The Impact of Rural Households’ Part-Time Farming on Grain Output: Promotion or Inhibition?
Abstract
:1. Introduction
2. Theoretical Analysis Framework and Research Hypothesis
3. Model Construction and Variable Description
3.1. Data Source and Survey Description
3.1.1. Data Source
3.1.2. Definition of the Concept of Rural Households’ Part-Time Farming
3.1.3. PSM-DID Method
3.2. Model Construction
3.3. Variable Selection
3.4. Descriptive Statistical Analysis of Variables
4. Empirical Analysis
4.1. Average Effect of Rural Households’ Part-Time Farming on Grain Output
4.2. The Impact of the Degree of Rural Households’ Part-Time Farming on Grain Output
4.3. Dynamic Effect and Mechanism Analysis of Rural Households’ Part-Time Farming on Grain Output
4.4. Instrumental Variable Analysis
4.5. Parallel Trend Test
4.6. Analysis of Intermediary Inspection Results
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carlos, W. Trends in International Food and Agriculture: Ambassador to UN Food and Agriculture Organization meets with Representative of FAO in China, etc. World Agric. 2023, 525, 131–132. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. In Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar]
- Reddy, V.R.; Reddy, M.G.; Reddy, Y.V.; Soussan, J. Sustaining rural livelihoods in fragile environments: Resource endowments and policy interventions-a study in the context of participatory watershed development in Andhra Pradesh. Indian J. Agric. Econ. 2008, 63, 169–187. [Google Scholar]
- Gale, H.F.; Hansen, J.; Jewison, M. China’s Growing Demand for Agricultural Imports. USDA-ERS Econ. Inf. Bull. Number 2015, 136. Available online: https://www.ers.usda.gov/webdocs/publications/43939/eib-136.pdf (accessed on 5 March 2023).
- Chen, Y.-H.; Chen, M.-X.; Mishra, A.K. Subsidies under uncertainty: Modeling of input-and output-oriented policies. Econ. Model. 2020, 85, 39–56. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, W.; Wang, J. Evaluation and influencing factors of China’s agricultural productivity from the perspective of environmental constraints. Sustainability 2022, 14, 2807. [Google Scholar] [CrossRef]
- Curran-Cournane, F.; Cain, T.; Greenhalgh, S.; Samarsinghe, O. Attitudes of a farming community towards urban growth and rural fragmentation—An Auckland case study. Land Use Policy 2016, 58, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency: A case study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Faria, J.R.; Mixon, F.G., Jr. Labor markets and sustainability: Short-run dynamics and long-run equilibrium. Sustainability 2022, 14, 4307. [Google Scholar] [CrossRef]
- Gao, J.; Song, G.; Sun, X. Does labor migration affect rural land transfer? Evidence from China. Land Use Policy 2020, 99, 105096. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, W.; Mei, Y.; Sam, A.G.; Song, Y.; Jin, S. Do farmers adopt fewer conservation practices on rented land? Evidence from straw retention in China. Land Use Policy 2018, 79, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Chen, Q. On the changes of farmer’s welfare before and after the rural-urban land conversion on the basis of the farmer’s differentiation. Sci. Technol. Manag. Land Resour. 2016, 33, 31–40. [Google Scholar]
- Yuan, F.; Tang, K.; Shi, Q.; Qiu, W.; Wang, M. Rural women and chemical fertiliser use in rural China. J. Clean. Prod. 2022, 344, 130959. [Google Scholar] [CrossRef]
- Yujiro, S.; Hang, W. A new model of the relationship between rural and urban development from the perspective of globalization. J. Natl. Acad. Gov. 2004, 92–95. [Google Scholar]
- Wei, S.H. Study on the effect of part-time farming on farmers’ technical efficiency of grain growing—Based on stochastic frontier production function. Bus. Res. 2019, 505, 121–128. [Google Scholar]
