Irrigation Depth and Potassium Doses Affect Fruit Yield and Quality of Figs (Ficus carica L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Experimental Area
2.2. Cultivation Conditions
2.3. Experimental Design
2.4. Characteristics Evaluated
2.5. Fruit Quality
2.6. Statistical Analysis
3. Results
3.1. Climatic Influence
3.2. Production and Water Efficiency
3.3. Fruit Physical Characteristics
3.4. Fruit Physicochemical Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, F.S.O.; Pereira, E.C.; Mendonça, V.; da Silva, R.M.; Alves, A.A. Phenology and Yield of the “Roxo de Valinhos” Fig Cultivar in Western Potiguar. Rev. Caatinga 2017, 30, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Moursi, H.; Kim, D.; Kaluarachchi, J.J. A Probabilistic Assessment of Agricultural Water Scarcity in a Semi-Arid and Snowmelt-Dominated River Basin under Climate Change. Agric. Water Manag. 2017, 193, 142–152. [Google Scholar] [CrossRef]
- Bayer, A.; Ruter, J.; van Iersel, M.W. Elongation of Hibiscus Acetosella under Well-Watered and Drought-Stressed Conditions. HortScience 2016, 51, 1384–1388. [Google Scholar] [CrossRef]
- Abdolahipour, M.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R.; Zand-Parsa, S.; Honar, T.; Razzaghi, F. Time and Amount of Supplemental Irrigation at Different Distances from Tree Trunks Influence on Morphological Characteristics and Physiological Responses of Rainfed Fig Trees under Drought Conditions. Sci. Hortic. 2019, 253, 241–254. [Google Scholar] [CrossRef]
- Wang, X.; Cai, X.; Xu, C.; Wang, Q.; Dai, S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int. J. Mol. Sci. 2016, 17, 1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwish, A.D.; El-Berry, I.; Moursy, F.S.; Hagagg, L.F. Detecting Drought Tolerance of Fig (Ficus carica, L.) Cultivars Depending on Vegetative Growth and Peroxidase Activity. Int. J. ChemTech Res. 2015, 8, 1520–1532. [Google Scholar]
- Trevisan, P.V.; Menegaes, J.F.; Fronza, D.; Nishijima, T. Produtividade Da Cultura Da Figueira (Ficus carica L.) Submetida a Diferentes Estratégias de Irrigação Por Gotejamento. Acta Iguazu 2016, 5, 49–60. [Google Scholar]
- Gholami, M.; Rahemi, M.; Kholdebarin, B.; Rastegar, S. Biochemical Responses in Leaves of Four Fig Cultivars Subjected to Water Stress and Recovery. Sci. Hortic. 2012, 148, 109–117. [Google Scholar] [CrossRef]
- Gholami, M.; Rahemi, M.; Rastegar, S. Use of Rapid Screening Methods for Detecting Drought Tolerant Cultivars of Fig (Ficus carica L.). Sci. Hortic. 2012, 143, 7–14. [Google Scholar] [CrossRef]
- Abdolahipour, M.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Time and Amount of Supplemental Irrigation at Different Distances from Tree Trunks Influence on Soil Water Distribution, Evaporation and Evapotranspiration in Rainfed Fig Orchards. Agric. Water Manag. 2018, 203, 322–332. [Google Scholar] [CrossRef]
- Bagheri, E.; Sepaskhah, A.R. Rain-Fed Fig Yield as Affected by Rainfall Distribution. Theor. Appl. Climatol. 2013, 117, 433–439. [Google Scholar] [CrossRef]
- Souza, A.P.; Silva, A.C.; Leonel, S.; Souza, M.E.; Tanaka, A.A. Evapotranspiração e Eficiência Do Uso Da Água No Primeiro Ciclo Produtivo Da Figueira “Roxo de Valinhos” Submetida a Cobertura Morta. Available online: http://www.seer.ufu.br/index.php/biosciencejournal/article/view/14076 (accessed on 4 July 2020).
