Assessment of Earthworm Services on Litter Mineralisation and Nutrient Release in Annual and Perennial Energy Crops (Zea mays vs. Silphium perfoliatum)
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil
2.2. Litter
2.3. Earthworms
2.4. Experimental Design
2.5. Incubation Experiment and Sampling of Soil, Casts and Litter
2.6. Calculations
2.6.1. Decomposition and Consumption
2.6.2. Litter-Derived Total C, N and P
2.7. Statistical Evaluation
3. Results
3.1. Earthworm Survival
3.2. Mineralisation of Litter Biomass
3.2.1. Decomposition Rate k
3.2.2. Consumption Rate C
3.3. Nutrient Release
3.3.1. Carbon, Nitrogen and Phosphate from Litter
3.3.2. Carbon, Nitrogen and Phosphate in Earthworm Casts
4. Discussion
4.1. Earthworm Functional Groups
4.2. Cast Nutrients
4.3. Applicability under Field Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrmann, A. Biogas Production from Maize: Current State, Challenges and Prospects. 2. Agronomic and Environmental Aspects. BioEnergy Res. 2013, 6, 372–387. [Google Scholar] [CrossRef]
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew. Sustain. Energy Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Fiala, M.; Feijoo, G.; Lema, J.M.; Moreira, M.T. Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renew. Energy 2014, 68, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H. Others Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Schrama, M.; Vandecasteele, B.; Carvalho, S.; Muylle, H.; van der Putten, W.H. Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy 2016, 8, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Ruf, T.; Gilcher, M.; Udelhoven, T.; Emmerling, C. Implications of Bioenergy Cropping for Soil: Remote Sensing Identification of Silage Maize Cultivation and Risk Assessment Concerning Soil Erosion and Compaction. Land 2021, 10, 128. [Google Scholar] [CrossRef]
- Mast, B.; Lemmer, A.; Oechsner, H.; Reinhardt-Hanisch, A.; Claupein, W.; Graeff-Hönninger, S. Methane yield potential of novel perennial biogas crops influenced by harvest date. Ind. Crops Prod. 2014, 58, 194–203. [Google Scholar] [CrossRef]
- Gansberger, M.; Montgomery, L.F.R.; Liebhard, P. Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: A review. Ind. Crops Prod. 2015, 63, 362–372. [Google Scholar] [CrossRef]
- Mueller, A.L.; Berger, C.A.; Schittenhelm, S.; Stever-Schoo, B.; Dauber, J. Water availability affects nectar sugar production and insect visitation of the cup plant Silphium perfoliatum L. (Asteraceae). J. Agron. Crop Sci. 2020, 206, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Schorpp, Q.; Müller, A.; Schrader, S.; Dauber, J. Agrarökologisches Potential der Durchwachsenen Silphie (Silphium perfoliatum L.) aus Sicht biologischer Vielfalt— Agro-ecological potential of the cup plant (Silphium perfoliatum L.) from a biodiversity perspective. J. Kulturpflanzen 2016, 68, 412–422. [Google Scholar] [CrossRef]
- Cumplido-Marin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowski, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agron. J. 2020, 10, 928. [Google Scholar] [CrossRef]
- Grunwald, D.; Panten, K.; Schwarz, A.; Bischoff, W.A.; Schittenhelm, S. Comparison of maize, permanent cup plant and a perennial grass mixture with regard to soil and water protection. GCB Bioenergy 2020, 12, 694–705. [Google Scholar] [CrossRef]
- Emmerling, C.; Ruf, T.; Audu, V.; Werner, W.; Udelhoven, T. Earthworm communities are supported by perennial bioenergy cropping systems. Eur. J. Soil Biol. 2021, 105, 103331. [Google Scholar] [CrossRef]
- Schorpp, Q.; Schrader, S. Earthworm functional groups respond to the perennial energy cropping system of the cup plant (Silphium perfoliatum L.). Biomass Bioenergy 2016, 87, 61–68. [Google Scholar] [CrossRef]
- Van Capelle, C.; Schrader, S.; Brunotte, J. Tillage-induced changes in the functional diversity of soil biota—A review with a focus on German data. Eur. J. Soil Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- Schoo, B.; Wittich, K.P.; Böttcher, U.; Kage, H.; Schittenhelm, S. Drought Tolerance and Water-Use Efficiency of Biogas Crops: A Comparison of Cup Plant, Maize and Lucerne-Grass. J. Agron. Crop Sci. 2017, 203, 117–130. [Google Scholar] [CrossRef]
