The Absence of Malvidin-3-Glucoside in Petiole Tissue Predicts Rare Red-Type Flower of Eastern Redbud (Cercis canadensis L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. HPLC Analysis
3. Results
3.1. Anthocyanin Content and Profile in Petiole Tissues
3.2. Relationship of Anthocyanin Content in Petiole Tissue to Flower Color-Type
3.3. Relationship of Anthocyanin Content in Petiole Tissue to Foliage Color
4. Discussion
4.1. Anthocyanin Profile of Petiole Tissue as a Physiological Marker for Flower Color-Types
4.2. Relationship of Anthocyanin Profile of Petiole Tissue to Foliage Color
4.3. Relationship of Anthocyanin Profile of Petiole Tissue to Flower Color
5. Conclusions
- Peonidin-3-glucoside and malvidin-3-glucoside content in petiole tissue could be used as a physiological marker predicting flower-color of eastern redbud.
- Both peonidin-3-glucoside and malvidin-3-glucoside were dominant in petioles from purple-type flower plants.
- Only peonidin-3-glucoside was detected in petioles from red-type flower plants.
- Neither peonidin-3-glucoside nor malvidin-3-glucoside was detected in petioles from white-type flower plants.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geneve, R.L. Eastern Redbud (Cercis canadensis L.) and Judas Tree (Cercis siliquastrum L.). In Trees III; Springer: Berlin/Heidelberg, Germany, 1991; pp. 142–151. [Google Scholar]
- Chen, H.; Werner, D.J. Inheritance of Compact Growth Habit, and Investigation of Linkage to Weeping Architecture and Purple Leaf Color in Eastern Redbud (Cercis canadensis L.). HortScience 2021, 1, 1513–1515. [Google Scholar] [CrossRef]
- Kidwell-Slak, D.L.; Pooler, M.R. A Checklist of Cercis (redbud) Cultivars. HortScience 2018, 53, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Census of Horticultural Specialties for 2019. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Census_of_Horticulture_Specialties/hortic_1_0020_0021.pdf (accessed on 11 April 2019).
- Census of Horticultural Specialties for 2014. Available online: https://agcensus.library.cornell.edu/wp-content/uploads/2012-Census-of-Horticultural-Specialties-hortic_1_021_022.pdf (accessed on 29 May 2014).
- Census of Horticultural Specialties for 2007. Available online: https://agcensus.library.cornell.edu/wp-content/uploads/2007-Census-of-Horticultural-Specialties-hortic_1_020_021.pdf (accessed on 30 November 2007).
- Ony, M.A.; Nowicki, M.; Boggess, S.L.; Klingeman, W.E.; Zobel, J.M.; Trigiano, R.N.; Hadziabdic, D. Habitat Fragmentation Influences Genetic Diversity and Differentiation: Fine-scale Population Structure of Cercis canadensis (Eastern Redbud). Ecol. Evol. 2020, 10, 3655–3670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadl, P.A.; Trigiano, R.N.; Werner, D.J.; Pooler, M.R.; Rinehart, T.A. Simple Sequence Repeat Markers from Cercis canadensis Show Wide Cross-Species Transfer and Use in Genetic Studies. J. Am. Soc. Hortic. Sci. 2012, 137, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.J.; Werner, D.J. Genome Size and Ploidy Levels of Cercis (Redbud) Species, Cultivars, and Botanical Varieties. HortScience 2016, 51, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Perkins-Veazie, P.; Ma, G.; Werner, D. Anthocyanin Pigments in Redbud (Cercis spp.) Flowers. J. Hortic. Sci. Res. 2017, 1, 13–18. [Google Scholar]
- Roberts, D.J.; Werner, D.J.; Wadl, P.A.; Trigiano, R.N. Inheritance and Allelism of Morphological Traits in Eastern Redbud (Cercis canadensis L.). Hortic. Res. 2015, 2, 15049. [Google Scholar] [CrossRef] [Green Version]
- Griffin, J.J.; Ranney, T.G.; Pharr, D.M. Heat and Drought Influence Photosynthesis, Water Relations, and Soluble Carbohydrates of Two Ecotypes of Redbud (Cercis canadensis). J. Am. Soc. Hortic. Sci. 2004, 129, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Werner, D.J.; Snelling, L.K. ‘Ruby Falls’ and ‘Merlot’ Redbuds. HortScience 2010, 45, 146–147. [Google Scholar] [CrossRef] [Green Version]
- Bonner, V.; Stein, W.; Bonner, F.; Karrfalt, R.; Nisley, R.; Cercis, L. Woody-Plant Seed Manual: Redbud; USDA Forest Service: Washington, DC, USA, 2008; pp. 374–379.
