M. Safety of stevia and stevioside. Recent Res. Dev. Phytochem. 2000, 4, 75–88. [Google Scholar]
- Huxtable, R. Pharmacology and Toxicology of Stevioside, Rebaudioside A, and Steviol. Stevia: The Genus Stevia; Taylor and Francis: London, UK; New York, NY, USA, 2002. [Google Scholar]
- Rajab, R.; Mohankumar, C.; Murugan, K.; Harish, M.; Mohanan, P. Purification and toxicity studies of stevioside from Stevia rebaudiana Bertoni. Toxicol. Int. 2009, 16, 49. [Google Scholar]
- Yodyingyuad, V.; Bunyawong, S. Effect of stevioside on growth and reproduction. Hum. Reprod. 1991, 6, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Sakanoue, M.; Takeuchi, M.; Shimpo, K.; Tanabe, T. Effect of stevioside on fertility in rats [a sweet principle of Stevia rebaudiana bertoni, diet]. Shokuhin Eiseigaku Zasshi. J. Food Hyg. Soc. Jpn. 1981, 22, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Purkayastha, S.; Markosyan, A.; Prakash, I.; Bhusari, S.; Pugh, G., Jr.; Lynch, B.; Roberts, A. Steviol glycosides in purified stevia leaf extract sharing the same metabolic fate. Regul. Toxicol. Pharmacol. 2016, 77, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Additives, E.; Journal, N. Scientific opinion on the safety of steviol glycosides for the proposed uses as a food additive. EFSA J. 2010, 8, 1537. [Google Scholar]
- FAO; WHO. Evaluation of Certain Food Additives Eighty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2019; Volume 1020. [Google Scholar]
- Bondarev, N.; Sukhanova, M.; Reshetnyak, O.; Nosov, A. Steviol glycoside content in different organs of Stevia rebaudiana and its dynamics during ontogeny. Biol. Plant. 2003, 47, 261–264. [Google Scholar] [CrossRef]
- Petit, E.; Berger, M.; Camborde, L.; Vallejo, V.; Daydé, J.; Jacques, A. Development of screening methods for functional characterization of UGTs from Stevia rebaudiana. Sci. Rep. 2020, 10, 15137. [Google Scholar] [CrossRef] [PubMed]
- Ceunen, S.; Geuns, J. Spatio-temporal variation of the diterpene steviol in Stevia rebaudiana grown under different photoperiods. Phytochemistry 2013, 89, 32–38. [Google Scholar] [CrossRef]
- Kinghorn, A.D.; Soejarto, D.; Nanayakkara, N.; Compadre, C.; Makapugay, H.; Hovanec-Brown, J.; Medon, P.; Kamath, S. A phytochemical screening procedure for sweet ent-kaurene glycosides in the genus Stevia. J. Nat. Prod. 1984, 47, 439–444. [Google Scholar] [CrossRef]
- Zhou, X.; Gong, M.; Lv, X.; Liu, Y.; Li, J.; Du, G.; Liu, L. Metabolic engineering for the synthesis of steviol glycosides: Current status and future prospects. Appl. Microbiol. Biotechnol. 2021, 105, 5367–5381. [Google Scholar] [CrossRef]
- Hellfritsch, C.; Brockhoff, A.; Stähler, F.; Meyerhof, W.; Hofmann, T. Human psychometric and taste receptor responses to steviol glycosides. J. Agric. Food Chem. 2012, 60, 6782–6793. [Google Scholar] [CrossRef]
- Totté, N.; Charon, L.; Rohmer, M.; Compernolle, F.; Baboeuf, I.; Geuns, J. Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway (vol 41, pg 6407, 2000). Tetrahedron Lett. 2000, 41, 7595. [Google Scholar] [CrossRef]
- Wanke, M.; Skorupinska-Tudek, K.; Swiezewska, E. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochim. Pol. 2001, 48, 663–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGarvey, D.J.; Croteau, R.J. Terpenoid metabolism. Plant Cell. 1995, 7, 1015. [Google Scholar] [PubMed] [Green Version]
- Humphrey, T.V.; Richman, A.S.; Menassa, R.; Brandle, J.E. Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Mol. Biol. 2006, 61, 47–62. [Google Scholar] [CrossRef]
- Kim, K.K.; Sawa, Y.; Shibata, H. Hydroxylation ofent-Kaurenoic Acid to Steviol in Stevia rebaudiana Bertoni—Purification and Partial Characterization of the Enzyme. Arch. Biochem. Biophys. 1996, 332, 223–230. [Google Scholar] [CrossRef]
- Richman, A.; Swanson, A.; Humphrey, T.; Chapman, R.; McGarvey, B.; Pocs, R.; Brandle, J. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 2005, 41, 56–67. [Google Scholar] [CrossRef]
- Olsson, K.; Carlsen, S.; Semmler, A.; Simón, E.; Mikkelsen, M.D.; Møller, B.L. Microbial production of next-generation stevia sweeteners. Microb. Cell. Factories 2016, 15, 207. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hou, B. Glycosyltransferases: Key players involved in the modification of plant secondary metabolites. Front. Biol. China 2009, 4, 39–46. [Google Scholar] [CrossRef]
- Brandle, J.; Rosa, N. Heritability for yield, leaf: Stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can. J. Plant Sci. 1992, 72, 1263–1266. [Google Scholar] [CrossRef] [Green Version]
- Oviedo-Pereira, D.G.; López-Meyer, M.; Evangelista-Lozano, S.; Sarmiento-López, L.G.; Sepúlveda-Jiménez, G.; Rodríguez-Monroy, M.J. Enhanced specialized metabolite, trichome density, and biosynthetic gene expression in Stevia rebaudiana (Bertoni) Bertoni plants inoculated with endophytic bacteria Enterobacter hormaechei. PeerJ 2022, 10, e13675. [Google Scholar] [CrossRef]
- Chalapathi, M.; Thimmegowda, S.; Devakumar, N.; Chandraprakash, J.; Eswar Rao, G. Vegetative propagation of stevia (Stevia rebaudiana Bertoni) under field conditions. J. Trop. Agric. 1999, 18, 319–320. [Google Scholar]
- Tuleja, M.; Santocki, M.; Dziurka, M.; Musiał, K.; Capecka, E.; Libik-Konieczny, M. The search towards cyto-embryological and physiological obstacles in sexual reproduction of Stevia rebaudiana Bertoni. Sci. Hortic. 2021, 288, 110342. [Google Scholar] [CrossRef]
- Lucho, S.R.; do Amaral, M.N.; Milech, C.; Ferrer, M.Á.; Calderón, A.A.; Bianchi, V.J.; Braga, E.J. Elicitor-induced transcriptional changes of genes of the steviol glycoside biosynthesis pathway in Stevia rebaudiana Bertoni. J. Plant Growth Regul. 2018, 37, 971–985. [Google Scholar] [CrossRef]
- Kahrizi, D.; Ghaheri, M.; Yari, Z.; Yari, K.; Bahraminejad, S.J.C.; Biology, M. Investigation of different concentrations of MS media effects on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni. Cell. Mol. Biol. 2018, 64, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Robles, M.J.; López-Orenes, A.; Ferrer, M.A.; Calderón, A.A. Methanol elicits the accumulation of bioactive steviol glycosides and phenolics in Stevia rebaudiana shoot cultures. Ind. Crop. Prod. 2016, 87, 273–279. [Google Scholar] [CrossRef]