- Andriuzzi, W.S.; Pulleman, M.M.; Schmidt, O.; Faber, J.H.; Brussaard, L. Anecic earthworms (Lumbricus terrestris) alleviate negative effects of extreme rainfall events on soil and plants in field mesocosms. Plant Soil 2015, 397, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Capowiez, Y.; Cadoux, S.; Bouchant, P.; Ruy, S.; Roger-Estrade, J.; Richard, G.; Boizard, H. The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil Tillage Res. 2009, 105, 209–216. [Google Scholar] [CrossRef]
- Ernst, G.; Felten, D.; Vohland, M.; Emmerling, C. Impact of ecologically different earthworm species on soil water characteristics. Eur. J. Soil Biol. 2009, 45, 207–213. [Google Scholar] [CrossRef]
- Bertrand, M.; Barot, S.; Blouin, M.; Whalen, J.; de Oliveira, T.; Roger-Estrade, J. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 2015, 35, 553–567. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, L.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Lubbers, I.M.; Pulleman, M.M.; Van Groenigen, J.W. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biol. Biochem. 2017, 105, 12–24. [Google Scholar] [CrossRef]
- Agostini, F.; Gregory, A.S.; Richter, G.M. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out? BioEnergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef] [Green Version]
- Chimento, C.; Almagro, M.; Amaducci, S. Carbon sequestration potential in perennial bioenergy crops: The importance of organic matter inputs and its physical protection. GCB Bioenergy 2016, 8, 111–121. [Google Scholar] [CrossRef]
- Don, A.; Steinberg, B.; Schöning, I.; Pritsch, K.; Joschko, M.; Gleixner, G.; Schulze, E.D. Organic carbon sequestration in earthworm burrows. Soil Biol. Biochem. 2008, 40, 1803–1812. [Google Scholar] [CrossRef]
- Lee, K.E. Earthworms: Their Ecology and Relationships with Soils and Land Use; Academic Press Inc.: Sydney, Australia, 1985. [Google Scholar]
- Ernst, G.; Henseler, I.; Felten, D.; Emmerling, C. Decomposition and mineralization of energy crop residues governed by earthworms. Soil Biol. Biochem. 2009, 41, 1548–1554. [Google Scholar] [CrossRef]
- Postma-Blaauw, M.B.; Bloem, J.; Faber, J.H.; van Groenigen, J.W.; de Goede, R.G.M.; Brussaard, L. Earthworm species composition affects the soil bacterial community and net nitrogen mineralization. Pedobiologia 2006, 50, 243–256. [Google Scholar] [CrossRef]
- Laossi, K.R.; Ginot, A.; Noguera, D.C.; Blouin, M.; Barot, S. Earthworm effects on plant growth do not necessarily decrease with soil fertility. Plant Soil 2010, 328, 109–118. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Van Groenigen, K.J.; Koopmans, G.F.; Stokkermans, L.; Vos, H.M.J.; Lubbers, I.M. How fertile are earthworm casts? A meta-analysis. Geoderma 2019, 338, 525–535. [Google Scholar] [CrossRef]
- Decaëns, T.; Rangel, A.F.; Asakawa, N.; Thomas, R.J. Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia. Biol. Fertil. Soils 1999, 30, 20–28. [Google Scholar] [CrossRef]
- Graff, O. Stickstoff, Phosphor und Kalium in der Regenwurmlosung auf der Wiesenversuchsfläche des Sollingprojektes. Ann. Zool. 1971, 4, 503–512. [Google Scholar]
- Abail, Z.; Sampedro, L.; Whalen, J.K. Short-term carbon mineralization from endogeic earthworm casts as influenced by properties of the ingested soil material. Appl. Soil Ecol. 2017, 116, 79–86. [Google Scholar] [CrossRef]
- Scheu, S. Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biol. Fertil. Soils 1987, 5, 230–234. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- ISO 11277; ISO 11277:1998/Cor 1:2002 Soil Quality—Determination of Particle Size Distribution in Mineral soil Material—Method by Sieving and Sedimentation. International Organization for Standardization (ISO): Geneva, Switzerland, 2002. Available online: https://www.iso.org/standard/36291.html (accessed on 16 December 2020).
