Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland
Abstract
:1. Introduction
2. Specific Character of Organic Soils
3. Mursh-Forming Process
4. Organic (Peat) Soils in the Polish Soil Classification
5. Transformations of Organic Matter after Drainage
Property, Unit | Sedge-Reed Peat 25–30 cm | Humous Mursh 5–10 cm | Alder-Wood Peat 55–60 cm | Proper Mursh 15–20 cm | Calcareous Mursh 0–32 cm | Ferruginous Mursh 10–20 cm | Mursh Of Mud Origin | Sandy Mursh | Semimurshic Material | Postmurshic Material |
---|---|---|---|---|---|---|---|---|---|---|
Source | [95] | [96] | [97] | [98] supplemented | [99] supplemented | |||||
LOI, % | 89.9 | 85.3 | 79.3 | 72.0 | 43.9 | 32.1 | 51.4 | 39.6 | 13.9 | 5.8 |
BD, Mg m−3 | 0.167 | 0.249 | 0.145 | 0.367 | 0.580 | n.d. | 0.757 | 0.540 | 0.951 | 1.211 |
TP, % | 89.3 | 84.5 | 91.3 | 79.1 | 72.9 | n.d. | 68.0 | 74.8 | 60.6 | 51.3 |
OC, % | 55.98 | 54.12 | 63.72 | 58.07 | 21.83 | 7.42 | 24.03 | 21.37 | 6.67 | 2.73 |
TN, % | 3.15 | 4.47 | 3.91 | 4.64 | 1.58 | 0.47 | 2.00 | 1.43 | 0.53 | 0.25 |
C:N | 17.8 | 12.1 | 16.3 | 12.5 | 13.8 | 15.8 | 12.0 | 15.1 | 12.6 | 11.0 |
pHH2O | 6.1 | 5.4 | 6.0 | 5.4 | 7.6 | 6.0 | 6.0 | 6.4 | 6.2 | 5.8 |
pHKCl | 5.5 | 4.9 | 5.3 | 5.0 | 7.3 | 5.0 | 5.3 | 5.7 | 5.3 | 4.9 |
CEC, cmol(+) kg−1 | 174.5 | 190.7 | 146.1 | 153.9 | n.d. | 72.4 | 99.7 | 105.0 | 48.4 | 19.1 |
BS, % | 68.3 | 42.2 | 77.7 | 63.8 | n.d. | 68.3 | 65.4 | 64.7 | 54.6 | 55.7 |
CaCO3, % | 0.0 | 0.0 | 0.0 | 0.0 | 30.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Catot, g kg−1 | 33.3 | 32.0 | 22.4 | 30.3 | 238.9 | 17.7 | 42.6 | 10.9 | 3.2 | 1.6 |
CaHCl, g kg−1 | n.d. | n.d. | n.d. | n.d. | n.d. | 16.80 | 15.36 | 9.50 | 2.80 | 1.40 |
Fetot, g kg−1 | 20.1 | 38.7 | 11.5 | 44.5 | 17.8 | 346.2 | 40.5 | 32.7 | 12.1 | 9.8 |
FeHCl, g kg−1 | 16.5 | 32.0 | 4.5 | 14.3 | n.d. | 56.1 | 23.3 | 17.1 | 4.7 | 3.8 |
Ptot, g kg−1 | 0.5 | 1.0 | 0.5 | 2.4 | 1.3 | 0.88 | 1.41 | 1.20 | 0.8 | 0.4 |
PHCl, g kg−1 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.26 | 0.36 | 0.30 | 0.15 | 0.09 |
Mgtot, g kg−1 | 0.3 | 0.2 | 1.4 | 1.3 | 3.4 | 0.4 | 0.60 | 0.30 | 0.09 | 0.05 |
MgHCl, g kg−1 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.32 | 0.39 | 0.26 | 0.06 | 0.04 |
Ktot, g kg−1 | 0.2 | 0.3 | 0.8 | 0.4 | 0.5 | 0.05 | 1.20 | 0.20 | 0.10 | 0.08 |
KHCl, g kg−1 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.02 | 0.30 | 0.13 | 0.06 | 0.05 |
6. Mineral Matter in Organic Soils after Drainage
7. Conclusions
- Development of rules for monitoring the distribution of organic soils and the state of their transformation (degradation) as a result of progressive drainage, using field studies and remote techniques.
- Development of ways to limit (reduce and mitigate) SOM mineralization, greenhouse gas emissions, and disappearance of organic soils from agriculturally used areas.
- Determination of the effects of rewetting on soil processes and properties of murshes.
- Determination of the influence of the mineral component or subsoil on the properties and directions of evolution of drained organic soils.