- Bayraktar, M.; Naziri, E.; Akgun, I.H.; Karabey, F.; Ilhan, E.; Akyol, B.; Bedir, E.; Gurel, A. Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue Organ Cult. (PCTOC) 2016, 127, 289–300. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Zeng, S.; Godoy-Hernández, G.; Rivera-Madrid, R.; Dobránszki, J. Bixa orellana L.(achiote) tissue culture: A review. Vitr. Cell. Dev. Biol. Plant 2019, 55, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Nakamura, S.; Fukui, H.; Tabata, M. Comparison of Stevia plants grown from seeds, cuttings and stem-tip cultures for growth and sweet diterpene glucosides. Plant Cell Rep. 1984, 3, 180–182. [Google Scholar] [CrossRef]
- Hassanen, S.A.; Khalil, R.M. Biotechnological studies for improving of stevia (Stevia rebaudiana Bertoni) in vitro plantlets. Middle East J. Sci. Res. 2013, 14, 93–106. [Google Scholar]
- Hwang, S. Rapidin Vitro propagation and enhanced stevioside accumulation in Stevia rebaudiana Bert. J. Plant Biol. 2006, 49, 267–270. [Google Scholar] [CrossRef]
- Ahmed, M.; Salahin, M.; Karim, R.; Razvy, M.; Hannan, M.; Sultana, R.; Hossain, M.; Islam, R. An efficient method for in vitro clonal propagation of a newly introduced sweetener plant (Stevia rebaudiana Bertoni.) in Bangladesh. Am.-Eurasian J. Sci. Res. 2007, 2, 121–125. [Google Scholar]
- Modi, A.R.; Patil, G.; Kumar, N.; Singh, A.S.; Subhash, N. A simple and efficient in vitro mass multiplication procedure for Stevia rebaudiana Bertoni and analysis of genetic fidelity of in vitro raised plants through RAPD. Sugar Tech. 2012, 14, 391–397. [Google Scholar] [CrossRef]
- Blinstrubienė, A.; Burbulis, N.; Juškevičiūtė, N.; Žūkienė, R. Factors affecting organogenesis of Stevia rebaudiana and in vitro accumulation of steviol glycosides. Zemdirb.-Agric. 2020, 107, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.S.; Chowdhury, M.S.; Khan, M.M.; Uddin, M.B.; Ahmed, R.; Baten, M.J. In vitro propagation of Stevia rebaudiana Bert in Bangladesh. Afr. J. Biotechnol. 2006, 5, 1238–1240. [Google Scholar]
- Patel, R.; Shah, R. Regeneration of Stevia plant through callus culture. Indian J. Pharm. Sci. 2009, 71, 46. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Sharma, S.; Saxena, S.; Sciences, B. Callusing in Stevia rebaudiana (natural sweetener) for steviol glycoside production. Int. J. Biotechnol. Bioeng. 2010, 1, 30–34. [Google Scholar]
- Golkar, P.; Moradi, M.; Garousi, G. Elicitation of stevia glycosides using salicylic acid and silver nanoparticles under callus culture. Sugar Tech. 2019, 21, 569–577. [Google Scholar] [CrossRef]
- Kumari, M.; Chandra, S. Stevioside glycosides from in vitro cultures of Stevia rebaudiana and antimicrobial assay. Braz. J. Bot. 2015, 38, 761–770. [Google Scholar] [CrossRef]
- Akbari, F.; Arminian, A.; Kahrizi, D.; Fazeli, A.; Biology, M. Effect of nitrogen sources on some morphological characteristics of in vitro Stevia rebaudiana Bertoni. Cell. Mol. Biol. 2017, 63, 107–111. [Google Scholar] [CrossRef]
- Ahmad, N.; Fazal, H.; Zamir, R.; Khalil, S.A.; Abbasi, B.H. Callogenesis and shoot organogenesis from flowers of Stevia rebaudiana (Bert.). Sugar Tech. 2011, 13, 174–177. [Google Scholar] [CrossRef]
- Ghazal, B.; Saif, S.; Farid, K.; Khan, A.; Rehman, S.; Reshma, A.; Fazal, H.; Ali, M.; Ahmad, A.; Rahman, L. Stimulation of secondary metabolites by copper and gold nanoparticles in submerge adventitious root cultures of Stevia rebaudiana (Bert.). IET Nanobiotechnol. 2018, 12, 569–573. [Google Scholar] [CrossRef]
- Flachsland, E.; Mroginski, L.; Davina, J. Regeneration of plants from anthers of Stevia rebaudiana Bertoni (Compositae) cultivated in vitro. Biocell 1996, 20, 87–90. [Google Scholar]
- Uskutoğlu, T.; Uskutoğlu, D.; Turgut, K. Effects on pre-treatment and different tissue culture media for androgenesis in Stevia rebaudiana Bertoni. Sugar Tech. 2019, 21, 1016–1023. [Google Scholar] [CrossRef]
- Giridhar, P.; Sowmya, K.S.; Ramakrishna, A.; Ravishankar, G. Rapid clonal propagation and stevioside profiles of Stevia rebaudiana Bertoni. Int. J. Plant Dev. Biol. 2010, 4, 47–52. [Google Scholar]
- Sivaram, L.; Mukundan, U.; Biology-Plant, D. In vitro culture studies on Stevia rebaudiana. Vitr. Cell. Dev. Biol. Plant 2003, 39, 520–523. [Google Scholar] [CrossRef]
- Anbazhagan, M.; Kalpana, M.; Rajendran, R.; Natarajan, V.; Dhanavel, D. In vitro production of Stevia rebaudiana Bertoni. Emir. J. Food Agric. 2010, 22, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Laribi, B.; Rouatbi, N.; Kouki, K.; Bettaieb, T. In vitro propagation of Stevia rebaudiana (Bert.)-A non caloric sweetener and antidiabetic medicinal plant. Int. J. Med. Aromat. Plants 2012, 2, 333–339. [Google Scholar]
- Yadav, A.; Poonia, A.K.; Kajla, S. Rapid regeneration and molecular assessment of genetic stability using RAPD markers in stevia. Indian J. Hortic. 2016, 73, 256–261. [Google Scholar] [CrossRef]
- Singh, P.; Dwivedi, P.; Atri, N. In vitro shoot multiplication of Stevia and assessment of stevioside content and genetic fidelity of the regenerants. Sugar Tech. 2014, 16, 430–439. [Google Scholar] [CrossRef]
- Yücesan, B.; Mohammed, A.; Büyükgöçmen, R.; Altuğ, C.; Kavas, Ö.; Gürel, S.; Gürel, E. In vitro and ex vitro propagation of Stevia rebaudiana Bertoni with high Rebaudioside-A content—A commercial scale application. Sci. Hortic. 2016, 203, 20–28. [Google Scholar] [CrossRef]
- Röck-Okuyucu, B.; Bayraktar, M.; Akgun, I.H.; Gurel, A. Plant growth regulator effects on in vitro propagation and stevioside production in Stevia rebaudiana Bertoni. Hortscience 2016, 51, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Javed, R.; Zia, M.; Yücesan, B.; Gürel, E. Abiotic stress of ZnO-PEG, ZnO-PVP, CuO-PEG and CuO-PVP nanoparticles enhance growth, sweetener compounds and antioxidant activities in shoots of Stevia rebaudiana Bertoni. IET Nanobiotechnol. 2017, 11, 898–902. [Google Scholar] [CrossRef]
- Kaplan, B.; Turgut, K. Improvement of rebaudioside A diterpene glycoside content in Stevia rebaudiana Bertoni using clone selection. Turk. J. Agric. For. 2019, 43, 232–240. [Google Scholar] [CrossRef]
- Ashrafi, K.; Iqrar, S.; Saifi, M.; Khan, S.; Qamar, F.; Quadri, S.N.; Mishra, A.; Abdin, M.Z. Influence of Plant Growth Regulators on Glandular Trichome Density and Steviol Glycosides Accumulation in Stevia rebaudiana. ACS Omega 2022, 7, 30967–30977. [Google Scholar] [CrossRef]
- Sichanova, M.; Geneva, M.; Petrova, M.; Miladinova-Georgieva, K.; Kirova, E.; Nedev, T.; Tsekova, D.; Iwanov, I.; Dochev, K.; Ivanova, V.; et al. Improvement of Stevia rebaudiana Bertoni In Vitro Propagation and Steviol Glycoside Content Using Aminoacid Silver Nanofibers. Plants 2022, 11, 2468. [Google Scholar] [CrossRef]