- Grace, M.H.; Yousef, G.G.; Gustafson, S.J.; Truong, V.; Yencho, G.C.; Lila, M.A. Phytochemical Changes in Phenolics, Anthocyanins, Ascorbic acid, and Carotenoids Associated with Sweetpotato Storage and Impacts on Bioactive Properties. Food Chem. 2014, 145, 717–724. [Google Scholar] [CrossRef]
- Korkmaz, A.; Düver, E.; Szafrańska, K.; Karaca, A.; Ardıç, Ş.K.; Yakupoğlu, G. Feasibility of Using Melatonin Content in Pepper (Capsicum annuum) Seeds as a Physiological Marker of Chilling Stress Tolerance. Funct. Plant Biol. 2022, 49, 832–843. [Google Scholar] [CrossRef]
- Guellim, A.; Catterou, M.; Chabrerie, O.; Tetu, T.; Hirel, B.; Dubois, F.; Ben Ahmed, H.; Kichey, T. Identification of Phenotypic and Physiological Markers of Salt Stress Tolerance in Durum Wheat (Triticum durum Desf.) through Integrated Analyses. Agronomy 2019, 9, 844. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Lattier, J.D.; Vining, K.; Contreras, R.N. Two SNP Markers Identified Using Genotyping-by-Sequencing are Associated with Remontancy in a Segregating F1 Population of Syringa meyeri ‘Palibin’× S. pubescens ‘Penda Bloomerang®’. J. Am. Soc. Hortic. Sci. 2020, 145, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Alexander, L.W. Genome-Wide Association Studies for Inflorescence Type and Remontancy in Hydrangea macrophylla. Hortic. Res. 2020, 7, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ünal, M.; Yentür, S.; Cevahir, G.; Sarsağ, M.; Kösesakal, T. Physiological and Anatomical Investigation of Flower Colors of Primula vulgaris L. Biotechnol. Biotechnol. Equip. 2003, 17, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Paulsmeyer, M.N.; Vermillion, K.E.; Juvik, J.A. Assessing the Diversity of Anthocyanin Composition in Various Tissues of Purple Corn (Zea mays L.). Phytochemistry 2022, 201, 113263. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, A.I.; Gostin, A.I. Safety of Edible Flowers. Regulating Safety of Traditional and Ethnic Foods; Academic Press: Cambridge, MA, USA, 2016; pp. 395–419. [Google Scholar]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Khammee, P.; Unpaprom, Y.; Whangchai, K.; Ramaraj, R. Comparative Studies of the Longan Leaf Pigment Extraction as a Photosensitizer for Dye-Sensitized Solar Cells’ Purpose. Biomass Convers. Biorefin. 2022, 2, 1619–1626. [Google Scholar] [CrossRef]
- Armbruster, W.S. Can Indirect Selection and Genetic Context Contribute to Trait Diversification? A Transition-Probability Study of Blossom-Colour Evolution in Two Genera. J. Evol. Biol. 2002, 15, 468–486. [Google Scholar] [CrossRef] [Green Version]
- Han, F.L.; Xu, Y. Effect of the Structure of Seven Anthocyanins on Self-Association and Colour in an Aqueous Alcohol Solution. S. Afr. J. Enol. Vitic. 2015, 36, 105–116. [Google Scholar] [CrossRef]
