Business Policy and Competitiveness of Farmers’ Organizations—Empirical Evidence from Taiwan
Abstract
:1. Introduction
2. Materials and Hypothesis Development
2.1. Organization Performance (OP)
2.2. Main Services and Resource Orchestration
2.3. Economy Implementation
2.4. Clustering of Local TFAs
3. Method
3.1. Constructs and Indicators
3.2. Variable Measures
- Step 1: Standardization
- Step 2: Aggregating indicators into composite indicators
3.3. Methodology
3.3.1. Fuzzy Clustering Algorithm
3.3.2. The PLS Path Model
4. Empirical Results
4.1. Fuzzy C-Means Clustering
4.2. Assessment of the Measurement Model
4.3. Assessment of the Structural Model
4.4. Result of Clustering
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lovering, J. The coming regional crisis (and how to avoid it). Reg. Stud. 2001, 35, 349–354. [Google Scholar] [CrossRef]
- Wren, C. The industrial policy of competitiveness: A review of recent developments in the UK. Reg. Stud. 2001, 35, 847–860. [Google Scholar] [CrossRef]
- Mulatu, A. On the concept of ‘competitiveness’ and its usefulness for policy. Struct. Chang. Econ. Dyn. 2016, 36, 50–62. [Google Scholar] [CrossRef]
- Hatzichronoglou, T. Globalisation and Competitiveness: Relevant Indicators; OECD Science, Technology and Industry: Paris, France, 1996. [Google Scholar]
- Blanke, J.; Crotti, R.; Drzeneik-Hanouz, M.; Fidanza, B.; Geiger, T. The long-term view: Developing a framework for assessing sustainable competitiveness. Glob. Compet. Rep. 2011, 2012, 51–74. [Google Scholar]
- Jiao, J.X.; Liu, C.G.; Xu, Y. Effects of stakeholder pressure, managerial perceptions, and resource availability on sustainable operations adoption. Bus. Strategy Environ. 2020, 29, 3246–3260. [Google Scholar] [CrossRef]
- Kleindorfer, P.R.; Singhal, K.; Van Wassenhove, L.N. Sustainable operations management. Prod. Oper. Manag. 2005, 14, 482–492. [Google Scholar] [CrossRef]
- Lacy, P.; Cooper, T.; Hayward, R.; Neuberger, L. A new era of sustainability. UN Glob. Compact. Accent. 2010, 14. [Google Scholar]
- Hermundsdottir, F.; Aspelund, A. Sustainability innovations and firm competitiveness: A review. J. Clean. Prod. 2021, 280, 124715. [Google Scholar] [CrossRef]
- Oral, M.; Chabchoub, H. On the methodology of the World Competitiveness Report. Eur. J. Oper. Res. 1996, 90, 514–535. [Google Scholar] [CrossRef]
- OECD. OECD Competition Trends 2022; OECD: Paris, France, 2022. [Google Scholar]
- Möbius, P.; Althammer, W. Sustainable competitiveness: A spatial econometric analysis of European regions. J. Environ. Plan. Manag. 2020, 63, 453–480. [Google Scholar] [CrossRef]
- Balkyte, A.; Tvaronavičiene, M. Perception of competitiveness in the context of sustainable development: Facets of “sustainable competitiveness”. J. Bus. Econ. Manag. 2010, 11, 341–365. [Google Scholar] [CrossRef] [Green Version]
- Bublyk, M.; Kowalska-Styczen, A.; Lytvyn, V.; Vysotska, V. The Ukrainian Economy Transformation into the Circular Based on Fuzzy-Logic Cluster Analysis. Energies 2021, 14, 5951. [Google Scholar] [CrossRef]
- Battermann, H.W.; Deimel, M.; Theuvsen, L. Agriculture in rural areas—A comparative analysis using network and cluster concepts. Z. Wirtsch. 2013, 57, 155–179. [Google Scholar] [CrossRef]
- Bigelow, L.S.; Barney, J.B. What can strategy learn from the business model approach? J. Manag. Stud. 2021, 58, 528–539. [Google Scholar] [CrossRef]
- Lanzolla, G.; Markides, C. A business model view of strategy. J. Manag. Stud. 2021, 58, 540–553. [Google Scholar] [CrossRef] [Green Version]
- Hay, B.L.; Stavins, R.N.; Vietor, R.H. The four questions of corporate social responsibility: May they, can they, do they, should they? In Environmental Protection and the Social Responsibility of Firms; Hay, B., Stavins, R., Vietor, R., Eds.; Resources for the Future; Routledge: Washington, DC, USA, 2005. [Google Scholar]
- Davo, N.B.; Mayor, M.G.O.; de la Hera, M.L.B. Empirical analysis of technological innovation capacity and competitiveness in EU-15 countries. Afr. J. Bus. Manag. 2011, 5, 5753–5765. [Google Scholar]