- Research on the impact of transformation of organic and mineral components of drained organic soils on their physical properties, including structure, hydrophobicity, and water retention capacity.
- Research on the effect of mursh age on their physicochemical properties, including the availability of nutrients for plants.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Okruszko, H. Phenomenon of peat degradation on the background of peat-land development. Zesz. Probl. Post. Nauk Rol. 1956, 2, 69–111, (In Polish with English Summary). [Google Scholar]
- Okruszko, H. Transformation of fen-peat soils under the impact of draining. Zesz. Probl. Post. Nauk Rol. 1993, 406, 3–73. [Google Scholar]
- Glina, B.; Piernik, A.; Hulisz, P.; Mendyk, Ł.; Tomaszewska, K.; Podlaska, M.; Bogacz, A.; Spychalski, W. Water or soil—What is the dominant driver controlling the vegetation pattern of degraded shallow mountain peatlands? Land Degrad. Dev. 2019, 30, 1437–1448. [Google Scholar] [CrossRef]
- Nicia, P.; Bejger, R.; Zadrożny, P.; Sterzyńska, M. The impact of restoration processes on the selected soil properties and organic matter transformation of mountain fens under Caltho-Alnetum community in the Babiogórski National Park in Outer Flysch Carpathians, Poland. J. Soil Sediments 2018, 18, 2770–2776. [Google Scholar] [CrossRef] [Green Version]
- Okruszko, H. Phenomenon of peat soil degradation in the light of experiments. Acta Agroph. 2000, 26, 7–15. [Google Scholar]
- Hooghoudt, S.B.; van der Woerdt, D.; Bennema, J.; van Dijk, H. Irreversibly drying peat soils in the West of Netherlands. (Verdrogende veengronden in West-Nederland). Versl. Landbouwkd. Onderz. 1960, 66, 308, (In Dutch with English Summary). [Google Scholar]
- Marcinek, J.; Spychalski, M. Degradation of organic soils in Obra river valley after their drainage and long-term agricultural use. Zesz. Probl. Post. Nauk Rol. 1998, 460, 219–236, (In Polish with English Summary). [Google Scholar]
- Ilnicki, P.; Zeitz, J. Irreversible loss of organic soil functions after reclamation. In Organic Soils and Peat Materials for Sustainable Agriculture; Parent, L.-E., Ilnicki, P., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 15–32. [Google Scholar]
- Dawson, Q.; Kechavarzi, C.; Leeds-Harrison, P.B.; Burton, R.G.O. Subsidence and degradation of agricultural peatlands in the Fenlands of Norfolk, UK. Geoderma 2010, 154, 181–187. [Google Scholar] [CrossRef]
- Krüger, J.P.; Leifeld, J.; Glatzel, S.; Szidat, S.; Alewell, C. Biogeochemical indicators of peatland degradation—A case study of temperate bog in northern Germany. Biogeosciences 2015, 12, 2861–2871. [Google Scholar] [CrossRef] [Green Version]
- Zając, E.; Zarzycki, J.; Ryczek, M. Degradation of peat surface on an abandoned post-extracted bog and implications for re-vegetation. Appl. Ecol. Environ. Res. 2018, 16, 3363–3380. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Łachacz, A.; Kalisz, B. Measurements versus estimates of soil subsidence and mineralization rates at peatland over 50 years (1966–2016). Sustainability 2022, 14, 16459. [Google Scholar] [CrossRef]
- Lucas, R.E. Organic Soils (Histosols). Formation, Distribution, Physical and Chemical Properties and Management for Crop Production; Research Report 435 (Farm Science); Michigan State University: East Lansing, MI, USA, 1982; p. 77. [Google Scholar]
- Everett, K.R. Histosols. In Pedogenesis and Soil Taxonomy II. The Soil Orders; Wilding, L.P., Smeck, N.E., Hall, G.F., Eds.; Elsevier Scientific Publishers: Amsterdam, The Netherlands, 1983; pp. 1–53. [Google Scholar]
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands—Background and Principles Including a Framework for Decision-Making; International Mire Conservation Group/International Peat Society: Saarijärvi, Finland, 2002; pp. 1–303. [Google Scholar]
- Rydin, H.; Jeglum, J. The Biology of Peatlands; Oxford University Press: Oxford, UK, 2006; p. 343. [Google Scholar]
- Renger, M.; Wessolek, G.; Schwaerzel, K.; Sauerbrey, R.; Siewert, C. Aspects of peat conservation and water management. J. Plant Nutr. Soil Sci. 2002, 165, 487–493. [Google Scholar] [CrossRef]