- Fründ, H.C.; Butt, K.; Capowiez, Y.; Eisenhauer, N.; Emmerling, C.; Ernst, G.; Potthoff, M.; Schädler, M.; Schrader, S. Using earthworms as model organisms in the laboratory: Recommendations for experimental implementations. Pedobiologia 2010, 53, 119–125. [Google Scholar] [CrossRef]
- VDLUFA, Methode A 6.2.1.1, Bestimmung von Phosphor und Kalium im Calcium-Acetat-Lactat-Auszug. In Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch); Bd. I Die Untersuchung von Böden; 4. Aufl., 6. Teillfg. 2012; VDLUFA-Verlag: Darmstadt, Germany, 2012.
- ISO 11885; Water quality—Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). International Organization for Standardization (ISO): Geneva, Switzerland, 2007. Available online: https://www.iso.org/standard/36250.html (accessed on 16 December 2020).
- ISO 10390; Soil quality—Determination of pH. International Organization for Standardization (ISO): Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/40879.html#:~:text=ISO%2010390%3A2005%20specifies%20an,(pH%20in%20CaCl2) (accessed on 16 December 2020).
- VDLUFA, Methode A 6.5.1, Bestimmung der Neutral-Detergenzien-Faser nach Amylasebehandlung (aNDF) sowie nach Amylasebehandlung und Veraschung (aNDFom). In Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Bd. III Die chemische Untersuchung von Futtermitteln; 3. Aufl., 8. Erg. 2012; VDLUFA-Verlag: Darmstadt, Germany, 2012.
- VDLUFA (2012c) Methode A 6.5.2, Bestimmung der Säure-Detergenzien-Faser (ADF) und der Säure-Detergenzien-Faser nach Veraschung (ADFom). In Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Bd. III Die chemische Untersuchung von Futtermitteln; 3. Aufl., 8. Erg. 2012; VDLUFA-Verlag: Darmstadt, Germany, 2012.
- VDLUFA, Methode A 6.5.3, Bestimmung des Säure-Detergenzien-Lignins (ADL). In Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Bd. III Die chemische Untersuchung von Futtermitteln; 3. Aufl., 8. Erg. 2012; VDLUFA-Verlag: Darmstadt, Germany, 2012.
- Olson, J.S. Energy Storage and the Balance of Producers and Decomposers in Ecological Systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Daniel, O. Leaf-litter consumption and assimilation by juveniles of Lumbricus terrestris L. (Oligochaeta, Lumbricidae) under different environmental conditions. Biol. Fertil. Soils 1991, 12, 202–208. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; Version 6.1. 2020. Available online: www.training.cochrane.org/handbook (accessed on 16 December 2020).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 29 June 2020).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 29 June 2020).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.5.2-1. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 29 June 2020).
- De Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5. 2021. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 29 June 2020).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346––363. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Kassambara, A. Ggpubr: ’Ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0. 2020. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 29 June 2020).
- Lowe, C.; Butt, K. Interspecific interactions between earthworms: A laboratory-based investigation. Pedobiologia 1999, 43, 808–817. [Google Scholar]
- Eriksen-Hamel, N.S.; Whalen, J.K. Competitive interactions affect the growth of Aporrectodea caliginosa and Lumbricus terrestris (Oligochaeta: Lumbricidae) in single- and mixed-species laboratory cultures. Eur. J. Soil Biol. 2007, 43, 142–150. [Google Scholar] [CrossRef]
- Uvarov, A.V. Inter- and intraspecific interactions in lumbricid earthworms: Their role for earthworm performance and ecosystem functioning. Pedobiologia 2009, 53, 1–27. [Google Scholar] [CrossRef]