- Pezzini, M. Rural policy lessons from OECD countries. Int. Reg. Sci. Rev. 2001, 24, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Dieste, M.; Sauer, P.C.; Orzes, G. Organizational tensions in industry 4.0 implementation: A paradox theory approach. Int. J. Prod. Econ. 2022, 251, 108532. [Google Scholar] [CrossRef]
- Bell, A.; Charmley, E.; Hunter, R.; Archer, J. The Australasian beef industries—Challenges and opportunities in the 21st century. Anim. Front. 2011, 1, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Malesios, C.; Dey, P.K.; Abdelaziz, F.B. Supply chain sustainability performance measurement of small and medium sized enterprises using structural equation modeling. Ann. Oper. Res. 2020, 294, 623–653. [Google Scholar] [CrossRef] [Green Version]
- Chien, L.; Chi, S. An integrated data envelopment approach for evaluating the meat companies efficiency. Agric. Econ. 2019, 65, 470–480. [Google Scholar] [CrossRef]
- Kramulová, J.; Jablonský, J. AHP model for competitiveness analysis of selected countries. Cent. Eur. J. Oper. Res. 2016, 24, 335–351. [Google Scholar] [CrossRef]
- Howell, R.D.; Breivik, E.; Wilcox, J.B. Reconsidering formative measurement. Psychol. Methods 2007, 12, 205. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.R.; Bagozzi, R.P. On the nature and direction of relationships between constructs and measures. Psychol. Methods 2000, 5, 155. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H. Integration of quality and innovation practices for global sustainability: An empirical study of Indian SMEs. Glob. Bus. Rev. 2017, 18, 210–225. [Google Scholar] [CrossRef]
- Buitrago, R.E.; Barbosa Camargo, M.I.; Cala Vitery, F. Emerging economies’ institutional quality and international competitiveness: A PLS-SEM approach. Mathematics 2021, 9, 928. [Google Scholar] [CrossRef]
- Lanzolla, G.; Frankort, H.T. The online shadow of offline signals: Which sellers get contacted in online B2B marketplaces? Acad. Manag. J. 2016, 59, 207–231. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Mikalef, P.; Blomsma, F.; Li, J.Y. The effects of business analytics capability on circular economy implementation, resource orchestration capability, and firm performance. Int. J. Prod. Econ. 2021, 239, 108205. [Google Scholar] [CrossRef]
- Barney, J.B. Resource-based theories of competitive advantage: A ten-year retrospective on the resource-based view. J. Manag. 2001, 27, 643–650. [Google Scholar] [CrossRef]
- Storer, M.; Hyland, P.; Ferrer, M.; Santa, R.; Griffiths, A. Strategic supply chain management factors influencing agribusiness innovation utilization. Int. J. Logist. Manag. 2014, 25, 487–521. [Google Scholar] [CrossRef]
- Van Marrewijk, M. Concepts and definitions of CSR and corporate sustainability: Between agency and communion. J. Bus. Ethics 2003, 44, 95–105. [Google Scholar] [CrossRef]
- Chien, L.-H.; Chi, S.Y. Implementation of Rural Regeneration Plan and Intention to Cooperate with Local Organizations. J. Agric. Assoc. Taiwan 2022, 22, 46–66. [Google Scholar]
- Ting, W.-Y. On the Repositioning of Taiwan Farmers Association by Social Enterprises. Rev. Agric. Ext. Sci. 2013, 58, 19–26. [Google Scholar]
- Koutouzidou, G.; Ragkos, A.; Theodoridis, A.; Arsenos, G. Entrepreneurship in Dairy Cattle Sector: Key Features of Successful Administration and Management. Land 2022, 11, 1736. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Belso-Martinez, J.A.; Díez-Vial, I. Playing the innovation subsidy game: Experience, clusters, consultancy, and networking in regional innovation support. Cities 2021, 119, 103402. [Google Scholar] [CrossRef]
- Sun, P.; Zhou, L.; Ge, D.Z.; Lu, X.X.; Sun, D.Q.; Lu, M.Q.; Qiao, W.F. How does spatial governance drive rural development in China’s farming areas? Habitat Int. 2021, 109, 102320. [Google Scholar] [CrossRef]
- Ghadami, M.; Dittmann, A.; Pazhuhan, M.; Firouzjaie, N.A. Factors Affecting the Change of Agricultural Land Use to Tourism: A Case Study on the Southern Coasts of the Caspian Sea, Iran. Agriculture 2022, 12, 90. [Google Scholar] [CrossRef]