- Jurczuk, S. Reclamation determinants of organic matter preservation in post-bog soils under meadows. Woda-Sr.-Obsz. Wiej. Rozpr. Nauk. Monogr. 2011, 30, 1–81, (In Polish with English Summary). [Google Scholar]
- Marcinek, J. 1976. Effect of drainage connected with the agriculture and forestry intensification on soil cover transformations. Zesz. Probl. Post. Nauk Rol. 1976, 177, 73–157, (In Polish with English Summary). [Google Scholar]
- Dengiz, O.; Ozaytekin, H.H.; Cayci, G.; Baran, A. Characteristics, genesis and classification of a basin peat soil under negative human impact in Turkey. Environ. Geol. 2009, 56, 1057–1063. [Google Scholar] [CrossRef] [Green Version]
- Berglund, Ö.; Berglund, K. Distribution and cultivation intensity of agricultural peat and gyttja soils in Sweden and estimation of greenhouse gas emissions from cultivated peat soils. Geoderma 2010, 154, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Šlepetienė, A.; Šlepetys, J.; Liaudanskienė, I. Chemical composition of differently used Terric Histosol. Zemdirb.-Agric. 2010, 97, 25–32. [Google Scholar]
- Leifeld, J.; Müller, M.; Fuhrer, J. Peatland subsidence and carbon loss from drained temperate fens. Soil Use Manag. 2011, 27, 170–176. [Google Scholar] [CrossRef]
- Glina, B.; Bogacz, A.; Gulyás, M.; Zawieja, B.; Gajewski, P.; Kaczmarek, Z. The effect of long-term forestry drainage on the current state of peatland soils: A case study from the Central Sudetes, SW Poland. Mires Peat 2016, 18, 1–11. [Google Scholar] [CrossRef]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Price, J.; Rezanezhad, F.; Lennartz, B. Centennial-scale shifts in hydrophysical properties of peat induced by drainage. Water Resour. Res. 2020, 56, e2020WR027538. [Google Scholar] [CrossRef]
- Okruszko, H. The phase of decession in natural evolution of low peat lands. Zesz. Nauk. Akad. Rol. Wrocławiu 1981, 134, Rolnictwo 38, 39–48, (In Polish with English Summary). [Google Scholar]
- Tiemeyer, B.; Kahle, P. Nitrogen and dissolved organic carbon (DOC) losses from an artificially drained grassland on organic soils. Biogeosciences 2014, 11, 4123–4137. [Google Scholar] [CrossRef] [Green Version]
- Glina, B.; Piernik, A.; Mocek-Płóciniak, A.; Maier, A.; Glatzel, S. Drivers controlling spatial and temporal variation of microbial properties and dissolved organic forms (DOC and DON) in fen soils with persistently low water tables. Glob. Ecol. Conserv. 2021, 27, e01605. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Regina, K.; Szajdak, L.; Höper, H.; Maryganova, V. Impact of agricultural utilization of peat soils on the greenhouse gas balance. In Peatlands and Climate Change; Strack, M., Ed.; International Peat Society: Jyväskylä, Finland, 2008; pp. 70–97. [Google Scholar]
- Maljanen, M.; Sigurdsson, B.D.; Guðmundsson, J.; Oskarsson, H.; Huttunen, J.T.; Martikainen, P.J. Greenhouse gas balances of managed peatlands in the Nordic countries-present knowledge and gaps. Biogeosciences 2010, 7, 2711–2738. [Google Scholar] [CrossRef] [Green Version]
- Frolking, S.; Talbot, J.; Jones, M.C.; Treat, C.C.; Kauffman, J.B.; Tuittila, E.-S.; Roulet, N. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 2011, 19, 371–396. [Google Scholar] [CrossRef]
- Joosten, H.; Tapio-Bistrom, M.-L.; Tol, S. Peatlands-Guidance for Climate Change Mitigation through Conservation, Rehabilitation and Sustainable Use; Food and Agriculture Organisation of the United Nations and Wetlands International: Rome, Italy, 2012. [Google Scholar]
- Liwski, S.; Maciak, F.; Okruszko, H.; Churski, T.; Gotkiewicz, J.; Oświt, J.; Pacowski, R.; Szuniewicz, J.; Żurek, S. Characteristics of soil formation and soils and their evolution due to draining and different utilization. Pol. Ecol. Stud. 1984, 10, 313–346. [Google Scholar]
- Ilnicki, P. Peatlands and Peat; (Torfowiska i torf); Wydawnictwo Akademii Rolniczej: Poznań, Poland, 2002; p. 606. (In Polish) [Google Scholar]
- Okruszko, H.; Ilnicki, P. The moorsh horizons as quality indicators of reclaimed organic soils. In Organic Soils and Peat Materials for Sustainable Agriculture; Parent, L.E., Ilnicki, P., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 1–14. [Google Scholar]