- Huang, W.; González, G.; Zou, X. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. Appl. Soil Ecol. 2020, 150, 103473. [Google Scholar] [CrossRef]
- Cortez, J.; Bouché, M.B. Field decomposition of leaf litters: Earthworm–microorganism interactions—The ploughing-in effect. Soil Biol. Biochem. 1998, 30, 795–804. [Google Scholar] [CrossRef]
- Lavelle, P.; Lattaud, C.; Trigo, D.; Barois, I. Mutualism and biodiversity in soils. Plant Soil 1995, 170, 23–33. [Google Scholar] [CrossRef]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; Blackwell: Oxford, UK, 1979. [Google Scholar]
- Buck, C.; Langmaack, M.; Schrader, S. Nutrient content of earthworm casts influenced by different mulch types. Eur. J. Soil Biol. 1999, 35, 23–30. [Google Scholar] [CrossRef]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Pérez, J.; Muñoz-Dorado, J.; de la Rubia, T.; Martínez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef]
- Vidal, A.; Watteau, F.; Remusat, L.; Mueller, C.W.; Nguyen Tu, T.T.; Buegger, F.; Derenne, S.; Quenea, K. Earthworm Cast Formation and Development: A Shift From Plant Litter to Mineral Associated Organic Matter. Front. Environ. Sci. 2019, 7, 55. [Google Scholar] [CrossRef]
- McDaniel, M.D.; Grandy, A.S.; Tiemann, L.K.; Weintraub, M.N. Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biol. Biochem. 2014, 78, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Abail, Z.; Whalen, J.K. Corn residue inputs influence earthworm population dynamics in a no-till corn-soybean rotation. Appl. Soil Ecol. 2018, 127, 120–128. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Parmelee, R.W.; McCartney, D.A.; Edwards, C.A. Earthworm effects on carbon and nitrogen dynamics of surface litter in corn agroecosystems. Ecol. Appl. 1997, 7, 1341–1349. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.; Muhammad, S.; Zhou, A.; Hao, R.; Wu, Y. How do earthworms affect decomposition of residues with different quality apart from fragmentation and incorporation? Geoderma 2018, 326, 68–75. [Google Scholar] [CrossRef]
- Flegel, M.; Schrader, S. Importance of food quality on selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol. Biochem. 2000, 32, 1191–1196. [Google Scholar] [CrossRef]
- Patoine, G.; Thakur, M.P.; Friese, J.; Nock, C.; Hönig, L.; Haase, J.; Scherer-Lorenzen, M.; Eisenhauer, N. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia 2017, 65, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Jégou, D.; Capowiez, Y.; Cluzeau, D. Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems. Geoderma 2001, 102, 123–137. [Google Scholar] [CrossRef]
- Butenschön, O. Regulation of Soil organic Matter Dynamics and Microbial Activity by Endogeic Earthworms. Dissertation, Degree: Dr rer nat (doctor rerum naturalium) ; Technische Universität Darmstadt: Darmstadt, Germany, 2007. Available online: http://elib.tu-darmstadt.de/diss/000820 (accessed on 9 February 2021).
- Song, K.; Sun, Y.; Qin, Q.; Sun, L.; Zheng, X.; Terzaghi, W.; Lv, W.; Xue, Y. The Effects of Earthworms on Fungal Diversity and Community Structure in Farmland Soil with Returned Straw. Front. Microbiol. 2020, 11, 594265. [Google Scholar] [CrossRef] [PubMed]
- Felten, D.; Emmerling, C. Earthworm burrowing behaviour in 2D terraria with single-and multi-species assemblages. Biol. Fertil. Soils 2009, 45, 789–797. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Bityutskii, N.P.; Maiorov, E.I.; Orlova, N.E. The priming effects induced by earthworm mucus on mineralization and humification of plant residues. Eur. J. Soil Biol. 2012, 50, 1–6. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015, 83, 184–199. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kuzyakov, Y.; Sanaullah, M.; Heitkamp, F.; Zelenev, V.; Kumar, A.; Blagodatskaya, E. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds. Biol. Fertil. Soils 2017, 53, 287–301. [Google Scholar] [CrossRef]