- Li, J.T.; Yang, Y.Y.; Jiang, N. County-Rural Transformation Development from Viewpoint of “Population-Land-Industry” in Beijing-Tianjin-Hebei Region under the Background of Rapid Urbanization. Sustainability 2017, 9, 1637. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Liu, Y.S.; Li, Y.R.; Li, J.T. Measure of of urban-rural transformation in Beijing-Tianjin-Hebei region in the new millennium: Population-land-industry perspective. Land Use Policy 2018, 79, 595–608. [Google Scholar] [CrossRef]
- Zhu, L.F.; Wang, J.S.; Wang, H.Y. A Novel Clustering Validity Function of FCM Clustering Algorithm. IEEE Access 2019, 7, 152289–152315. [Google Scholar] [CrossRef]
- Flynt, A.; Dean, N. A Survey of Popular R Packages for Cluster Analysis. J. Educ. Behav. Stat. 2016, 41, 205–225. [Google Scholar] [CrossRef] [Green Version]
- Peel, D.; McLachlan, G.J. Robust mixture modelling using the t distribution. Stat. Comput. 2000, 10, 339–348. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer: New York, NY, USA, 1981. [Google Scholar]
- MacQueen, J. Classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Los Angeles, CA, USA, 21 June–18 July 1967; pp. 281–297. [Google Scholar]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Berget, I.; Mevik, B.-H.; Næs, T. New modifications and applications of fuzzy C-means methodology. Comput. Stat. Data Anal. 2008, 52, 2403–2418. [Google Scholar] [CrossRef]
- Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Krishnapuram, R.; Keller, J.M. The possibilistic c-means algorithm: Insights and recommendations. IEEE Trans. Fuzzy Syst. 1996, 4, 385–393. [Google Scholar] [CrossRef]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strat. Mgmt. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M.; Mooi, E.A. Response-based segmentation using finite mixture partial least squares. In Data Mining: Special Issue in Annals of Information Systems; Springer: Boston, MA, USA, 2010; pp. 19–49. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Chin, W.W. How to Write Up and Report PLS Analyses. In Handbook of Partial Least Squares: Concepts, Methods and Applications; Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 655–690. [Google Scholar]
- Bollen, K.A. Evaluating effect, composite, and causal indicators in structural equation models. Mis Q. 2011, 35, 359–372. [Google Scholar] [CrossRef]
- Howell, R.D.; Breivik, E.; Wilcox, J.B. Is formative measurement really measurement? Reply to Bollen (2007) and Bagozzi (2007). Psychol. Methods 2007, 12, 238–245. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent partial least squares path modeling. Mis Q. 2015, 39, 297–316. [Google Scholar] [CrossRef]
- Götz, O.; Liehr-Gobbers, K.; Krafft, M. Evaluation of Structural Equation Models Using the Partial Least Squares (PLS) Approach. In Handbook of Partial Least Squares: Concepts, Methods and Applications; Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 691–711. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
Latent Variables | Manifest Variables and Description | Indicator * |
Main Departmental Coordination (MDC) (η1) | TFA group scale index based on gross annual income | mdc1 |
Profit of credit department | mdc2 | |
Total income from credit services | mdc3 | |
Total expenses from insurance services | mdc4 | |
Total expenses from extension services | mdc5 | |
Asset Condition (AC) (η2) | Profit of supply and marketing department | ac1 |
Net value of economic department | ac2 | |
Economic Marketing Activities (EMA) (η3) | Net value of machines and equipment | ema1 |
Total income from economic projects | ema2 | |
Total income from economic business | ema3 | |
Salary expenses from business services | ema4 | |
Retail Activities (RA) (η4) | Number of shopping stores and supermarkets | ra1 |
Total sales of shopping stores and supermarkets | ra2 | |
Organization performance index by combining the following 11 indicators without weight (opall) | ||
Organization Performance (OP) (ξ) | Total income of financial business after project income deduction | eop-1 |