- Shulgina, A.A.; Kalashnikova, E.A.; Tarakanov, I.G.; Kirakosyan, R.N.; Cherednichenko, M.Y.; Polivanova, O.B.; Baranova, E.N.; Khaliluev, M.R. Influence of light conditions and medium composition on morphophysiological characteristics of Stevia rebaudiana Bertoni in vitro and in vivo. Horticulturae 2021, 7, 195. [Google Scholar] [CrossRef]
- TANG, C.; Lamasudin, D.U.; Abdullah, W.; Moo, C.-L. Enhanced in vitro Shoot Regeneration and Biochemical Properties of Stevia rebaudiana using Chitosan. Sains Malays. 2021, 50, 667–676. [Google Scholar] [CrossRef]
- Asmono, S.L. In Vitro Regeneration of Stevia Rebaudiana Bertoni from internode and leaf explants using different concentrations of BAP (6-Benzyl Amino Purine). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bali, Indonesia, 2–3 November 2019; p. 012004. [Google Scholar]
- Hilo, B.R.; Hussain, N.H.; Khaleel, S.A.; Hullo, B. Effect of some growth regulators on glycosides leaf content of Stevia rebaudiana Bertoni in vitro. Plant Arch. 2020, 20, 1715–1720. [Google Scholar]
- Javed, M.A.; Habib, I.; Jamil, M.W.; Anwer, M.J.; Nazir, S.; Iqbal, M.Z. Protocol optimization for efficient in vitro micro-propagation of Stevia rebaudiana Bertoni. Adv. Life Sci. 2019, 6, 100–105. [Google Scholar]
- Kaplan, B.; Duraklioglu, S.; Turgut, K. Sustainable micropropagation of selected Stevia rebaudiana Bertoni genotypes. Acta Sci. Pol. Hortorum Cultus 2019, 18, 47–56. [Google Scholar] [CrossRef]
- Khan, A.; Jayanthi, M.; Gantasala, N.P.; Bhooshan, N.; Uma, R. A rapid and efficient protocol for in vitro multiplication of genetically uniform Stevia rebaudiana (Bertoni). Experiment 2016, 54, 477–481. [Google Scholar]
- Modi, A.R.; Sharma, V.; Patil, G.; Singh, A.S.; Subhash, N.; Kumar, N. Micropropagation and biomass production of true-to-type Stevia rebaudiana Bertoni. In Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, 2nd ed.; Humana Press: New York, NY, USA, 2016; pp. 113–123. ISBN 9781-1-4939-3332-7. [Google Scholar]
- Pradhan, N.; Dwivedi, P. In vitro shoot multiplication of Stevia rebaudiana, an important plant with high economic and medicinal values. Vegetos 2016, 102, 2–8. [Google Scholar] [CrossRef]
- Yücesan, B.; Büyükgöçmen, R.; Mohammed, A.; Sameeullah, M.; Altuğ, C.; Gürel, S.; Gürel, E. An efficient regeneration system and steviol glycoside analysis of Stevia rebaudiana Bertoni, a source of natural high-intensity sweetener. Vitr. Cell. Dev. Biol. Plant 2016, 52, 330–337. [Google Scholar] [CrossRef]
- Peixe, A.; Calado, J.; Carlos, R. A one-step procedure for in vitro micropropagation of Stevia (Stevia Rebaudiana Bertoni). In Proceedings of the VIII International Symposium on In Vitro Culture and Horticultural Breeding, Coimbra, Portugal, 2–7 June 2013; Volume 1083, pp. 295–301. [Google Scholar]
- Kundu, S.; Dey, A.; Bandyopadhyay, A. Stimulation of in vitro morphogenesis, antioxidant activity and over expression of kaurenoic acid 13-hydroxylase gene in Stevia rebaudiana Bertoni by chlorocholine chloride. Acta Physiol. Plant. 2014, 36, 2683–2693. [Google Scholar] [CrossRef]
- Soliman, H.I.A.; Metwali, E.M.R.; Almaghrabi, O.A.-H. Micropropagation of Stevia rebaudiana Betroni and assessment of genetic stability of in vitro regenerated plants using inter simple sequence repeat (ISSR) marker. Plant Biotechnol. 2014, 31, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Thiyagarajan, M.; Venkatachalam, P. Large scale in vitro propagation of Stevia rebaudiana (Bert) for commercial application: Pharmaceutically important and antidiabetic medicinal herb. Ind. Crop. Prod. 2012, 37, 111–117. [Google Scholar] [CrossRef]
- Shatnawi, M.; Shibli, R.; Abu-Romman, S.; Al-Mazra, M.; Al Ajlouni, Z.; Shatanawi, A.; Odeh, W. Clonal propagation and cryogenic storage of the medicinal plant Stevia rebaudiana. Span. J. Agric. Res. 2011, 9, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Pratibha, G.; Satyawati, S.; Sanjay, S. Micropropagation of Stevia rebaudiana (natural sweetener) using kinetin for Steviol glycoside production. Res. J. Biotech. 2010, 5, 63–67. [Google Scholar]
- Jena, A.K.; Panda, M.K.; Nayak, S.J. Effect of phytoregulators on in vitro mass propagation of Stevia rebaudiana Bertoni. Int. J. Integr. Biol. 2009, 8, 56–59. [Google Scholar]
- Sairkar, P.; Chandravanshi, M.; Shukla, N.; Mehrotra, N. Mass production of an economically important medicinal plant Stevia rebaudiana using in vitro propagation techniques. J. Med. Plants Res. 2009, 3, 266–270. [Google Scholar]
- Sreedhar, R.; Venkatachalam, L.; Thimmaraju, R.; Bhagyalakshmi, N.; Narayan, M.; Ravishankar, G. Direct organogenesis from leaf explants of Stevia rebaudiana and cultivation in bioreactor. Biol. Plant. 2008, 52, 355–360. [Google Scholar] [CrossRef]
- Mitra, A.; Pal, A. In vitro regeneration of Stevia rebaudiana (Bert) from the nodal explant. J. Plant Biochem. Biotechnol. 2007, 16, 59–62. [Google Scholar] [CrossRef]
- Gantait, S.; Das, A.; Mandal, N. Stevia: A comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech. 2015, 17, 95–106. [Google Scholar] [CrossRef]
- Yamazaki, T.; Flores, H.E.; Shimomura, K.; Yoshihira, K. Examination of steviol glucosides production by hairy root and shoot cultures of Stevia rebaudiana. J. Nat. Prod. 1991, 54, 986–992. [Google Scholar] [CrossRef]
- Swanson, S.M.; Mahady, G.B.; Beecher, C.W. Stevioside biosynthesis by callus, root, shoot and rooted-shoot cultures in vitro. Plant Cell, Tissue Organ Cult. (PCTOC) 1992, 28, 151–157. [Google Scholar] [CrossRef]
- Javad, S.; Naz, S.; Ilyas, S.; Aftab, A.; Sciences, P. Production of stevioside from callus and cell suspension cultures of Stevia rebaudiana (Bert.). JAPS J. Anim. Plant Sci. 2016, 26, 1374–1382. [Google Scholar]
- Smitha, P.; Nazeem, P.; Thomas, J.; Keshavachandran, R.; Girija, D. Micropropagation for mass multiplication of the important medicinal sweet herb-Stevia rebaudiana. J. of Medi. and Aromt. Plant Sci. 2005, 27, 247–252. [Google Scholar]
- Khalil, S.A.; Kamal, N.; Sajid, M.; Ahmad, N.; Zamir, R.; Ahmad, N.; Ali, S. Synergism of polyamines and plant growth regulators enhanced morphogenesis, stevioside content, and production of commercially important natural antioxidants in Stevia rebaudiana Bert. Vitr. Cell. Dev. Biol. Plant 2016, 52, 174–184. [Google Scholar] [CrossRef]
- Moscatiello, R.; Baldan, B.; Navazio, L. Plant cell suspension cultures. In Plant Mineral Nutrients; Maathius, F., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 77–93. ISBN 978-1-62703-152-3. [Google Scholar]