- Bernard, L.; Chapuis-Lardy, L.; Razafimbelo, T.; Razafindrakoto, M.; Pablo, A.L.; Legname, E.; Poulain, J.; Brüls, T.; O’Donohue, M.; Brauman, A.; et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 2012, 6, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.T.T.; Bauke, S.L.; Kuzyakov, Y.; Pausch, J. Rolling in the deep: Priming effects in earthworm biopores in topsoil and subsoil. Soil Biol. Biochem. 2017, 114, 59–71. [Google Scholar] [CrossRef]
- Schrader, S. Influence of earthworms on the pH conditions of their environment by cutaneous mucus secretion. Zool. Anz. 1994, 233, 211–219. [Google Scholar]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 5794869. [Google Scholar] [CrossRef] [Green Version]
- Lubbers, I.M.; González, E.L.; Hummelink, E.W.J.; Van Groenigen, J.W. Earthworms can increase nitrous oxide emissions from managed grassland: A field study. Agric. Ecosyst. Environ. 2013, 174, 40–48. [Google Scholar] [CrossRef]
- Lubbers, I.M.; van Groenigen, K.J.; Fonte, S.; Six, J.; Brussaard, L.; Van Groenigen, J.W. Greenhouse gas emissions from soils increased by earthworms. Nat. Clim. Change 2013, 3, 187–194. [Google Scholar] [CrossRef]
- Chang, C.H.; Szlavecz, K.; Buyer, J.S. Species-specific effects of earthworms on microbial communities and the fate of litter-derived carbon. Soil Biol. Biochem. 2016, 100, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Frazão, J.; de Goede, R.G.M.; Capowiez, Y.; Pulleman, M.M. Soil structure formation and organic matter distribution as affected by earthworm species interactions and crop residue placement. Geoderma 2019, 338, 453–463. [Google Scholar] [CrossRef]
- Damon, P.M.; Bowden, B.; Rose, T.; Rengel, Z. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biol. Biochem. 2014, 74, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Guppy, C.N.; Menzies, N.W.; Moody, P.W.; Blamey, F.P.C. Competitive sorption reactions between phosphorus and organic matter in soil: A review. Soil Res. 2005, 43, 189–202. [Google Scholar] [CrossRef]
- Ruf, T.; Emmerling, C. Different life-form strategies of perennial energy crops and related nutrient exports require a differentiating view specifically concerning a sustainable cultivation on marginal land. GCB Bioenergy 2021, 13, 893–904. [Google Scholar] [CrossRef]
- Bohlen, P.J.; Parmelee, R.W.; Allen, M.F.; Ketterings, Q.M. Differential Effects of Earthworms on Nitrogen Cycling from Various Nitrogen-15-Labeled Substrates. Soil Sci. Soc. Am. J. 1999, 63, 882–890. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
Total C [g kg−1] | Total N [g kg−1] | C/N Ratio | Total P [g kg−1] | Hemi-Cellulose [%] | Cellulose [%] | Lignin [%] | |
---|---|---|---|---|---|---|---|
Cup plant | 408.60 ± 0.90 | 7.57 ± 0.11 | 53.97 | 1.70 ± 0.42 | 5.51 ± 0.03 | 11.97 ± 0.15 | 15.11 ± 0.12 |
Maize | 411.18 ± 2.52 | 14.92 ± 0.28 | 27.55 | 1.69 ± 0.00 | 31.79 ± 0.19 | 14.08 ± 0.30 | 7.40 ± 0.46 |
Number of Individuals | Initial Raw Earthworm Biomass [g] | |||
---|---|---|---|---|
Cup Plant | Maize | |||
4 weeks | Primary | 2 primary decomposers | 12.95 ± 0.11 | 12.68 ± 0.23 |
Mix | 1 primary decomposer + 4 secondary decomposers | 7.99 ± 0.16 | 8.04 ± 0.05 | |
Secondary | 8 secondary decomposers | 3.76 ± 0.02 | 4.04 ± 0.01 | |
8 weeks | Primary | 2 primary decomposers | 12.48 ± 0.09 | 12.11 ± 0.02 |
Mix | 1 primary decomposer + 4 secondary decomposers | 8.33 ± 0.05 | 8.33 ± 0.10 | |