- Łachacz, A.; Kalisz, B. Polish contribution to the study of moorsh-forming process. In Polish National Committee of International Peatland Society—History, Activities, Achievements; Łachacz, A., Kalisz, B., Eds.; Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie: Olsztyn, Poland, 2016; pp. 115–130. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Zawadzki, S. Relationship between the content of organic matter and physical properties of hydrogenic soils. Polish J. Soil Sci. 1970, 3, 3–9. [Google Scholar]
- Rezanezhad, F.; Price, J.S.; Quinton, W.L.; Lennartz, B.; Milojevic, T.; Van Cappellen, P. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 2016, 429, 75–84. [Google Scholar] [CrossRef]
- Okruszko, H. Muck soils of valley peatlands, and their chemical and physical properties. Rocz. Nauk. Rol. Ser. F 1960, 74, 5–89. [Google Scholar]
- Heller, C.; Zeitz, J. Stability of soil organic matter in two northeastern German fen soils: The influence of site and soil development. J. Soils Sediments 2012, 12, 1231–1240. [Google Scholar] [CrossRef]
- Truba, M.; Oleszczuk, R. An analysis of some basic chemical and physical properties of drained fen peat and moorsh soil layers. Ann. Wars. Univ. Life Sci.–SGGW Land Reclam. 2014, 46, 69–78. [Google Scholar] [CrossRef]
- Wallor, E.; Zeitz, J. How properties of differently cultivated fen soils affect grassland productivity—A broad investigation of environmental interactions in Northeast Germany. Catena 2016, 147, 288–299. [Google Scholar] [CrossRef]
- Strzemski, M. History of Polish Soil Science; (Historia gleboznawstwa polskiego od zarania polskiego piśmiennictwa rolniczo-gleboznawczego do powstania Drugiej Rzeczypospolitej); Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 1980; pp. 1–224. (In Polish) [Google Scholar]
- Miklaszewski, S. Soils of Poland. (Gleby Polski), 3rd ed.; Polski Bank Rolny: Warszawa, Poland, 1930; pp. 1–638. (In Polish) [Google Scholar]
- Tomaszewski, J. Meadow Soils. (Gleby łąkowe); Wyd. Państwowy Instytut Naukowy Gospodarstwa Wiejskiego: Puławy, Poland, 1947; pp. 1–208. (In Polish) [Google Scholar]
- Tomaszewski, J. Processes in bog soil “from above” and “from below”. Zesz. Prob. Post. Nauk Roln. 1958, 17, 113–120, (In Polish with English Summary). [Google Scholar]
- Tomaszewski, J. The essential conditions of the origination, development and metamorphosis of swampy soils. Rocz. Nauk. Rol. 1950, 54, 607–629, (In Polish with English Summary). [Google Scholar]
- Kowaliński, S. Moorsh soils and their metamorphoses effected by plough tillage. (Gleby murszowe i ich przeobrażenia pod wpływem uprawy płużnej). Pr. Wrocławskiego Tow. Nauk. Ser. B 1964, 124, 1–139, (In Polish with English Summary). [Google Scholar]
- Pons, L.J.; Zonneveld, I.S. Soil Ripening and Soil Classification: Initial Soil Formation of Alluvial Deposits with a Classification of the Resulting Soils; International Land Reclamation Institute Publ. 13, Veenman: Wageningen, The Netherlands, 1965; 128p. [Google Scholar]
- Myślińska, E. Development of muck from the weathering of peats: Its importance as an isolation barrier. Bull. Eng. Geol. Environ. 2003, 62, 389–392. [Google Scholar] [CrossRef]
- Skrynnikova, I.N. The effect of regulation of the water regime on the character of the soil-forming processes in cultured peaty-bog soils. Pochvovedenie 1959, 1, 30–39, (In Russian with English Abstract). [Google Scholar]
- Pons, L.J. Soil genesis and classification of reclaimed peat soils in connection with initial soil formation. Trans. 7th Int. Congr. Soil Sci. 1960, 4, 205–211. [Google Scholar]
- Illner, K. Zur Bodenbildung in Niedermoortorfen. Arch. Acker-U. Pflanzenbu. U. Bodenkd. 1977, 21, 867–872. [Google Scholar]
- Okruszko, H. System of fen-peat soils description used in Poland. J. Water Land Dev. 1998, 2, 63–73. [Google Scholar]
- Wondrausch, J. The rate of “mursh” process and moisture in relation to the chemical compostion of “mursh” soils formed out of low moor. Rocz. Glebozn.–Soil Sci. Annu. 1963, 13, 206–210, (In Polish with English Summary). [Google Scholar]