- Mathur, S.; Shekhawat, G. Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: An in vitro approach for production of stevioside. Acta Physiol. Plant. 2013, 35, 931–939. [Google Scholar] [CrossRef]
- Ghose, A.K.; Abdullah, S.N.A.; Md Hatta, M.A.; Megat Wahab, P.E. In Vitro Regeneration of Stevia (Stevia rebaudiana Bertoni) and Evaluation of the Impacts of Growth Media Nutrients on the Biosynthesis of Steviol Glycosides (SGs). Agronomy 2022, 12, 1957. [Google Scholar] [CrossRef]
- Kaur, R.; Manchanda, P.; Sidhu, G.S. Optimization of extraction of bioactive phenolics and their antioxidant potential from callus and leaf extracts of Stevia rebaudiana Bertoni. J. Food Meas. Charact. 2022, 16, 461–470. [Google Scholar] [CrossRef]
- Zayova, E.; Nedev, T.; Stancheva, I. Callus via Shoot Organogenesis and Plant Regeneration of Stevia rebaudiana Bertoni. In Proceedings of the Bulgarian Academy of Sciences, Sofia, Bulgaria, 2 May 2022; pp. 620–628. [Google Scholar]
- Al-Zubaidy, N.A.; Ibrahim, M.M.; Musstta, M.A. The effect of growth regulators and different concentrations of sucrose in callus induction of sugar leaf plant Stevia rebaudiana and its content of stevoiside. Plant Arch. 2020, 20, 4492–4496. [Google Scholar]
- Abd El-Motaleb, M.; Abd El-Hameid, A.R.; Elnaggar, H.M.; Abdel-Hady, M.J. Callus induction and regeneration of Stevia rebaudiana Bertoni. Int. J. Chem. Tech. Res. 2015, 8, 868–877. [Google Scholar]
- Aman, N.; Hadi, F.; Khalil, S.A.; Zamir, R.; Ahmad, N. Efficient regeneration for enhanced steviol glycosides production in Stevia rebaudiana (Bertoni). Comptes Rendus Biol. 2013, 336, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Janarthanam, B.; Gopalakrishnan, M.; Sai, G.L.; Sekar, T. Plant regeneration from leaf derived callus of Stevia rebaudiana Bertoni. Plant Tissue Cult. Biotechnol. 2009, 19, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Verma, P.; Rahman, L.U.; Parasharami, V.A. Exploration of biotechnological studies in low-calorie sweetener Stevia rebaudiana: Present and future prospects. In Medicinal and Aromatic Plants; Aftab, T., Hakeem, K.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 289–324. ISBN 978-0-1281-9590-1. [Google Scholar]
- Dheeranupattana, S.; Wangprapa, M.; Jatisatienr, A. Effect of sodium acetate on stevioside production of Stevia rebaudiana. In Proceedings of the International Workshop on Medicinal and Aromatic Plants 786, Chiang Mai, Thailand, 15–18 January 2007; pp. 269–272. [Google Scholar]
- Bespalhok-Filho, J.C.; Hashimoto, J.M.; Vieira, L.G. Induction of somatic embryogenesis from leaf explants of Stevia rebaudiana. Rev. Bras. De Fisiol. Veg. 1993, 5, 51–53. [Google Scholar]
- Ali, A.; Gull, I.; Naz, S.; Afghan, S. Biochemical investigation during different stages of in vitro propagation of Stevia rebaudiana. Pak. J. Bot. 2010, 42, 2827–2837. [Google Scholar]
- Tiwari, S.; Arnold, R.; Saxena, A.; Mishra, R.; Singh Tiwari, A.; Rajak, A.; Singh, P.; Sciences, L. Studies on rapid micropropagation of Stevia rebaudiana Bertoni: A natural sweetener. Int. J. Pharm. Life Sci. 2013, 4, 2667–2671. [Google Scholar]
- Mousumi, D. Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. J. Med. Plants Res. 2008, 2, 45–51. [Google Scholar]
- Keshvari, T.; Najaphy, A.; Kahrizi, D.; Zebarjadi, A.J.C.; Biology, M. Callus induction and somatic embryogenesis in Stevia rebaudiana Bertoni as a medicinal plant. Cell. Mol. Biol. 2018, 64, 46–49. [Google Scholar] [CrossRef]
- Meenakshi, B.; Priyanka, S. Somatic embryogenesis in Stevia rebaudiana Bertoni using different concentration of growth hormones. Int. J. Plant Sci. 2010, 5, 284–289. [Google Scholar]
- Das, A.; Mandal, N. Enhanced development of embryogenic callus in Stevia rebaudiana Bert. by additive and amino acids. Biotechnol. 2010, 9, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Pande, S.; Khetmalas, M. Effect of concentration of sucrose on callus induction and somatic embryogenesis of anti-diabetic plant: Stevia rebaudiana. Asian J. Biochem. Pharm. Res. 2012, 1, 27–31. [Google Scholar]
- Naranjo, E.J.; Fernandez Betin, O.; Urrea Trujillo, A.I.; Callejas Posada, R.; Atehortua Garces, L. Effect of genotype on the in vitro regeneration of Stevia rebaudiana via somatic embryogenesis. Acta Biológica Colomb. 2016, 21, 87–98. [Google Scholar] [CrossRef]
- Nazneen, H.; Sridhar, S.; Reddy, S. Studies on somatic embryogenesis of stevia rebaudiana (Bertoni) by scanning electron microscope (SEM). World J. Pharmac. Res. 2015, 4, 918–924. [Google Scholar]
- Niedz, R.P.; Evens, T.J. Regulating plant tissue growth by mineral nutrition. Vitr. Cell. Dev. Biol. Plant 2007, 43, 370–381. [Google Scholar] [CrossRef]
- Ramage, C.M.; Williams, R.R. Mineral nutrition and plant morphogenesis. Vitr. Cell. Dev. Biol. Plant 2002, 38, 116–124. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Nasr, M.I.; Mohammed, B.R.; El-Zefzafi, M.M. Plant growth regulators affecting in vitro cultivation of Stevia rebaudiana. Sugar Tech. 2008, 10, 254–259. [Google Scholar] [CrossRef]
- Bondarev, N.; Reshetnyak, O.; Nosov, A. Peculiarities of diterpenoid steviol glycoside production in in vitro cultures of Stevia rebaudiana Bertoni. Plant Sci. 2001, 161, 155–163. [Google Scholar] [CrossRef]
- Dey, A.; Paul, S.; Kundu, S.; Bandyopadhyay, A.; Bhattacharjee, A. Elevated antioxidant potential of chlorocholine chloride-treated in vitro grown Stevia rebaudiana Bertoni. Acta Physiol. Plant. 2013, 35, 1775–1783. [Google Scholar] [CrossRef]
- Mehrafarin, A.; Etminan, A.; Delkhosh, B.; Golrokhan, M. Assessment of Stevioside content, shoot proliferation, and root induction of Stevia rebaudiana Bertoni under in vitro conditions. J. Med. Plants 2016, 15, 98–110. [Google Scholar]
- Gupta, P.; Sharma, S.; Saxena, S. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for steviol glycoside production. Appl. Biochem. Biotechnol. 2014, 172, 2894–2906. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, D.; Werbrouck, S.; Maleki, B.; Jafary, H.; Schurdi-Levraud, V. Elicitor-induced in vitro shoot multiplication and steviol glycosides production in Stevia rebaudiana. South Afr. J. Bot. 2021, 137, 265–271. [Google Scholar] [CrossRef]
- Mejía-Espejel, L.; Robledo-Paz, A.; Lozoya-Gloria, E.; Peña-Valdivia, C.B.; Carrillo-Salazar, J.A. Elicitors on steviosides production in Stevia rebaudiana Bertoni calli. Sci. Hortic. 2018, 242, 95–102. [Google Scholar] [CrossRef]