- Kanai, S.; Moghaieb, R.E.; El-Shemy, H.A.; Panigrahi, R.; Mohapatra, P.K.; Ito, J.; Nguyen, N.T.; Saneoka, H.; Fujita, K. Potassium Deficiency Affects Water Status and Photosynthetic Rate of the Vegetative Sink in Green House Tomato Prior to Its Effects on Source Activity. Plant Sci. 2011, 180, 368–374. [Google Scholar] [CrossRef]
- Caretto, S.; Parente, A.; Serio, F.; Santamaria, P. Influence of Potassium and Genotype on Vitamin E Content and Reducing Sugar of Tomato Fruits. HortScience 2008, 43, 2048–2051. [Google Scholar] [CrossRef]
- Daoud, B.; Pawelzik, E.; Naumann, M. Different Potassium Fertilization Levels Influence Water-Use Efficiency, Yield, and Fruit Quality Attributes of Cocktail Tomato—A Comparative Study of Deficient-to-Excessive Supply. Sci. Hortic. 2020, 272, 109562. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of Macronutrients. Marschner’s Miner. Nutr. High. Plants 2012, 1, 135–189. [Google Scholar] [CrossRef]
- White, P.J.; Karley, A.J. Potassium. Plant Cell Monogr. 2010, 17, 199–224. [Google Scholar] [CrossRef]
- Cakmak, I. The Role of Potassium in Alleviating Detrimental Effects of Abiotic Stresses in Plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Rostami, A.A.; Rahemi, M. Screening Drought Tolerance in Caprifig Varieties in Accordance to Responses of Antioxidant Enzymes. World Appl. Sci. J. 2013, 21, 1213–1219. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Leonel, S.; Reis, L.L. Potassium Fertilization on Fruits Orchards: A Study Case from Brazil. In Soil Fertility; InTech: London, UK, 2012. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Merriam, J.L.; Keller, J. Farm Irrigation System Evaluation: A Guide for Management, 3rd ed.; Utah State University: Logan, UT, USA, 1978. [Google Scholar]
- Howell, T.A.; Cuenca, R.H.; Solomon, K.H. Crop Yield Response. In Management of Farm Irrigation Systems; Hoffman, G.J., Howell, T.A., Solomon, K.H., Eds.; ASAE: St. Joseph, MI, USA, 1990; pp. 93–122. [Google Scholar]
- Kanber, R.; Yazar, A.; Köksal, H.; Oguzer, V. Evapotranspiration of Grapefruit in the Eastern Mediterranean Region of Turkey. Sci. Hortic. 1992, 52, 53–62. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012; ISBN 0935584838 9780935584837. [Google Scholar]
- Strohecker, R.; Henning, H.M. Análises de vitaminas: Métodos comprovados; Editora Paz Montalvo: Madrid, Spanish, 1967; 428p. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Souza, A.P.; Pereira, J.B.A.; da Silva, L.D.B.; Guerra, J.G.M.; de Carvalho, D.F. Evapotranspiração, Coeficientes de Cultivo e Eficiência Do Uso Da Água Da Cultura Do Pimentão Em Diferentes Sistemas de Cultivo. Acta Sci. Agron. 2011, 33, 15–22. [Google Scholar] [CrossRef] [Green Version]
- González-Rodríguez, A.M.; Peters, J. Strategies of Leaf Expansion in Ficus Carica under Semiarid Conditions. Plant Biol. 2010, 12, 469–474. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Brunel, B.; Bertin, N. Water Deficit Effects on Tomato Quality Depend on Fruit Developmental Stage and Genotype. J. Plant Physiol. 2016, 190, 26–35. [Google Scholar] [CrossRef]