- Chen, Y.S. Time allocation of the rural labor from a perspective of farming season: Farming and off- farm employment. Chin. J. Popul. Sci. 2019, 75–86, 127–128. [Google Scholar]
- Kan, D.; Lyu, L.; Huang, W.; Yao, W. The impact of urban education on the income gap of urban residents: Evidence from central China. Sustainability 2022, 14, 4493. [Google Scholar] [CrossRef]
- Kijima, Y. Farmers’ risk preferences and rice production: Experimental and panel data evidence from Uganda. PLoS ONE 2019, 14, e0219202. [Google Scholar] [CrossRef] [Green Version]
- Rozelle, S.; Guo, L.; Shen, M.; Hughart, A.; Giles, J. Leaving China’s farms: Survey results of new paths and remaining hurdles to rural migration. China Quart. 1999, 158, 367–393. [Google Scholar] [CrossRef]
- Larcher, M.; Engelhart, R.; Vogel, S. Agricultural professionalization of austrian family farm households the effects of vocational attitude, social capital and perception of farm situation. Ger. J. Agric. Econ. 2019, 68, 28–44. [Google Scholar]
- Li, Z.; Zhu, M.; Huang, H.; Yi, Y.; Fu, J. Influencing factors and path analysis of sustainable agricultural mechanization: Econometric evidence from Hubei, China. Sustainability 2022, 14, 4518. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Rozelle, S. Off-farm employment and agricultural specialization in China. China Econ. Rev. 2017, 42, 155–165. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, D.; Wen, T. Agricultural production mode transformation and production efficiency: A labor division and cooperation lens. China Agric. Econ. Rev. 2018, 11, 160–179. [Google Scholar] [CrossRef]
- Goodwin, B.K.; Mishra, A.K. Farming efficiency and the determinants of hm2ltiple job holding by farm operators. Am. J. Agric. Econ. 2004, 86, 722–729. [Google Scholar] [CrossRef]
- Gartaula, H.; Niehof, A.; Visser, L. Shifting perceptions of food security and land in the context of labour out-migration in rural nepal. Food Secur. 2012, 4, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.M.; Qian, W.R.; Hu, C.X. Does no n-farm employment lead to the decrease of farmers production input and efficiency? Based on the survey from traditional grain region in Zhejiang Province. Lanzhou Acad. J. 2017, 4, 187–197. [Google Scholar]
- Qian, L.; Qian, W.R. The effect of off-farm employment on farmers investment activity in agricultural: Based on the analysis of CP FPS. J. Nanjing Agric. Univ. 2018, 18, 109–121. [Google Scholar]
- Huang, W.B.; Chen, F.B. Did non-farm employment inhibit land transfer: Based on familiarity with farm work. J. Agrotech. Econ. 2020, 6, 44–58. [Google Scholar]
- Lien, G.; Flaten, O.; Jervell, A.M.; Ebbesvik, M.; Koesling, M.; Valle, P.S. Management and risk characteristics of part-time and full-time farmers in Norway. Appl. Econ. Perspect. Policy 2006, 28, 111–131. [Google Scholar] [CrossRef]
- Singh, I.; Squire, L.; Strauss, J. (Eds.) Agricultural Household Models: Extensions, Applications, and Policy; John Hopkins University Press: Baltimore, MD, USA, 1986. [Google Scholar]
- Huffman, W.E. Farm and off-farm work decisions: The role of human capital. Rev. Econ. Stat. 1980, 14–23. [Google Scholar] [CrossRef]
- O’Meara, P. The ageing farming workforce and the health and sustainability of agricultural comhm2nities: A narrative review. Aust. J. Rural Health 2019, 27, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Polenske, K.R.; Hewings, G.J.D. Trade and spatial economic interdependence. In Fifty Years of Regional Science; Florax, R.J.G.M., Plane, D.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 269–289. [Google Scholar]