- Michalec-Warzecha, Ż.; Pistelli, L.; D’Angiolillo, F.; Libik-Konieczny, M. Establishment of highly efficient agrobacterium rhizogenes-mediated transformation for Stevia rebaudiana Bertoni explants. Acta Biol. Cracoviensia Ser. Bot. 2016, 58, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Pandey, H.; Pandey, P.; Pandey, S.S.; Singh, S.; Banerjee, S. Meeting the challenge of stevioside production in the hairy roots of Stevia rebaudiana by probing the underlying process. Plant Cell Tissue Organ Cult. (PCTOC) 2016, 126, 511–521. [Google Scholar] [CrossRef]
- Ramezani, M.; Gerami, M.; Research, B. Investigation on some main glycosides content of Stevia rebaudian B. under different concentrations of commercial and synthesized silver nanoparticles. Pharm. Biomed. Res. 2018, 4, 8–14. [Google Scholar]
- Jamwal, K.; Bhattacharya, S.; Puri, S. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. Med. Aromat. Plants 2018, 9, 26–38. [Google Scholar] [CrossRef]
- Bayraktar, M.; Naziri, E.; Karabey, F.; Akgun, I.H.; Bedir, E.; Bärbel, R.-O.; Gürel, A. Enhancement of stevioside production by using biotechnological approach in in vitro culture of Stevia rebaudiana. Int. J. Second. Metab. 2018, 5, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, F.; Ghaheri, M.; Kahrizi, D.; Mansouri, M.; Safavi, S.M.; Ghorbani, T.; Muhammadi, S.; Rahmanian, E.; Vaziri, S.; Biology, M. Effects of various glutamine concentrations on gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni. Cell. Mol. Biol. 2018, 64, 1–5. [Google Scholar] [CrossRef]
- Gupta, P.; Sharma, S.; Saxena, S.; Plants, A. Effect of abiotic stress on growth parameters and steviol glycoside content in Stevia rebaudiana (Bertoni) raised in vitro. J. Appl. Res. Med. Aromat. Plants 2016, 3, 160–167. [Google Scholar] [CrossRef]
- Alvarado-Orea, I.; Paniagua-Vega, D.; Capataz-Tafur, J.; Torres-López, A.; Vera-Reyes, I.; García-López, E.; Huerta-Heredia, A. Photoperiod and elicitors increase steviol glycosides, phenolics, and flavonoid contents in root cultures of Stevia rebaudiana. Vitr. Cell. Dev. Biol. Plant 2020, 56, 298–306. [Google Scholar] [CrossRef]
- Thakur, K.; Sood, A.; Kumar, P.; Kumar, D.; Warghat, A. Steviol glycoside accumulation and expression profiling of biosynthetic pathway genes in elicited in vitro cultures of Stevia rebaudiana. Vitr. Cell. Dev. Biol. Plant 2021, 57, 214–224. [Google Scholar] [CrossRef]
- Saptari, R.T.; Esyanti, R.R.; Putranto, R.A. Daminozide enhances the vigor and steviol glycoside yield of stevia (Stevia rebaudiana Bert.) propagated in temporary immersion bioreactors. Plant Cell. Tissue Organ Cult. (PCTOC) 2022, 149, 257–268. [Google Scholar] [CrossRef]
- Tahmasi, S.; Garoosi, G.; Ahmadi, J. Cadmium Chloride and Silver Nitrate Affect the Gene Expression, Stevioside, and Rebaudioside: A Production in Stevia rebaudiana (Bert.). Indian J. Pharm. Sci. 2021, 83, 663–670. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Javed, R.; Adeel, M.; Rizwan, M.; Ao, Q.; Yang, Y. Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of candyleaf (Stevia rebaudiana). Molecules 2020, 25, 1356. [Google Scholar] [CrossRef] [Green Version]
- Khalil, S.A.; Ahmad, N.; Zamir, R. Gamma radiation induced variation in growth characteristics and production of bioactive compounds during callogenesis in Stevia rebaudiana (Bert.). New Negatives Plant Sci. 2015, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chiew, M.; Lai, K.; Hussein, S.; Abdullah, J. Acute gamma irradiated Stevia rebaudiana Bertoni enhanced particular types of steviol glycosides. Asia Pac. J. Mol. Biol. Biotechnol. 2019, 27, 56–65. [Google Scholar] [CrossRef]
- Melviana, A.C.; Esyanti, R.R.; Setyobudi, R.H.; Mel, M.; Adinurani, P.G.; Burlakovs, J. Gene expression related to steviol glycoside synthesis produced in Stevia rebaudiana (Bert.) shoot culture induced with high far-red LED light in TIS RITA® bioreactor system. Sarhad J. Agric. 2021, 37, 1–8. [Google Scholar] [CrossRef]
- Gerami, M.; Abbaspour, H.; Ghasemiomran, V.; Pirdashti, H.; Research, E. Effects of ethyl methanesulfonate on morphological and physiological traits of plants regenerated from stevia (stevia rebaudiana bertoni) calli. Appl. Ecol. Environ. Res. 2017, 15, 373–385. [Google Scholar] [CrossRef]
- Ladygin, V.; Bondarev, N.; Semenova, G.; Smolov, A.; Reshetnyak, O.; Nosov, A. Chloroplast ultrastructure, photosynthetic apparatus activities and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro. Biol. Plant. 2008, 52, 9–16. [Google Scholar] [CrossRef]
- Yoneda, Y.; Nakashima, H.; Miyasaka, J.; Ohdoi, K.; Shimizu, H. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry 2017, 137, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ghaheri, M.; Kahrizi, D.; Bahrami, G.; Mohammadi-Motlagh, H.-R. Study of gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni under various mannitol concentrations. Mol. Biol. Rep. 2019, 46, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Lucho, S.R.; do Amaral, M.N.; Auler, P.A.; Bianchi, V.J.; Ferrer, M.Á.; Calderón, A.A.; Braga, E.J.B. Salt stress-induced changes in in vitro cultured Stevia rebaudiana Bertoni: Effect on metabolite contents, antioxidant capacity and expression of steviol glycosides-related biosynthetic genes. J. Plant Growth Regul. 2019, 38, 1341–1353. [Google Scholar] [CrossRef]
- Halder, M.; Roychowdhury, D.; Jha, S. A critical review on biotechnological interventions for production and yield enhancement of secondary metabolites in hairy root cultures. Hairy Roots Eff. Tool Plant Biotechnol. 2018, 21–44. [Google Scholar] [CrossRef]
- Kazmi, A.; Khan, M.A.; Mohammad, S.; Ali, A.; Kamil, A.; Arif, M.; Ali, H. Elicitation directed growth and production of steviol glycosides in the adventitious roots of Stevia rebaudiana Bertoni. Ind. Crop. Prod. 2019, 139, 111530. [Google Scholar] [CrossRef]
- Libik-Konieczny, M.; Michalec-Warzecha, Ż.; Dziurka, M.; Zastawny, O.; Konieczny, R.; Rozpądek, P.; Pistelli, L. Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl. Microbiol. Biotechnol. 2020, 104, 5929–5941. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; Kim, B.S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123. [Google Scholar] [CrossRef]
- Ghanati, F.; Bakhtiarian, S. Effect of methyl jasmonate and silver nanoparticles on production of secondary metabolites by Calendula officinalis L (Asteraceae). Trop. J. Pharm. Res. 2014, 13, 1783–1789. [Google Scholar] [CrossRef] [Green Version]