- Bahrami-Rad, S.; Hajiboland, R. Effect of Potassium Application in Drought-Stressed Tobacco (Nicotiana rustica L.) Plants: Comparison of Root with Foliar Application. Ann. Agric. Sci. 2017, 62, 121–130. [Google Scholar] [CrossRef]
- Ertek, A.; Şensoy, S.; Gedik, İ.; Küçükyumuk, C. Irrigation Scheduling Based on Pan Evaporation Values for Cucumber (Cucumis sativus L.) Grown under Field Conditions. Agric. Water Manag. 2006, 81, 159–172. [Google Scholar] [CrossRef]
- Chirinéa, C.F.; Pasqual, M.; de Araujo, A.G.; Pereira, A.R.; de Castro, E.M. Aclimatização e Anatomia Foliar de Plântulas de Figo Micropropagadas. Rev. Bras. Frutic. 2012, 34, 1180–1188. [Google Scholar] [CrossRef] [Green Version]
- Alcobendas, R.; Mirás-Avalos, J.M.; Alarcón, J.J.; Pedrero, F.; Nicolás, E. Combined Effects of Irrigation, Crop Load and Fruit Position on Size, Color and Firmness of Fruits in an Extra-Early Cultivar of Peach. Sci. Hortic. 2012, 142, 128–135. [Google Scholar] [CrossRef]
- Ehret, D.L.; Frey, B.; Forge, T.; Helmer, T.; Bryla, D.R. Effects of Drip Irrigation Configuration and Rate on Yield and Fruit Quality of Young Highbush Blueberry Plants. HortScience 2012, 47, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.H.; Rosolem, C.A.; Trigueiro, R.M. Importance of Mass Flow and Diffusion on the Potassium Supply to Cotton Plants as Affected by Soil Water and Potassium. Rev. Bras. Cienc. do Solo 2004, 28, 439–445. [Google Scholar] [CrossRef]
- Lopez, G.; Behboudian, M.H.; Vallverdu, X.; Mata, M.; Girona, J.; Marsal, J. Mitigation of Severe Water Stress by Fruit Thinning in “O’Henry” Peach: Implications for Fruit Quality. Sci. Hortic. 2010, 125, 294–300. [Google Scholar] [CrossRef]
- Lobos, T.E.; Retamales, J.B.; Ortega-Farías, S.; Hanson, E.J.; López-Olivari, R.; Mora, M.L. Pre-Harvest Regulated Deficit Irrigation Management Effects on Post-Harvest Quality and Condition of V. Corymbosum Fruits Cv. Brigitta. Sci. Hortic. 2016, 207, 152–159. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.; Cui, J.; Wang, X.; Keabetswe, L. Yield, Fruit Quality and Water Use Efficiency of Tomato for Processing under Regulated Deficit Irrigation: A Meta-Analysis. Agric. Water Manag. 2019, 222, 301–312. [Google Scholar] [CrossRef]
- Kong, M.; Lampinen, B.; Shackel, K.; Crisosto, C.H. Fruit Skin Side Cracking and Ostiole-End Splitting Shorten Postharvest Life in Fresh Figs (Ficus carica L.), but Are Reduced by Deficit Irrigation. Postharvest Biol. Technol. 2013, 85, 154–161. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B.; Kitts, D.D. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huan, C.; Jiang, L.; An, X.; Yu, M.; Xu, Y.; Ma, R.; Yu, Z. Potential Role of Reactive Oxygen Species and Antioxidant Genes in the Regulation of Peach Fruit Development and Ripening. Plant Physiol. Biochem. 2016, 104, 294–303. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Almeida Lopes, M.M.; Moura, C.F.H.; Siqueira Oliveira, L.; Souza, K.O.; Filho, E.G.; Urban, L.; de Miranda, M.R.A. Effects of Organic vs. Conventional Farming Systems on Quality and Antioxidant Metabolism of Passion Fruit during Maturation. Sci. Hortic. 2017, 222, 84–89. [Google Scholar] [CrossRef]