- Qiao, X. Research on the transferring of surplus rural laborers. In Proceedings of the 2017 International Conference on Humanities Science, Management and Education Technology (HSMET 2017), Paris, France, 1 January 2017; pp. 907–912. [Google Scholar]
- Qu, X.; Kojima, D.; Nishihara, Y.; Wu, L.; Ando, M. Impact of rice harvest loss by mechanization or outsourcing: Comparison of specialized and part-time farmers households. Agric. Econ. 2020, 66, 542–549. [Google Scholar] [CrossRef]
- Schuntzemberger, A.; Sampaio, A. Eficiência técnica dos estabelecimentos rurais brasileiros: O que nos dizem os microdados do censo agropecuário 2006. Boletim Indúst. Anim. 2018, 75, 4–20. [Google Scholar] [CrossRef]
- Shahzad, M.A.; Fischer, C. The decline of households’ part-time farming in europe: An empirical analysis of trends and determinants based on Eurostat panel data. Appl. Econ. 2022, 54, 1–13. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.; Xu, Q. The impact of part-time business on peasants’ non-farm income:A micro evidence from cfps. J. Financ. Econ. 2017, 43, 45–57. [Google Scholar]
- Sherzod, B.; Kim, K.-R.; Lee, S.H. Agricultural transition and technical efficiency: An empirical analysis of wheat-cultivating farms in Samarkand region, Uzbekistan. Sustainability 2018, 10, 3232. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Guo, Q. Research on evaluation and optimization of agricultural technology innovation resources allocation in China. In Software Engineering and Knowledge Engineering: Theory and Practice; Wu, Y., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 567–574. [Google Scholar]
- Vatta, K.; Bhogal, S.; Green, A.S.; Sharma, H.; Petrie, C.A.; Dixit, S. Covid-19 pandemic-induced disruptions and implications for national food security and farm incomes: Farm-level evidence from Indian Punjab. Sustainability 2022, 14, 4452. [Google Scholar] [CrossRef]
- Wagan, S.A.; Memon, Q.U.A.; Chunyu, D.; Jingdong, L. A comparative study on agricultural production efficiency between China and Pakistan using data envelopment analysis (dea). Custos E Agron. Line 2018, 14, 169–190. [Google Scholar]
- Cong, S. The Impact of Agricultural Land Rights Policy on the Pure Technical Efficiency of Farmers’ Agricultural Production: Evidence from the Largest Wheat Planting Environment in China. J. Environ. Public Health 2022, 2022, 3487014. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, W.; Li, M.; Han, Y. Does fertilizer education program increase the technical efficiency of chemical fertilizer use? Evidence from wheat production in China. Sustainability 2019, 11, 543. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yang, C.; An, X.; Duan, H.; Yu, Y. Grey relation analysis and trend predication for agricultural mechanization development levels in major granary provinces in China. In Proceedings of the 2017 International Conference on Grey Systems and Intelligent Services (GSIS), Stockholm, Sweden, 8–11 August 2017; pp. 121–126. [Google Scholar]
- Wang, Y.; Shen, N. Agricultural environmental efficiency and agricultural environmental Kuznets curve based on technological gap: The case of china. Pol. J. Environ. Stud. 2016, 25, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Renaud, F.G.; Barrett, B. Modelling land system evolution and dynamics of terrestrial carbon stocks in the luanhe river basin, China: A scenario analysis of trade-offs and synergies between sustainable development goals. Sustain. Sci. 2022, 17, 1323–1345. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Huang, K.; Deng, X.; Xu, D. Livelihood capital and land transfer of different types of farmers: Evidence from panel data in Sichuan province, China. Land 2021, 10, 532. [Google Scholar] [CrossRef]