Secondary | 8 secondary decomposers | 3.69 ± 0.01 | 3.94 ± 0.02 |
log(k) | log(C) | Clitter | Sqrt(Nlitter) | (Plitter)2 | Ccast | Ncast | Log(CAL-Pcast) | ||
---|---|---|---|---|---|---|---|---|---|
earthworm | F/Chsiq | 23.5 | 14.1 | 1283.5 | 211.8 | 112.5 | 1.7 | 0.1 | 0.1 |
Pr(>F)/Pr(>Chsiq) | 1.832 × 10−10 *** | 1.465 × 10−5 *** | <2.2 × 10−16 *** | <2.2 × 10−16 *** | <2.2 × 10−16 *** | 0.199 | 0.884 | 0.380 | |
litter | F/Chsiq | 15.7 | 2.5 | 82.1 | 34.6 | 8.1 | 2.0 | 20.2 | 0.1 |
Pr(>F)/Pr(>Chsiq) | 1.874 × 10−4 *** | 0.122 | <2.2 × 10−16 *** | 4.068 × 10−9 *** | 0.004 ** | 0.159 | 4.254 × 10−5 *** | 0.816 | |
duration | F/Chsiq | 35.0 | 31.4 | 1571.4 | 101.4 | 151.7 | 0.0 | 4.2 | 1.9 |
Pr(>F)/Pr(>Chsiq) | 1.308 × 10−7 *** | 9.486 × 10−7 *** | <2.2 × 10−16 *** | <2.2 × 10−16 *** | <2.2 × 10−16 *** | 0.956 | 0.047 * | 0.178 | |
earthworm:litter | F/Chsiq | 7.9 | 4.7 | 160.7 | 12.9 | 36.0 | 4.2 | 0.6 | 4.1 |
Pr(>F)/Pr(>Chsiq) | 1.344 × 10−4 *** | 0.013 * | <2.2 × 10−16 *** | 0.005 ** | 7.663 × 10−8 *** | 0.021 * | 0.536 | 0.022 * | |
earthworm:duration | F/Chsiq | 7.0 | 3.1 | 130.0 | 24.6 | 169.0 | 0.6 | 3.0 | 0.6 |
Pr(>F)/Pr(>Chsiq) | 3.619 × 10−4 *** | 0.052 (*) | <2.2 × 10−16 *** | 1.856 × 10−5 *** | <2.2 × 10−16 *** | 0.566 | 0.060 (*) | 0.565 | |
litter:duration | F/Chsiq | 63.9 | 16.1 | 413.1 | 61.5 | 35.8 | 10.0 | 26.2 | 46.6 |
Pr(>F)/Pr(>Chsiq) | 2.706 × 10−11 *** | 2.047 × 10−4 *** | <2.2 × 10−16 *** | 4.523 × 10−15 *** | 2.143 × 10−9 *** | 0.002 ** | 5.113 × 10−6 *** | 1.248 × 10−8 *** |
Total Ccast [g kg−1]/Mean Earthworm Raw Weight [g] | Total Ncast [g kg−1]/Mean Earthworm Raw Weight [g] | Total CAL-Pcast [10−6 g kg−1]/Mean Earthworm Raw Weight [g] | ||
---|---|---|---|---|
Cup plant | ||||
4 weeks | Primary | 2.17 ± 0.20 | 0.18 ± 0.01 | 6.42 ± 0.47 |
Mix | 2.63 ± 0.21 | 0.27 ± 0.01 | 8.29 ± 0.35 | |
Secondary | 5.54 ± 0.11 | 0.58 ± 0.02 | 17.87 ± 0.38 | |
8 weeks | Primary | 2.57 ± 0.09 | 0.21 ± 0.00 | 8.01 ± 0.13 |
Mix | 3.16 ± 0.15 | 0.28 ± 0.01 | 10.46 ± 0.67 | |
Secondary | 6.56 ± 0.27 | 0.67 ± 0.02 | 22.79 ± 1.26 | |
Maize | ||||
4 weeks | Primary | 1.86 ± 0.13 | 0.19 ± 0.01 | 5.24 ± 0.23 |
Mix | 2.70 ± 0.13 | 0.30 ± 0.01 | 7.70 ± 0.24 | |
Secondary | 4.96 ± 0.08 | 0.60 ± 0.01 | 15.14 ± 0.25 | |
8 weeks | Primary | 1.95 ± 0.09 | 0.20 ± 0.01 | 5.14 ± 0.19 |
Mix | 2.34 ± 0.09 | 0.25 ± 0.01 | 6.80 ± 0.15 | |
Secondary | 5.69 ± 0.11 | 0.59 ± 0.02 | 15.60 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wöhl, L.; Ruf, T.; Emmerling, C.; Thiele, J.; Schrader, S. Assessment of Earthworm Services on Litter Mineralisation and Nutrient Release in Annual and Perennial Energy Crops (Zea mays vs. Silphium perfoliatum). Agriculture 2023, 13, 494. https://doi.org/10.3390/agriculture13020494
Wöhl L, Ruf T, Emmerling C, Thiele J, Schrader S. Assessment of Earthworm Services on Litter Mineralisation and Nutrient Release in Annual and Perennial Energy Crops (Zea mays vs. Silphium perfoliatum). Agriculture. 2023; 13(2):494. https://doi.org/10.3390/agriculture13020494
Chicago/Turabian StyleWöhl, Lena, Thorsten Ruf, Christoph Emmerling, Jan Thiele, and Stefan Schrader. 2023. "Assessment of Earthworm Services on Litter Mineralisation and Nutrient Release in Annual and Perennial Energy Crops (Zea mays vs. Silphium perfoliatum)" Agriculture 13, no. 2: 494. https://doi.org/10.3390/agriculture13020494
APA StyleWöhl, L., Ruf, T., Emmerling, C., Thiele, J., & Schrader, S. (2023). Assessment of Earthworm Services on Litter Mineralisation and Nutrient Release in Annual and Perennial Energy Crops (Zea mays vs. Silphium perfoliatum). Agriculture, 13(2), 494. https://doi.org/10.3390/agriculture13020494