- Gawlik, J. Water holding capacity of peat formations as an index of the state of their secondary transformation. Polish J. Soil Sci. 1992, 25, 121–126. [Google Scholar]
- Sapek, B.; Sapek, A. Investigations of the specificity and effects of the secondary humification process of soils formed from various types of organic materials. Zesz. Prob. Post. Nauk Roln. 1993, 406, 83–93. [Google Scholar]
- Matyka-Sarzyńska, D.; Sokołowska, Z. Physicochemical properties of mucks at different stages of secondary transformation. Acta Agroph. Rozpr. Monogr. 2005, 123, 1–68, (In Polish with English Summary). [Google Scholar]
- Schindler, U.; Behrendt, A.; Müller, L. Change of soil hydrological properties of fens as a result of soil development. J. Plant Nutr. Soil Sci. 2003, 166, 357–363. [Google Scholar] [CrossRef]
- Mueller, L.; Wirth, S.; Schulz, E.; Behrendt, A.; Hoehn, A.; Schindler, U. Implications of soil substrate and land use for properties of fen soils in North-East Germany Part I: Basic soil conditions, chemical and biological properties of topsoils. Arch. Agron. Soil Sci. 2007, 53, 113–126. [Google Scholar] [CrossRef]
- Avery, B.W. Soil of the British Isles; CAB International: Wallingford, UK, 1990; 463p. [Google Scholar]
- Waksman, S.A. The Peats of New Jersey and Their Utilization. Part A: Nature and Origin of Peat. Composition and Utilization; Department of Conservation and Development, State of New Jersey: Trenton, NJ, USA, 1942; Bulletin 55; 155p. [Google Scholar]
- Lachacz, A.; Nitkiewicz, M.; Kalisz, B. Water repellency of post-boggy soils with a various content of organic matter. Biologia 2009, 64, 635–639. [Google Scholar] [CrossRef]
- Hewelke, E.; Szatyłowicz, J.; Gnatowski, T.; Oleszczuk, R. Effects of soil water repellency on moisture patterns in a degraded sapric Histosol. Land Degrad. Dev. 2016, 27, 955–964. [Google Scholar] [CrossRef]
- Papierowska, E.; Matysiak, W.; Szatyłowicz, J.; Debaene, G.; Urbanek, E.; Kalisz, B.; Łachacz, A. Compatibility of methods used for soil water repellency determination for organic and organo-mineral soils. Geoderma 2018, 314, 221–231. [Google Scholar] [CrossRef]
- Kabała, C.; Charzynski, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Labaz, B.; et al. Polish Soil Classification, 6th edition—Principles, classification scheme and correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef] [Green Version]
- Rząsa, S. Genesis and evolution of mineral muck soils in the terrain being drained. Rocz. Wyższej Szkoły Rol. Pozn. 1963, 18, 151–223, (In Polish with English Summary). [Google Scholar]
- Mueller, L.; Schindler, U.; Behrendt, A.; Shepherd, T.G.; Eulenstein, F. Implications of soil substrate and land use for properties of fen soils in North-East Germany Part II: Aspects of structure in the peat soil landscape. Arch. Agron. Soil Sci. 2007, 53, 127–136. [Google Scholar] [CrossRef]
- Mueller, L.; Behrendt, A.; Shepherd, T.G.; Schindler, U.; Kaiser, T. Implications of soil substrate and land use for properties of fen soils in North-East Germany Part III: Soil quality for grassland use. Arch. Agron. Soil Sci. 2007, 53, 137–146. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Drozd, J.; Kowaliński, S.; Licznar, M.; Licznar, S.E. Micromorphological interpretation of the physico-chemical processes in post-bog soils. Rocz. Glebozn.–Soil Sci. Annu. 1987, 38, 121–137, (In Polish with English Summary). [Google Scholar]
- Róg, Z. Micromorphologic aspects of the mucking process in differently utilized peat soils of the Experimental Station Biebrza. Wiadomości Inst. Melior. Użytków Ziel. 1991, 16, 157–176, (In Polish with English Summary). [Google Scholar]
- Marcinek, J.; Spychalski, M. The influence of organic matter content in hydromorphic soils on their physical properties. Rocz. Akad. Rol. Pozn. Melior. 1987, 7, 19–33, (In Polish with English Summary). [Google Scholar]
- Łabaz, B.; Kabala, C. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 2016, 139, 117–126. [Google Scholar] [CrossRef]