- Jasim, B.; Thomas, R.; Mathew, J.; Radhakrishnan, E. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm. J. 2017, 25, 443–447. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Hadian, J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 2015, 94, 749–759. [Google Scholar] [CrossRef]
- Castro-González, C.G.; Sánchez-Segura, L.; Gómez-Merino, F.C.; Bello-Bello, J.J. Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: Transport and accumulation. Sci. Rep. 2019, 9, 10372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaizad, M.; Hashemi-Moghaddam, H.; Abbaspour, H.; Gerami, M.; Mueller, A. Photocatalytic effect of TiO2 nanoparticles on morphological and photochemical properties of stevia plant (Stevia rebaudiana B.). Sugar Tech. 2019, 21, 1024–1030. [Google Scholar] [CrossRef]
- Khan, S.A.; Ur Rahman, L.; Shanker, K.; Singh, M. Agrobacterium tumefaciens-mediated transgenic plant and somaclone production through direct and indirect regeneration from leaves in Stevia rebaudiana with their glycoside profile. Protoplasma 2014, 251, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.K.; Konjengbam, M.; Dwivedi, P.; Kaur, P.; Kumar, V.; Ray, D.; Ray, P.; Nazir, R.; Kaur, H.; Parida, S.; et al. Biotechnological interventions of in vitro propagation and production of valuable secondary metabolites in Stevia rebaudiana. Appl. Microbiol. Biotechnol. 2021, 105, 8593–8614. [Google Scholar]
- Taak, P.; Koul, B.; Chopra, M.; Sharma, K. Comparative assessment of mulching and herbicide treatments for weed management in Stevia rebaudiana (Bertoni) cultivation. S. Afr. J. Bot. 2021, 140, 303–311. [Google Scholar] [CrossRef]
- Taak, P.; Tiwari, S.; Koul, B.J.S.r. Optimization of regeneration and Agrobacterium-mediated transformation of Stevia (Stevia rebaudiana Bertoni): A commercially important natural sweetener plant. Sci. Rep. 2020, 10, 16224. [Google Scholar] [CrossRef]
- Mubarac, M. Genetic Transformation in Stevia rebaudiana. In Proceedings of the International Conference on Biotechnology Applications In Agriculture, Benha University (ICBAA), Hurghada, Egypt, 18–21 February 2012; pp. 8–12. [Google Scholar]
- Guleria, P.; Yadav, S. Agrobacterium mediated transient gene silencing (AMTS) in Stevia rebaudiana: Insights into steviol glycoside biosynthesis pathway. PLoS ONE 2013, 8, e74731. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; La Hovary, C.; Chen, H.-Y.; Li, X.; Eng, H.; Vallejo, V.; Qu, R.; Dewey, R. An efficient Stevia rebaudiana transformation system and in vitro enzyme assays reveal novel insights into UGT76G1 function. Sci. Rep. 2020, 10, 3773. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Zhuang, Y.; Mao, H.-Z.; Jang, I.-C. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants. BMC Plant Biol. 2019, 19, 1. [Google Scholar] [CrossRef]
- Kim, M.J.; Zheng, J.; Liao, M.H.; Jang, I.C. Overexpression of Sr UGT 76G1 in Stevia alters major steviol glycosides composition towards improved quality. Plant Biotechnol. J. 2019, 17, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Suresh, P.S.; Singh, P.P.; Sharma, M.; Sharma, U. Multicomponent natural deep eutectic solvents: Super solvents for the efficient extraction of steviol glycosides (rebaudioside A) from Stevia rebaudiana. J. Clean. Prod. 2023, 385, 135639. [Google Scholar] [CrossRef]
- Moongngarm, A.; Sriharboot, N.; Loypimai, P.; Moontree, T. Ohmic heating-assisted water extraction of steviol glycosides and phytochemicals from Stevia rebaudiana leaves. Lwt 2022, 154, 112798. [Google Scholar] [CrossRef]
- Milani, G.; Vian, M.; Cavalluzzi, M.M.; Franchini, C.; Corbo, F.; Lentini, G.; Chemat, F. Ultrasound and deep eutectic solvents: An efficient combination to tune the mechanism of steviol glycosides extraction. Sonochemistry 2020, 69, 105255. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Barba, F.J.; Granato, D.; Galanakis, C.M.; Herceg, Z.; Dragović-Uzelac, V.; Putnik, P. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem. 2018, 254, 150–157. [Google Scholar] [CrossRef]
- Gallo, M.; Vitulano, M.; Andolfi, A.; DellaGreca, M.; Conte, E.; Ciaravolo, M.; Naviglio, D. Rapid Solid-Liquid Dynamic Extraction (RSLDE): A new rapid and greener method for extracting two steviol glycosides (stevioside and rebaudioside A) from stevia leaves. Plant Foods Hum. Nutr. 2017, 72, 141–148. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, S.; Han, Y.; Yuan, H.; Gu, C.; Wang, Z. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana. Plant Physiol. Biochem. 2015, 86, 174–180. [Google Scholar] [CrossRef]
- Chen, J.; Hou, K.; Qin, P.; Liu, H.; Yi, B.; Yang, W.; Wu, W. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genom. 2014, 15, 571. [Google Scholar] [CrossRef] [Green Version]
- Dhandapani, S.; Kim, M.J.; Chin, H.J.; Leong, S.H.; Jang, I.-C. Identification and functional characterization of tissue-specific terpene synthases in Stevia rebaudiana. Int. J. Mol. Sci. 2020, 21, 8566. [Google Scholar] [CrossRef]
- Xiang, Z.-X.; Tang, X.-L.; Liu, W.-H.; Song, C.-N. A comparative morphological and transcriptomic study on autotetraploid Stevia rebaudiana (bertoni) and its diploid. Plant Physiol. Biochem. 2019, 143, 154–164. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, X.; Zhang, T.; Yang, Y.; Tong, H.; Yuan, H. Comparative transcriptome analysis provides insights into steviol glycoside synthesis in stevia (Stevia rebaudiana B.) leaves under nitrogen deficiency. Plant Cell Rep. 2021, 40, 1709–1722. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, T.; Xu, X.; Yang, Y.; Tong, H.; Mur, L.; Yuan, H. Transcriptomic Characterization of Nitrate-Enhanced Stevioside Glycoside Synthesis in Stevia (Stevia rebaudiana) Bertoni. Int. J. Mol. Sci. 2021, 22, 8549. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Jia, X.; Zhu, L.; Yin, H. Comparative transcriptomic of Stevia rebaudiana provides insight into rebaudioside D and rebaudioside M biosynthesis. Plant Physiol. Biochem. 2021, 167, 541–549. [Google Scholar] [CrossRef]
- Tao, R.; Cho, S. Consumer-based sensory characterization of steviol glycosides (rebaudioside A, D, and M). Foods 2020, 9, 1026. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.M.; Vallejo, V.A.; Beaudry, R.M.; Warner, R.M. Daily light integral influences steviol glycoside biosynthesis and relative abundance of specific glycosides in stevia. Hortscience 2015, 50, 1479–1485. [Google Scholar] [CrossRef] [Green Version]
- Mandhan, V.; Kaur, J.; Singh, K. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni. BMC Plant Biol. 2012, 12, 197. [Google Scholar] [CrossRef] [Green Version]