Total income of economic business after project income deduction | eop-2 | |
Contribution of employees to the output of the financial department | eop-3 | |
Contribution of employees to the output of the economic department | eop-4 | |
Resources allocated to all insurance trips by the insurance department | eop-5 | |
Resources allocated to all extension trips by the extension department | eop-6 | |
Overdue loan ratio | fop-7 | |
Coverage rate of bad accounts | fop-8 | |
Loan coverage ratio | fop-9 | |
Capital adequacy ratio | fop-10 | |
Ratio of total business income to net worth of economic department | fop-11 |
Latent Variables | Cronbach’s Alpha | rho_A | Composite Reliability (CR) | Average Variance Extracted (AVE) |
---|---|---|---|---|
Main Departmental Coordination (MDC) | 0.867 | 0.890 | 0.908 | 0.670 |
Asset Condition (AC) | 0.561 | 0.691 | 0.808 | 0.681 |
Economic Marketing Activities (EMA) | 0.784 | 0.968 | 0.845 | 0.590 |
Retail Activities (RA) | 0.722 | 1.365 | 0.853 | 0.748 |
Latent Variables | Fornell–Larcker Criterion | Heterotrait-Monotrait Ratio (HTMT) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MDC | AC | EMA | RA | OP | MDC | AC | EMA | RA | OP | |
Main Departmental Coordination (MDC) | 0.819 | |||||||||
Asset Condition (AC) | 0.532 | 0.825 | 0.752 | |||||||
Economic Marketing Activities (EMA) | 0.562 | 0.568 | 0.768 | 0.564 | 0.781 | |||||
Retail Activities (RA) | 0.326 | 0.367 | 0.514 | 0.865 | 0.348 | 0.462 | 0.517 | |||
Organization Performance (OP) | 0.736 | 0.476 | 0.653 | 0.465 | 1 | 0.792 | 0.598 | 0.611 | 0.457 |
Hyp. | Relationships | Path | SD | T Stat. | Decision | Confidence Intervals | |
---|---|---|---|---|---|---|---|
2.5% | 97.5% | ||||||
H1 | Organization Performance (OP) -> Main Departmental Coordination (MDC) | 0.736 | 0.027 | 27.610 *** | Supp. | 0.683 | 0.785 |
H2 | Organization Performance (OP)-> Asset Condition (AC) | 0.476 | 0.044 | 10.774 *** | Supp. | 0.390 | 0.565 |
H3 | Organization Performance (OP)-> Economic Marketing Activities (EMA) | 0.653 | 0.028 | 22.964 *** | Supp. | 0.599 | 0.710 |
H4 | Organization Performance (OP)-> Retail Activities (RA) | 0.465 | 0.043 | 10.708 *** | Supp. | 0.382 | 0.552 |
Hyp. | Relationships | Cluster B | Cluster C | Cluster D | Cluster E | Cluster F | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Path γb | Decision | Path γc | Decision | Path γd | Decision | Path γe | Decision | Path γf | Decision | ||
H1 | Organization Performance (OP)-> Main Departmental Coordination (MDC) | 0.713 *** | Supp. | 0.678 *** | Supp. | 0.669 *** | Supp. | 0.668 *** | Supp. | 0.776 *** | Supp. |
H2 | Organization Performance (OP)-> Asset Condition (AC) | 0.534 *** | Supp. | 0.398 *** | Supp. | 0.302 * | Supp. | 0.342 | Not Supp. | 0.636 *** | Supp. |
H3 | Organization Performance (OP)-> Economic Marketing Activities (EMA) | 0.609 *** | Supp. | 0.623 *** | Supp. | 0.564 *** | Supp. | 0.732 *** | Supp. | 0.747 *** | Supp. |
H4 | Organization Performance (OP)-> Retail Activities (RA) | 0.506 *** | Supp. | 0.255 * | Supp. | 0.431 *** | Supp. | 0.524 *** | Supp. | 0.510 *** | Supp. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, S.-Y.; Hwang, T.-C.; Chien, L.-H. Business Policy and Competitiveness of Farmers’ Organizations—Empirical Evidence from Taiwan. Agriculture 2023, 13, 593. https://doi.org/10.3390/agriculture13030593
Chi S-Y, Hwang T-C, Chien L-H. Business Policy and Competitiveness of Farmers’ Organizations—Empirical Evidence from Taiwan. Agriculture. 2023; 13(3):593. https://doi.org/10.3390/agriculture13030593
Chicago/Turabian StyleChi, Shu-Yi, Tsorng-Chyi Hwang, and Li-Hsien Chien. 2023. "Business Policy and Competitiveness of Farmers’ Organizations—Empirical Evidence from Taiwan" Agriculture 13, no. 3: 593. https://doi.org/10.3390/agriculture13030593
APA StyleChi, S. -Y., Hwang, T. -C., & Chien, L. -H. (2023). Business Policy and Competitiveness of Farmers’ Organizations—Empirical Evidence from Taiwan. Agriculture, 13(3), 593. https://doi.org/10.3390/agriculture13030593