- Lipka, K.; Zając, E.; Hlotov, V.; Siejka, Z. Disappearance rate of a peatland in Dublany near Lviv (Ukraine) drained in 19th century. Mires Peat 2017, 19, 1–15. [Google Scholar] [CrossRef]
- Kozakiewicz, A. Characteristics of the organic matter of peat soils and the peats of low-moors. Rocz. Glebozn.–Soil Sci. Annu. 1962, 11, 73–100, (In Polish with English Summary). [Google Scholar]
- Marcinek, J. Studies of chemical composition of organic substance of peat soils. Zesz. Probl. Post. Nauk Roln. 1962, 34, 129–137, (In Polish with English Summary). [Google Scholar]
- Okruszko, H.; Kozakiewicz, A. Humification and mineralization as mucking process elements in peat soils. Zesz. Probl. Post. Nauk Roln. 1973, 146, 63–76, (In Polish with English Summary). [Google Scholar]
- Walczyna, J. Organic-mineral compounds in drained hydrogenic soils and evolution trends of these soils. Rocz. Glebozn.–Soil Sci. Annu. 1974, 25, 179–200, (In Polish with English Summary). [Google Scholar]
- Drozd, J. Changes of nitrogen content in humic compounds of muck soils formed under different hydrological conditions. Rocz. Glebozn.–Soil Sci. Annu. 1986, 37, 195–203, (In Polish with English Summary). [Google Scholar]
- Sapek, A.; Sapek, B. The use of 0.5 M sodium hydroxide extract for characterizing humic substances from organic formations. Rocz. Glebozn.–Soil Sci. Annu. 1986, 37, 139–147, (In Polish with English Summary). [Google Scholar]
- Wójciak, H. Properties of the organic matter in drained peat soils. Diss. Monogr. UWM Olszt. 2004, 97, 1–71, (In Polish with English Summary). [Google Scholar]
- Matyka-Sarzyńska, D.; Sokołowska, Z. Usefulness of humification number in studies of the state of secondary transformation as comparison to water holding capacity of mucks. Acta Agroph. 2004, 106, 553–564, (In Polish with English Summary). [Google Scholar]
- Kalisz, B.; Lachacz, A.; Glazewski, R. Transformation of some organic matter components in organic soils exposed to drainage. Turk. J. Agric. For. 2010, 34, 245–256. [Google Scholar] [CrossRef]
- Kalisz, B.; Lachacz, A.; Glazewski, R. Effects of peat drainage on labile organic carbon and water repellency in NE Poland. Turk. J. Agric. For. 2015, 39, 20–27. [Google Scholar] [CrossRef]
- Fortuniak, K.; Pawlak, W.; Bednorz, L.; Grygoruk, M.; Siedlecki, M.; Zieliński, M. Methane and carbon dioxide fluxes of a temperate mire in Central Europe. Agric. For. Meteorol. 2017, 232, 306–318. [Google Scholar] [CrossRef]
- Becher, M.; Kalembasa, D.; Kalembasa, S.; Symanowicz, B.; Jaremko, D.; Matyszczak, A. A New Method for Sequential Fractionation of Nitrogen in Drained Organic (Peat) Soils. Int. J. Environ. Res. Public Health 2023, 20, 2367. [Google Scholar] [CrossRef] [PubMed]
- Smolczynski, S.; Kalisz, B.; Urbanowicz, P.; Orzechowski, M. Effect of Peatland Siltation on Total and Labile C, N, P and K. Sustainability 2021, 13, 8240. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E. C:N:P stoichiometry as an indicator of Histosol drainage in lowland and mountain forest ecosystems. For. Ecosyst. 2021, 8, 39. [Google Scholar] [CrossRef]
- Maciak, F.; Liwski, S. Carbon and nitrogen mineralization in peat soils depending on their decomposition degree and addition of plant residues (grass roots). In Proceedings of the 8th International Peat Congress, Leningrad, Russia, 15–19 August 1988; Section 4. pp. 265–274. [Google Scholar]
- Okruszko, H.; Sapek, B.; Szuniewicz, J. Balance of mineral components in peat soil utilized for a grassland over 24 years. In Proceedings of the 8th International Peat Congress, Leningrad, Russia, 15–19 August 1988; Section 3. pp. 226–233. [Google Scholar]
- Piaścik, H. Changes in peat-muck soils of the Mazurian Lakeland with particular regard to changes in the content of calcium, iron and aluminium. Zesz. Nauk. ART Olszt. Rol. 1977, 23, 3–60, (In Polish with English Summary). [Google Scholar]
- Meller, E. Shallow Organogenic-Calcareous Soils on Lacustrine Chalk and Their Transformation Resulted from Cultivation; Wydawnictwo Akademii Rolniczej w Szczecinie: Szczecin, Poland, 2006; 115p, (In Polish with English Summary). [Google Scholar]