- Mandhan, V.; Singh, K. DIdentification of Novel MicroRNAs and their Target Prediction in Stevia rebaudiana. Transcriptomics 2015, 2, 2. [Google Scholar]
- Mehta, A.; Gupta, H.; Rawal, R.; Mankad, A.; Tiwari, T.; Patel, M.; Ghosh, A. In silico microRNA identification from stevia rebaudiana transcriptome assembly. Eur. J. Med. Plants 2016, 15, 1–14. [Google Scholar] [CrossRef]
- Samsulrizal, N.H.; Khadzran, K.S.; Shaarani, S.H.; Noh, A.L.; Sundram, T.C.; Naim, M.A.; Zainuddin, Z.J. De novo transcriptome dataset of Stevia rebaudiana accession MS007. Data Brief. 2020, 28, 104811. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Main Information About Data | |
Timespan | 1989:2022 |
Sources (Journals, Books, etc.) | 802 |
Documents | 2503 |
Annual Growth Rate % | 8.66 |
Document Average Age | 7.43 |
Average citations per doc | 16.87 |
References | 58,839 |
Document Contents | |
Keywords Plus (ID) | 4291 |
Author’s Keywords (DE) | 5127 |
AUTHORS | |
Authors | 7797 |
Authors of single-authored docs | 95 |
Authors Collaboration | |
Single-authored docs | 153 |
Co-Authors per Doc | 4.83 |
International co-authorships % | 17.78 |
Document Types | |
Article | 2065 |
article; book chapter | 1 |
article; early access | 22 |
article; proceedings paper | 22 |
Correction | 11 |
editorial material | 32 |
Letter | 12 |
meeting abstract | 120 |
news item | 51 |
Note | 13 |
Review | 145 |
review; book chapter | 2 |
review; early access | 7 |
Kingdom | Plantae |
---|---|
Division | Magnoliophyta |
Class | Magnoliopsida |
Group | Monochlamydae |
Order | Asterales |
Family | Asteraceae |
Tribe | Eupatorieae |
Genus | Stevia |
Species | S. rebaudiana |
Characteristic | Description |
---|---|
Habit | Perennial herb |
Habitat | Tropical and sub-tropical regions |
Synonym(s) | Eupatorium rebaudianum Bertoni First published in Revista Agron. Asunción 2: 35 (1899) [17] Stevia rebaudiana Hemsl. First published in Hooker’s Icon. Pl. 29: t. 2816 (1906) [17] |
Common names | Sweet leaf, Honey yerba, Honey leaf, Sweet chrysanthemum, Candy leaf |
Local name | Meethi tulsi |
Stem | Erect and slender stem, branched, pubescent, produces secondary shoots (suckers) from its base |
Root | Tap roots, perennial |
Leaf | Simple, opposite, subsessile leaf, usually 2–3 cm long and 0.6–1 cm wide, narrowly elliptic to oblanceolate or spatulate-oblanceolate to linear-oblong or ovate, toothed on upper half, entire on lower half, secondary reticulate venation, blades in dry state olive green to brownish green, usually dark on the upper side, both surfaces subscrabous |
Inflorescence | Capitula arranged into loose, paniculate–corymbose inflorescence, each capitulum enveloped by involucre and made up of five disk florets |
Flower | Hermaphrodite, complete, white flowers with pale purple throat corollas (Figure 3) |
Calyx | Sepals persistent and hairy (Figure 3) |
Corolla | Actinomorphic, five, white, gamopetalous, corolla tube slender, greenish below whitish to purplish above, covered with fine hairs on the inside to glabrous on the outside |
Androecium | Stamens 5, anthers syngenesious with distal appendages, light green, dehiscence longitudinal (Figure 3) |
Gynoecium | Bicarpellary, syncarpous, unilocular with inferior ovary, ovule single, basal, and anatropous, stigma is bilobed from the middle style surrounded by anthers (Figure 3) |
Pollination | Self-incompatible, insect pollination |
Fruit/seed | Single seeded achenes (3 mm in length), with persistent bristles, with pale or tan seeds (Figure 3) |
Flowering | January to March (southern hemisphere) September to December (northern hemisphere) |
Reference | Explant Source | Explant | Type of Medium | Basal Medium | PGR Type and Conc. (mg/L) | Additive | Response |
---|---|---|---|---|---|---|---|
[131] | Ex Vitro | nodes and leaf | SIM | MS | 1.5 | - | 4.68 shoots |
0.5 | |||||||
SMM | MS | 1 | 10.14 shoots | ||||
1.5 | |||||||
[132] | In Vitro Grown Seedlings | nodal explant | SOM | MS | 0.5 | NF-2% Ag (10) | 3.35 shoots |
[133] | In Vitro | nodes with axillary buds | - | MS | 0.1 | coherent light irradiation (weekly) | multiplication coefficient doubled |
Epin 0.5 | |||||||
[134] | In Vitro Grown Seedlings | nodal segment | SIM | MS | 1 | low mol wt chitosan (60 mg/L) | 25 leaves/explant |
[135] | Plants Grown In Greenhouse | internodal segment | - | MS | 0.25 | - | 8.7 shoots |
[136] | - | nodal explants | SMM | MS | 1 | - | 3.1 shoots |
0.3 | - | ||||||
[137] | Ex Vitro | nodal segments | SIM | MS | 0.5 | - | highest shoot no |
1.5 | |||||||
[138] | Greenhouse Grown Plant | nodal segments | SIM | MS | 1 | - | 3.18 shoots |
0.25 | |||||||
SMM | MS | 0.5 | - | 13.38 shoots | |||
0.5 | |||||||
[125] | - | nodal segments, shoot tip | SIM | MS | 2 | - | 98% shoot induction (nodal seg) |
SMM | MS | 0.3 | - | 40.5 shoots | |||
0.3 | |||||||
0.1 | |||||||
PEG (15) | |||||||
[139] | Greenhouse Grown Plant | nodal segments with axillary bud | - | MS | 2 | urea (5 mg/L) | 44.56 shoots |
1 | |||||||
[140] | Nursery Grown Plant | axillary nodes | - | MS * | - | - | 7.2 nodes/shoot |
[128] | - | nodal segments and shoot tips | - | WPM | 0.5 | - | 10.2 shoots/shoot tip |
0.5 | |||||||
[141] | Nursery Grown Plant | nodal segments | - | 1/2 MS | 0.2 | - | 3 shoots |
[142] | In Vitro Grown Seedlings | nodal segments | - | MS | 1 | - | max shoot length (3.1 cm) |
[143] | In Vitro | single nodes | SIM, RIM | DKW | 0.5 | FeEDDHA | one step plantlet development |
paclobutrazol 0.5 | |||||||
[144] | In Vitro | cotyledonary leaves | SMM | MS | 1 | CCC (0.5) | 24 shoots |
0.5 | |||||||
[145] | Ex Vitro | nodal segments | SIM | MS | 1 | - | 9.48 shoots |
0.05 | |||||||
SMM | MS | 2 | - | ||||
[126] | Ex Vitro | nodal segments, shoot tip, internodal segments | SIM | MS | 2 | - | 3 shoots |
[124] | Ex Vitro | nodal segments | SIM/SBI | MS | 1 | - | |
0.5 | |||||||
SMM/SBP | MS | 1 | - | 4.25 shoots | |||
0.25 | |||||||
[146] | In Vitro | nodal segments | SBI | MS | 1 | - | 2 shoots |
SBP | MS | 1 | - | 15.69 shoots | |||
[147] | Ex Vitro | shoot tips | MS | 1.5 | - | 8.9 shoots | |
0.2 | |||||||
[121] | In Vitro | shoot tip and nodal segments | SIM | B5 | 1 | - | 28 (shoot tip) |
0.14 | |||||||
[148] | In Vitro | nodal explants with auxillary buds | MS | 4 | - | 35 shoots | |
[123] | Ex Vitro | shoot tip | SIM | MS | 1 | - | 16.2 shoots |
0.5 | |||||||
[149] | Pot Grown Plant | nodal segments | MS | 3 | - | 7.2 shoots | |
[150] | Pot Grown Plant | nodal segment | SIM | MS | 0.1 | - | 1.55 shoots |