- Yang, X.; Shang, G. Smallholders’ agricultural production efficiency of conservation tillage in Jianghan plain, China—Based on a three-stage dea model. Int. J. Environ. Res. Public Health 2020, 17, 7470. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.-Y. Problems existing in part-time business of farmers in poor area and its solutions——Based on the investigation in Yilong county of Sichuan province. Hunan Agric. Sci. 2021, 151–154. [Google Scholar]
- Maule, B.; Zhang, W.; Baker, D. Iowa Farmers’ Business and Farm Transfer Plans: A Comparison Between 2019 and 2006; Center for Agricultural and Rural Development (CARD) Publications: Ames, Iowa, 2020. [Google Scholar]
- Tisenkopfsa, T.; Kováchb, I.; Lošťákc, M.; Šūmanea, S. Rebuilding and failing collectivity: Specific challenges for collective farmers marketing initiatives in post-socialist countries. Int. J. Sociol. Agric. Food 2011, 18, 70–88. [Google Scholar]
- Tang, K.; Liu, Y.; Zhou, D.; Qiu, Y. Urban carbon emission intensity under emission trading system in a developing economy: Evidence from 273 Chinese cities. Environ. Sci. Pollut. Res. 2021, 28, 5168–5179. [Google Scholar] [CrossRef]
- Unay-Gailhard, İ.; Bojnec, Š. Gender and the environmental concerns of young farmers: Do young women farmers make a difference on family farms? J. Rural Stud. 2021, 88, 71–82. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, J.; Chen, K.Z. Does villager social capital hinder poverty targeting? Evidence from poverty-stricken county of Western China. China Econ. Rev. 2021, 71, 101728. [Google Scholar] [CrossRef]
- Zhong, F.; Lu, W.; Xu, Z. Is Rural Labor out-migration bad for grain Production?—Analysis of farmers’ factor substitution and planting structure adjustment behavior and constraint conditions. Chin. Rural. Econ. 2016, 379, 36–47. [Google Scholar]
Variable Name | Variable | Variable Definition |
---|---|---|
Total grain output of a household | TGH | Total grain output of a rural household (unit: ton) |
Per capita grain output of household | PGH | Per capita grain output of a rural household (unit: ton) |
Whether rural households’ part-time farming | WPH | Whether rural households engage in part-time farming |
Degree of part-time farming | DP | Annual non-farm income of a household (unit: 10,000 yuan) |
Urbanization process | UP | Ratio of urban registration to total registration in a household |
Agricultural income | AI | Annual agricultural net income of a household (unit: 10,000 yuan) |
Cultivated land resources | CLR | Farmland area managed by a household (unit: hm2) |
Agricultural technology | AT | Number of machines per hm2 of a household (unit: set/hm2) |
Age of laborers | AL | Average age of laborers in a household, the sample population is people aged 18–65 who are able to work (excluding students) (unit: years) |
Number of laborers | NL | Number of laborers in a household, including hired workers (unit: person) |
Agricultural input | AIT | Cost of grain planting input, include labor, fertilizer, and seed inputs (unit: 10,000 yuan) |
Agricultural labor input | ALI | Agriculture labor input (hour/day) |
Agricultural technology input | ATI | Agricultural technology investment, including investment in breeding, irrigation, machinery technologies, etc. (unit: 10,000 yuan) |
Variable Name | All Farmers | Full-Time Farming Households | Part-Time Farming Households | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mv | Sd | Max | Min | Mv | Sd | Max | Min | Mv | Sd | Max | Min | |
TGH | 4.66 | 0.08 | 20.31 | 0.22 | 4.80 | 0.07 | 20.31 | 2.19 | 4.23 | 0.06 | 15.33 | 11.24 |
PGH | 2.31 | 0.05 | 13.26 | 0.19 | 2.45 | 0.02 | 8.22 | 1.27 | 1.85 | 0.09 | 6.27 | 1.08 |