- Johnson, H.E.; Broadhurst, D.; Goodacre, R.; Smith, A.R. Metabolic Fingerprinting of Salt-Stressed Tomatoes. Phytochemistry 2003, 62, 919–928. [Google Scholar] [CrossRef]
- Larkindale, J.; Knight, M.R. Protection against Heat Stress-Induced Oxidative Damage in Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid. Plant Physiol. 2002, 128, 682–695. [Google Scholar] [CrossRef]
Samples | pH | EC | OM | P | K+ | Na+ | Ca2+ | Mg2+ | Al3+ | (H + Al) | SB | CTC | V | PET |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Substrate) | dS m−1 | g kg−1 | Mg dm3 | cmolc dm3 | % | |||||||||
Organic compost | 7.24 | 3.26 | 38.17 | 522.275 | 433.61 | 3716.9 | 0 | 0 | 0 | 0 | 17.28 | 17.28 | 100 | 93.58 |
Years/ | Li (ETc%) | Stage/Total Days * | |||||
---|---|---|---|---|---|---|---|
Stage I 25/33 | Stage II 35/59 | Stage III 68/63 | Stage IV 20/23 | Total mm | Average mm Day−1 | ||
18/19 | 50 | 23.96 | 71.55 | 224.03 | 52.58 | 372.12 | 2.51 |
19/20 | 33.37 | 101.34 | 188 | 67.72 | 390.43 | 2.19 | |
18/19 | 75 | 35.95 | 107.32 | 336.05 | 78.87 | 558.19 | 3.77 |
19/20 | 50.06 | 152.01 | 282 | 101.58 | 585.65 | 3.29 | |
18/19 | 100 | 47.93 | 143.09 | 448.06 | 105.16 | 744.24 | 5.02 |
19/20 | 66.74 | 202.68 | 376.01 | 135.44 | 780.87 | 4.39 | |
18/19 | 125 | 59.91 | 178.86 | 560.08 | 131.45 | 930.298 | 6.28 |
19/20 | 83.43 | 253.34 | 470.01 | 169.31 | 976.09 | 5.48 | |
Kc 18/19 | 0.73 | 0.89 | 1.00 | 0.67 | ---------------------------- | ||
Kc 19/20 | 0.75 | 0.88 | 1.03 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, E.A.; Mendonça, V.; Figueirêdo, V.B.; Oliveira, L.M.; Melo, M.F.; Irineu, T.H.S.; Andrade, A.D.M.; Chagas, E.A.; Chagas, P.C.; Ferreira, E.S.; et al. Irrigation Depth and Potassium Doses Affect Fruit Yield and Quality of Figs (Ficus carica L.). Agriculture 2023, 13, 640. https://doi.org/10.3390/agriculture13030640
Moura EA, Mendonça V, Figueirêdo VB, Oliveira LM, Melo MF, Irineu THS, Andrade ADM, Chagas EA, Chagas PC, Ferreira ES, et al. Irrigation Depth and Potassium Doses Affect Fruit Yield and Quality of Figs (Ficus carica L.). Agriculture. 2023; 13(3):640. https://doi.org/10.3390/agriculture13030640
Chicago/Turabian StyleMoura, Elias Ariel, Vander Mendonça, Vladimir Batista Figueirêdo, Luana Mendes Oliveira, Marlenildo Ferreira Melo, Toni Halan Silva Irineu, Alex Danilo Monte Andrade, Edvan Alves Chagas, Pollyana Cardoso Chagas, Enoch Souza Ferreira, and et al. 2023. "Irrigation Depth and Potassium Doses Affect Fruit Yield and Quality of Figs (Ficus carica L.)" Agriculture 13, no. 3: 640. https://doi.org/10.3390/agriculture13030640
APA StyleMoura, E. A., Mendonça, V., Figueirêdo, V. B., Oliveira, L. M., Melo, M. F., Irineu, T. H. S., Andrade, A. D. M., Chagas, E. A., Chagas, P. C., Ferreira, E. S., Mendonça, L. F. M., & Figueiredo, F. R. A. (2023). Irrigation Depth and Potassium Doses Affect Fruit Yield and Quality of Figs (Ficus carica L.). Agriculture, 13(3), 640. https://doi.org/10.3390/agriculture13030640