Plant Material | Flower-Color Type | Description 1 | Plant Scouce 2 |
---|---|---|---|
‘Appalachian Red’, ‘Crosswicks Red’ | Red 3 | Cultivar | JCRA |
var. alba, ‘Texas White’ | White 3 | Cultivar | JCRA |
Pink Pom Poms ‘NC 2017-108’ ‘Oklahoma’ ‘Traveller’ ‘Gold Crown’ ‘Hearts of Gold’ Golden Falls® ‘NC2015-12’ ‘Merlot’ ’Ruby Falls’ Flame Thrower® ‘NC 2016-2’ | Purple 3 | Cultivar | JCRA |
‘Forest Pansy’ | Purple 3 | Cultivar | Kilgore |
R8-3 R8-4 | Purple | AR × OK F1 | Sandhills |
D2018-010-003 D2018-010-004 D2018-010-015 D2018-010-018 D2018-010-019 D2018-010-026 D2018-010-034 D2018-010-052 D2018-010-062 D2018-010-104 D2018-010-121 | Red | AR × OK F2 | Sandhills |
D2018-010-001 D2018-010-002 D2018-010-005 D2018-010-007 D2018-010-009 D2018-010-010 D2018-010-011 D2018-010-023 D2018-010-024 D2018-010-025 D2018-010-028 D2018-010-029 | Purple | AR × OK F2 | Sandhills |
Plant Material | Flower Type | Leaf Color | M3G 1 | SD 2 | Pn3G 1 | SD | M3G + Pn3G 1 | SD |
---|---|---|---|---|---|---|---|---|
‘Pink Pom Poms’ | Purple | Green | 0.12 | 0.05 | 0.07 | 0.03 | 0.19 | 0.08 |
‘Oklahoma’ | 0.36 | 0.3 | 0.35 | 0.36 | 0.71 | 0.66 | ||
‘Traveller’ | 0.46 | 0.25 | 0.29 | 0.25 | 0.75 | 0.51 | ||
‘Merlot’ | Purple | Red | 4.23 | 2.04 | 4.12 | 2.4 | 8.35 | 4.39 |
‘Forest Pansy’ | 6.79 | 3.48 | 8.24 | 4.83 | 15.02 | 8.06 | ||
‘Ruby Falls’ | 8.76 | 10.3 | 11.79 | 16.64 | 20.55 | 26.93 | ||
Flame Thrower® | Purple | Red/Yellow | 13.33 | 6.09 | 9.31 | 4.59 | 22.64 | 9.94 |
‘Gold Crown’ | Purple | Yellow | 0.19 | 0.14 | 0.1 | 0.09 | 0.29 | 0.21 |
‘Hearts of Gold’ | 0.32 | 0.04 | 0.44 | 0.02 | 0.77 | 0.03 | ||
Golden Falls® | 1.1 | 0.27 | 0.68 | 0.4 | 1.77 | 0.38 | ||
F1-R8-3 | Purple | Green | 1.63 | 0.41 | 4.41 | 1.28 | 6.04 | 1.68 |
F1-R8-4 | 0.99 | 0.46 | 0.97 | 0.49 | 1.96 | 0.95 | ||
D2018-010-025 | 0.16 | 0.12 | 0.03 | 0.03 | 0.19 | 0.14 | ||
D2018-010-002 | 0.32 | 0.08 | 0.42 | 0.04 | 0.74 | 0.03 | ||
D2018-010-011 | 0.32 | 0.10 | 0.52 | 0.23 | 0.84 | 0.33 | ||
D2018-010-029 | 0.60 | 0.23 | 0.78 | 0.39 | 1.37 | 0.62 | ||
D2018-010-010 | 0.69 | 0.12 | 0.27 | 0.07 | 0.96 | 0.09 | ||
D2018-010-009 | 0.70 | 0.37 | 0.80 | 0.41 | 1.49 | 0.74 | ||
D2018-010-005 | 0.96 | 0.29 | 1.30 | 0.58 | 2.26 | 0.83 | ||
D2018-010-001 | 0.96 | 0.45 | 1.03 | 0.24 | 1.99 | 0.69 | ||
D2018-010-024 | 1.09 | 0.09 | 1.32 | 0.23 | 2.40 | 0.25 | ||
D2018-010-007 | 1.15 | 1.00 | 0.47 | 0.28 | 1.62 | 1.27 | ||
D2018-010-023 | 1.31 | 0.19 | 1.73 | 0.36 | 3.04 | 0.53 | ||
D2018-010-028 | 2.20 | 0.62 | 0.74 | 0.16 | 2.94 | 0.68 | ||
‘Crosswicks Red’ | Red | Green | 0.00 | 0.00 | 0.24 | 0.06 | 0.24 | 0.06 |