- Meller, E.; Malinowski, R. Chemical properties of post-bog soils with bog iron ore of “Stare Bagno” located in the Karpina river valley. Rocz. Glebozn.–Soil Sci. Annu. 2010, 61, 159–163, (In Polish with English Summary). [Google Scholar]
- Kalisz, B.; Łachacz, A. Content of nutrients, heavy metals and exchangeable cations in riverine organic soils. Pol. J. Soil Sci. 2009, 42, 43–52. [Google Scholar]
- Łachacz, A. Origin and Properties of Shallow Organogenic Soils of the Mazury and Kurpie Plain; Dissertations and Monographs of University of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2001; 119p, (In Polish with English Summary). [Google Scholar]
- Boguta, P.; Sokołowska, Z. Statistical relationship between selected physicochemical properties of peaty-muck soils and their fraction of humic acids. Int. Agroph. 2014, 28, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Smreczak, B.; Ukalska-Jaruga, A. Dissolved organic matter in agricultural soils. Soil Sci. Annu. 2021, 72, 132234. [Google Scholar] [CrossRef]
- Heller, C.; Weiß, K. Approaching a standardized method for the hot-water extraction of peat material to determine labile SOM in organic soils. Commun. Soil Sci. Plant Anal. 2015, 46, 1044–1060. [Google Scholar] [CrossRef]
- Becher, M. Organic Matter Transformation Degree in the Soils of the Upper Liwiec River; Rozprawa Naukowa Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach: Siedlce, Poland, 2013; (In Polish with English Summary). [Google Scholar]
- Leinweber, P.; Schulten, H.-R.; Kalbitz, K.; Meissen, R.; Jancke, H. Fulvic acid composition in degraded fenlands. J. Plant Nutr. Soil Sci. 2001, 164, 371–379. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Eickemeier, P.; et al. (Eds.) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Bieniek, B. Changes of the chemical composition of peat soils occurring at a deep drainage under conditions of the Masurian Lake District. Rocz. Nauk. Rol. Ser. F 1988, 80, 203–225, (In Polish with English Summary). [Google Scholar]
- Urvas, L. The influence of different subsoil types on the Ca, K and P status, and pH of the corresponding mould layer. Ann. Agric. Fenn. 1983, 22, 186–192. [Google Scholar]
- Sapek, A.; Sapek, B. Testing of grassland soils in Poland. Comm. Soil Sci. Plant Anal. 1992, 23, 2165–2171. [Google Scholar] [CrossRef]
- Sapek, A.; Sapek, B. Methods of Chemical Analyses of Organic Soils. (Metody Analizy Chemicznej Gleb Organicznych); Materiały Instruktażowe IMUZ Falenty 115; Instytut Melioracji i Użytków Zielonych: Falenty, Poland, 1997; 80p. (In Polish) [Google Scholar]
- Okruszko, H.; Walczyna, J. Determination of abundance in phosphorus of meadow organic soils using the extraction in 0.5 n HCl. Rocz. Nauk. Rol. Ser. F 1970, 77, 437–453, (In Polish with English Summary). [Google Scholar]
- Przesmycka, W. Occurrence of aluminium, iron and calcium phosphates in peat-muck soil profiles. Wiadomości Inst. Melior. Użytków Ziel. 1974, 12, 117–138, (In Polish with English Summary). [Google Scholar]
- Przesmycka, W. Content of mineral compounds of phosphorus in reclaimed grassland soils of the Wizna Peatland. Rocz. Nauk. Rol. Ser. F 1976, 79, 93–107, (In Polish with English Summary). [Google Scholar]
- Okruszko, H. Changes in phosphorus content of organic hydromorphic soils due to drainage. Rocz. Glebozn.–Soil Sci. Annu. 1964, 14, 183–195. [Google Scholar]
- Okruszko, H. Determination of phosphorus fertilization needs of peat soils on example of the Kuwasy peatland. Wiadomości Inst. Melior. Użytków Ziel. 1964, 4, 9–69, (In Polish with English Summary). [Google Scholar]
- Piaścik, H.; Łachacz, A. The effects of the muck-forming process on the sorptive properties of peat soils. Pol. J. Soil Sci. 2001, 34, 69–76. [Google Scholar]
- Sapek, B.; Sapek, A. Changes in the properties of humus substances and the sorption complex in reclaimed peat soils. Int. Peat J. 1987, 2, 99–117. [Google Scholar]
- Sapek, B.; Sapek, A.; Stawiński, J. The effect of moorsh forming process on the specific surface area and sorption properties of peat-moorsh soils. In Proceedings of the 8th International Peat Congress, Leningrad, Russia, 15–19 August 1988; Section 4. pp. 288–294. [Google Scholar]