SMM | MS | 3.5 | - | 83.2 plantlets | |||
[12] | Field Grown Plant | leaf and nodes | SIM | MS | 0.5 | copper sulphate pentahydrate (1 μM) | 9.5 (nodal segment) |
0.5 | |||||||
SMM | MS | 0.8 | 17–18 (nodal segment) | ||||
0.4 | |||||||
[151] | In Vitro | leaf | SIM | MS | 2 | - | 4.33 shoots |
1 | |||||||
[152] | Ex Vitro | nodal explants | - | MS | 1.0 | adenine sulphate (30 mg/L) | 10 shoots |
10 | |||||||
[107] | In Vitro | nodal explants | - | MS | 0.5 | 23.4 | |
2 | |||||||
[122] | Greenhouse Grown Plant | Shoot apex, nodal, and leaf | SIM | MS | 2 | 11.2 (shoot apex) | |
1 | |||||||
Color Key | |||||||
BAP | Kin | IAA | IBA | NAA | TDZ | 2,4-D | GA3 |
Reference | Explant Source | Explant | Type of Medium | Basal Medium | PGR Type and Conc. (mg/L) | Additive | Response |
---|---|---|---|---|---|---|---|
[161] | In Vitro Grown Seedlings | leaf | CIM | MS | Zeatin (0.10) | - | 76.67% (callus production) |
1.50 | |||||||
[162] | - | - | CIM | MS | 4 | - | best response |
0.5 | |||||||
SOM | MS | 10 | - | 5.8 shoots | |||
[163] | In Vitro | leaf | CIM | MS | 2 | - | 80% CI (leaf) |
0.5 | |||||||
0.5 | |||||||
SOM | MS | 0.5 | - | 2.3 shoots/callus (leaf) | |||
2 | |||||||
0.5 | |||||||
SMM | MS | 2 | - | 8.2 shoots | |||
[164] | In Vitro Grown Seedlings | leaf | CIM | MS | 2 | - | 100% callus induction, |
0.5 | - | highest average wet weight (0.963 g/L) | |||||
[165] | Ex Vitro | leaf, nodal segments | CIM | MS | 2 | - | |
SIM | MS | 0.5 | - | 13.2 shoots | |||
1 | |||||||
[144] | In Vitro | cotyledonary leaves | CIM | MS | 3 | CCC (1) | highest callusing efficiency |
1 | |||||||
1/2 MS | 0.5 | - | max growth index (secondary callus) | ||||
[166] | In Vitro | leaves | CIM | MS | 2 | agar (3.5 mg/L) | |
SOM | MS | 2 | agar (7 mg/L) | 28 shoots | |||
[117] | Greenhouse Grown Plant | flower | CIM | MS | 2 | - | 93.6% callus induction |
2 | |||||||
SOM | MS | 2 | - | 21.6 shoots | |||
[112] | - | nodal segments | CIM | MS | 1.0 | - | 100% callusing |
2.0 | |||||||
SOM | MS | 2 | - | 3 (nodal segment) | |||
0.2 | |||||||
[167] | Greenhouse Plant | leaf, nodal explants | CIM | MS | 2.45 | - | max callus |
0.5 | |||||||
SOM | MS | 1 | - | 14 shoots | |||
0.25 | |||||||
Color Key | |||||||
BAP | Kin | IAA | IBA | NAA | TDZ | 2,4-D | GA3 |
Reference | Explant Source | Explant | Basal Medium | PGR(s) Conc. (mg/L) | Additive(s) | Response |
---|---|---|---|---|---|---|
[131] | ex vitro | nodes and leaf | 1/2 MS | 1 | 8.02 roots/shoot | |
[132] | In vitro grown seedlings | nodal explant | MS | 0.5 | NF-1% Ag (50) | 42.92% rooting |
[161] | In vitro grown seedlings | Leaf | 1/2 MS | 2.86 roots/shoot | ||
[163] | in vitro | leaf and nodal segment | 1/2 MS | 0.1 | 4.5 roots/shoot | |
[133] | in vitro | nodes with axillary buds | MS | hydroxycinnamic acid (0.5) | 85% rooting | |
[136] | nodal explants | MS | 0.5 | 27 roots/shoot | ||
[125] | nodal segments, shoot tip | 1/2 MS | 0.5 | 21.2 roots | ||
[139] | greenhouse grown plant | nodal segments with axillary bud | MS | 4 | 100% (rooting) | |
[140] | nursery grown plant | axillary nodes | 1/2 MS | Charcoal (0.1 mg/L) | 25 roots/shoot | |
[128] | nodal segments and shoot tips | |||||
[141] | nursery grown plant | nodal segments | 1/2 MS | 2 | 10 roots | |
0.5 | ||||||
[142] | In vitro grown seedlings | nodal segments | MS | 0.25 | 8.1 roots | |
[145] | ex vitro | nodal segments | MS | 0.5 | 9.46 roots | |
[166] | in vitro | leaves | MS | 2 | Agar (7 mg/L) | 100% rooting |
[124] | ex vitro | nodal segments | MS | 0.5 | 8.9 roots | |
[146] | in vitro | nodal segments | 1/2 MS | 0.4 | 14.4 roots | |
[121] | in vitro | shoot tip and nodal segments | MS | 11.5 | ||
[123] | ex vitro | shoot tip, nodal segment and leaf | 1/2 N6 | 1 | 11.80 roots | |
[112] | nodal segments and leaves | 1/4 MS | 0.1 | 9.47 roots per plantlet | ||
[149] | pot grown plant | nodal segments | 1/2 MS | 0.5 | max root length | |
Color Key | ||||||
BAP | Kin | IAA | IBA | NAA | ||
Elicitation Studies in Stevia (In Vitro) | |||
---|---|---|---|
Reference | Name of Elicitor (Conc.) | Fold Increase as Compared to Control | |
[103] | Alginate (0.5 mg/L) | 9.4 | |
0.55 | |||
[193] | MeJA (100 µm) | 17.4 | |
[188] | Salicylic acid (100 mM) | 9.8 | |
Salicylic acid (10 mM) | 34.6 | ||
[102] | Methanol (0.1% v/v) | 2 (Reb A, F, C, Stv, Dul A) | |
[169] | Sodium acetate (0.01) | 0.0039 | |
[194] | Glutamine (3%) | 1.4 | |
Glutamine (2%) | 1.4 | ||
[161] | MS (0.75) | 1.67 | |
MS (0.25) | 1.2 | ||
[195] | Na2CO3 (0.05%) | 2.3 | |
4.9 | |||
[156] | BAP (1) + NAA (1) + 2,4-D (2.5) | 33.87 mg/g | |
[158] | Spd (2) + BA (2) + Kn (2) | 3.38 | |
[185] | 1/2 MS + IBA (0.2) + active carbon (2) | 2.29 | |
[196] | Hydrogen Peroxide (3 days) | 2.4 (SGs-stev + reb A) | |
[187] | MeJA | 0.59 | |
[197] | ALG | 5 | |
7 | |||
[198] | Daminozide (10 ppm) | 1.9 | |
1.9 | |||
BAP (1) + 2,4-D (0.5) | 1.6 | ||
1.9 | |||
[199] | cadmium chloride (20 mg/L, 96 h) | 1.19 | |
silver nitrate (60 mg/L, 24 h) | 1.2 | ||
[200] | Zinc Oxide NP (2 mg/L) | 1.2 | |
1.5 | |||
Copper oxide NP (10) | 2.8 | ||
2.01 | |||
[188] | Temperature (28 °C) | 9.8 | |
[201] | Gamma radiation (15 Gy) | 1.08 | |
[202] | Gamma radiation (23 Gy) | 4 | |
3.4 | |||
3.76 | |||
[203] | Light (High far-red LED RITA) | 0.37 | |
0.23 | |||
Color Key | |||
Stevioside | Reb A | Reb D | SGs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Gupta, S.; Kumari, D.; Kothari, S.L.; Jain, R.; Kachhwaha, S. Exploring Plant Tissue Culture and Steviol Glycosides Production in Stevia rebaudiana (Bert.) Bertoni: A Review. Agriculture 2023, 13, 475. https://doi.org/10.3390/agriculture13020475
Sharma S, Gupta S, Kumari D, Kothari SL, Jain R, Kachhwaha S. Exploring Plant Tissue Culture and Steviol Glycosides Production in Stevia rebaudiana (Bert.) Bertoni: A Review. Agriculture. 2023; 13(2):475. https://doi.org/10.3390/agriculture13020475
Chicago/Turabian StyleSharma, Shilpa, Swati Gupta, Deepa Kumari, Shanker Lal Kothari, Rohit Jain, and Sumita Kachhwaha. 2023. "Exploring Plant Tissue Culture and Steviol Glycosides Production in Stevia rebaudiana (Bert.) Bertoni: A Review" Agriculture 13, no. 2: 475. https://doi.org/10.3390/agriculture13020475
APA StyleSharma, S., Gupta, S., Kumari, D., Kothari, S. L., Jain, R., & Kachhwaha, S. (2023). Exploring Plant Tissue Culture and Steviol Glycosides Production in Stevia rebaudiana (Bert.) Bertoni: A Review. Agriculture, 13(2), 475. https://doi.org/10.3390/agriculture13020475