‘Appalachian Red’ | 0.00 | 0.00 | 1.42 | 0.44 | 1.42 | 0.44 | ||
D2018-010-034 | 0.00 | 0.00 | 0.83 | 0.15 | 0.83 | 0.15 | ||
D2018-010-026 | 0.00 | 0.00 | 0.94 | 0.09 | 0.94 | 0.09 | ||
D2018-010-018 | 0.00 | 0.00 | 0.97 | 0.43 | 0.97 | 0.43 | ||
D2018-010-015 | 0.00 | 0.00 | 1.62 | 0.35 | 1.62 | 0.35 | ||
D2018-010-004 | 0.00 | 0.00 | 1.82 | 0.85 | 1.82 | 0.85 | ||
D2018-010-121 | 0.06 | 0.10 | 2.06 | 0.58 | 2.11 | 0.56 | ||
D2018-010-003 | 0.00 | 0.00 | 2.17 | 0.46 | 2.17 | 0.46 | ||
D2018-010-019 | 0.00 | 0.00 | 2.57 | 1.61 | 2.57 | 1.61 | ||
D2018-010-052 | 0.00 | 0.00 | 2.75 | 0.76 | 2.75 | 0.76 | ||
D2018-010-062 | 0.00 | 0.00 | 3.36 | 0.55 | 3.36 | 0.55 | ||
D2018-010-104 | 0.00 | 0.00 | 7.53 | 3.56 | 7.53 | 3.56 | ||
var. alba | White | Green | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
‘Texas White’ | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 |
Flower Color Type | M3G 1 | SD | P3G 1 | SD |
---|---|---|---|---|
Purple-type | 2.36 A,2 | 4.30 | 2.42 a,2 | 5.00 |
Red-type | 0.00 B | 0.03 | 2.17 a | 2.03 |
White-type | 0.00 B | 0.01 | 0.00 b | 0.01 |
Foliage Color | M3G 1 | SD | P3G 1 | SD | Sum | SD |
---|---|---|---|---|---|---|
Non-purple | 0.45 | 0.60 | 1.28 | 1.60 | 1.73 | 1.71 |
Purple | 8.28 ** | 6.61 | 8.36 ** | 8.58 | 16.46 ** | 14.64 |
Foliage Color | M3G 1 | SD | P3G 1 | SD | Sum | SD |
---|---|---|---|---|---|---|
Non-yellow | 1.10 | 2.78 | 2.05 | 4.03 | 3.15 | 6.61 |
Yellow | 0.71 | 0.46 | 0.56 | 0.28 | 1.27 | 0.60 |
Yellow (Excluding Flame Thrower®) | 5.76 | 7.41 | 4.06 | 5.24 | 9.82 | 12.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perkins-Veazie, P.; Ma, G.; Schwickerath, J.; Meyer, E.; Chen, H. The Absence of Malvidin-3-Glucoside in Petiole Tissue Predicts Rare Red-Type Flower of Eastern Redbud (Cercis canadensis L.). Agriculture 2023, 13, 598. https://doi.org/10.3390/agriculture13030598
Perkins-Veazie P, Ma G, Schwickerath J, Meyer E, Chen H. The Absence of Malvidin-3-Glucoside in Petiole Tissue Predicts Rare Red-Type Flower of Eastern Redbud (Cercis canadensis L.). Agriculture. 2023; 13(3):598. https://doi.org/10.3390/agriculture13030598
Chicago/Turabian StylePerkins-Veazie, Penelope, Guoying Ma, Jack Schwickerath, Elisabeth Meyer, and Hsuan Chen. 2023. "The Absence of Malvidin-3-Glucoside in Petiole Tissue Predicts Rare Red-Type Flower of Eastern Redbud (Cercis canadensis L.)" Agriculture 13, no. 3: 598. https://doi.org/10.3390/agriculture13030598
APA StylePerkins-Veazie, P., Ma, G., Schwickerath, J., Meyer, E., & Chen, H. (2023). The Absence of Malvidin-3-Glucoside in Petiole Tissue Predicts Rare Red-Type Flower of Eastern Redbud (Cercis canadensis L.). Agriculture, 13(3), 598. https://doi.org/10.3390/agriculture13030598