- Rząsa, S. Physical fractioning of humus bonds with help of heavy liquids. Rocz. Glebozn.–Soil Sci. Annu. 1958, 7, 217–220, (In Polish with English Summary). [Google Scholar]
- Kalisz, B.; Urbanowicz, P.; Smólczyński, S.; Orzechowski, M. Impact of siltation on the stability of organic matter in drained peatlands. Ecol. Indic. 2021, 130, 108149. [Google Scholar] [CrossRef]
- Długosz, J.; Kalisz, B.; Łachacz, A. Mineral matter composition of drained floodplain soils in north-eastern Poland. Soil Sci. Annu. 2018, 69, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Liwski, S.; Okruszko, H.; Kalińska, D. Differentiation and content of chemical compounds in organogenic soils of Biebrza Mires. Zesz. Nauk. Akad. Rol. Wrocławiu 1981, 134, Rolnictwo 38, 97–109, (In Polish with English Summary). [Google Scholar]
- Zawadzki, S. Investigations on the origin and evolution of bog soils rich in calcium carbonate in the Lublin District. Ann. Univ. Maria Curie-Skłodowska Sect. E 1958, 12, 1–86, (In Polish with English Summary). [Google Scholar]
- Ziółek, M. Phosphorus forms in organic soils with a varying degree of transformation (on the example of the Lublin Polesie region. Pol. J. Soil Sci. 2007, 49, 179–194. [Google Scholar]
- Debicka, M.; Bogacz, A.; Kowalczyk, K. Phosphorus behaviour and its basic indices under organic matter transformation in variable moisture conditions: A case study of fen organic soils in the Odra River Valley, Poland. Agronomy 2021, 11, 1997. [Google Scholar] [CrossRef]
- Sapek, A.; Gotkiewicz, J. Utilization and fertilization effect on the content of mineral elements in profiles of peat soil from the Kuwasy bog. Rocz. Nauk. Rol. Ser. F 1977, 79, 113–134, (In Polish with English Summary). [Google Scholar]
- Lozet, J.; Mathieu, C. Dictionary of Soil Science; Second edition Revised and Enlarged; A.A. Balkema: Rotterdam, The Netherlands, 1991; 348p. [Google Scholar]
- Gregorich, E.G.; Turchenek, L.W.; Carter, M.R.; Angers, D.A. (Eds.) Soil and Environmental Science Dictionary; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2002; 577p. [Google Scholar]
- Canarache, A.; Vintila, I.; Munteanu, I. Elsevier’s Dictionary of Soil Science; Elsevier: Amsterdam, The Netherlands, 2006; 1339p. [Google Scholar]
- Chesworth, W. (Ed.) Encyclopedia of Soil Science; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA, 2008; 902p. [Google Scholar]
Mursh Type | Degree of Transformation | Description of Mursh Mass |
---|---|---|
Peaty | Low | Loose structure, tendency to form aggregates cemented by humus; mursh contains fragmented remains of vegetation, is light, and does not get hands dirty |
Humic | Moderate | Granular or cryptogranular structure, similar to cultivated soils, occasionally silty; mursh solidifies under pressure, crumbles into granules under light pressure, gets hands dirty with fresh humus |
Grainy (proper) | High | Grainy or cryptograiny structure with visible shape of grains (grains size from several millimetres to 0.1 mm), sometimes firm, angular (degraded mursh); the mursh is loose, friable, does not get hands dirty |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łachacz, A.; Kalisz, B.; Sowiński, P.; Smreczak, B.; Niedźwiecki, J. Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland. Agriculture 2023, 13, 634. https://doi.org/10.3390/agriculture13030634
Łachacz A, Kalisz B, Sowiński P, Smreczak B, Niedźwiecki J. Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland. Agriculture. 2023; 13(3):634. https://doi.org/10.3390/agriculture13030634
Chicago/Turabian StyleŁachacz, Andrzej, Barbara Kalisz, Paweł Sowiński, Bożena Smreczak, and Jacek Niedźwiecki. 2023. "Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland" Agriculture 13, no. 3: 634. https://doi.org/10.3390/agriculture13030634
APA StyleŁachacz, A., Kalisz, B., Sowiński, P., Smreczak, B., & Niedźwiecki, J. (2023). Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland. Agriculture, 13(3), 634. https://doi.org/10.3390/agriculture13030634