DP | 1.24 | 0.11 | 10.29 | 0.37 | 0.00 | 0.00 | 0.00 | 0.00 | 2.12 | 0.19 | 10.29 | 0.37 |
UP | 0.38 | 0.01 | 0.80 | 0.00 | 0.30 | 0.03 | 0.60 | 0.00 | 0.49 | 0.02 | 0.80 | 0.25 |
AI | 1.73 | 0.15 | 5.31 | 0.13 | 2.03 | 0.08 | 5.31 | 1.26 | 1.49 | 0.09 | 2.34 | 0.13 |
CLR | 0.39 | 0.01 | 1.34 | 0.02 | 0.42 | 0.01 | 1.34 | 0.12 | 0.33 | 0.01 | 1.02 | 0.02 |
AT | 0.12 | 0.01 | 0.41 | 0.03 | 0.10 | 0.00 | 0.30 | 0.03 | 0.14 | 0.00 | 0.41 | 0.07 |
AL | 50.22 | 0.77 | 72.22 | 32.67 | 52.56 | 0.56 | 72.22 | 49.33 | 65.24 | 0.44 | 68.30 | 32.67 |
NL | 2.15 | 0.33 | 6.21 | 1.36 | 2.14 | 0.31 | 5.21 | 1.67 | 2.37 | 0.29 | 6.21 | 1.36 |
AIT | 0.51 | 0.14 | 3.15 | 0.14 | 0.53 | 0.17 | 3.15 | 0.14 | 0.44 | 0.10 | 2.98 | 0.17 |
ALI | 0.38 | 0.05 | 0.77 | 0.23 | 0.48 | 0.02 | 0.77 | 0.29 | 0.29 | 0.07 | 0.66 | 0.23 |
ATI | 0.28 | 0.03 | 0.49 | 0.17 | 0.25 | 0.07 | 0.36 | 0.17 | 0.35 | 0.03 | 0.49 | 0.21 |
Variable | Mv | Sd | Ti | |||
---|---|---|---|---|---|---|
Pg | Cg | T | p | |||
UP | Before matching | 0.30 | 0.49 | 33.9 | 5.24 | 0.000 *** |
After matching | 0.32 | 0.57 | 2.1 | 0.48 | 0.639 | |
AI | Before matching | 2.03 | 1.49 | 13.9 | −0.07 | 0.946 |
After matching | 2.05 | 1.52 | −4.2 | −1.71 | 0.087 * | |
CLR | Before matching | 6.29 | 4.91 | 15.7 | 6.33 | 0.00 *** |
After matching | 6.15 | 4.83 | 8.3 | 1.83 | 0.061 ** | |
AT | Before matching | 1.56 | 2.02 | 17.8 | 1.83 | 0.069 ** |
After matching | 1.51 | 2.05 | 6.3 | 0.39 | 0.692 | |
AL | Before matching | 52.56 | 65.24 | 26.3 | 2.69 | 0.008 *** |
After matching | 52.33 | 65.22 | 2.9 | 0.58 | 0.617 | |
NL | Before matching | 2.14 | 2.37 | −5.6 | −0.88 | 0.413 |
After matching | 2.23 | 2.51 | −9.6 | −2.19 | 0.031 ** | |
AIT | Before matching | 0.53 | 0.44 | 17.7 | 1.56 | 0.109 |
After matching | 0.51 | 0.43 | 4.2 | 0.68 | 0.471 |
TGH | PGH | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
WHP | 0.983 *** (2.571) | 0.304 ** (1.973) | 0.570 *** (4.257) | 0.274 ** (3.183) |
UP | −0.654 ** (−2.112) | −0.425 ** (−2.036) | ||
AI | 0.191 ** (2.486) | 0.127 ** (2.043) | ||
CLR | 0.434 *** (36.451) | 0.176 *** (22.472) | ||
AT | 0.134 *** (2.381) | 0.010 *** (2.511) | ||
AL | −0.196 *** (−8.716) | −0.115 *** (−6.922) | ||
NL | 0.133 ***(3.125) | 0.124 ***(3.125) | ||
AIT | 0.974 *** (3.662) | 0.456 *** (6.118) | ||
Constant term | 2.121 *** (9.081) | 1.519 *** (9.901) | 0.894 *** (7.890) | 0.454 *** (4.885) |
Number of observations | 5926 | 5926 | 5926 | 5926 |
R2 | 0.113 | 0.671 | 0.104 | 0.453 |
TGH | PGH | |
---|---|---|
DP | 0.127 *** (4.163) | 0.216 ** (3.458) |
Control variable | Yes | Yes |
Number of observations | 2429 | 2429 |
R2 | 0.513 | 0.629 |
TGH | PGH | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Treat·T1 | −0.494 *** (−3.017) | −0.176 *** (−2.272) | −0.241 *** (−2.046) | −0.172 *** (−2.388) |
Treat·T2 | −0.217 *** (−3.161) | −0.108 *** (−3.138) | −0.199 *** (−3.459) | −0.103 *** (−2.160) |
Treat·T3 | 0.748 *** (5.691) | 0.347 *** (3.854) | 0.351 *** (6.501) | 0.191 *** (5.289) |
Treat·T4 | 0.524 *** (8.021) | 0.426 *** (4.130) | 0.436 *** (7.292) | 0.262 *** (7.785) |
Control variable | No | Yes | No | Yes |
Constant term | 2.178 *** (10.030) | 1.315 *** (7.941) | 0.883 *** (6.146) | 0.423 *** (4.177) |
Number of observations | 5629 | 5629 | 5629 | 5629 |
R2 | 0.203 | 0.542 | 0.167 | 0.710 |
UP | AI | CLR | AT | AL | NL | AIT | |
---|---|---|---|---|---|---|---|
Treat·T1 | 0.249 (0.441) | −0.008 (−0.036) | 0.140 (0.013) | 0.073 (1.162) | 0.037 *** (4.892) | 0.059 (0.135) | −0.253 *** (−3.679) |
Treat·T2 | 0.440 (1.061) | −0.037 (−1.041) | 0.424 (0.028) | 0.135 *** (3.062) | 0.058 * (1.842) | 0.061 (0.153) | −0.272 (−0.984) |
Treat·T3 | 0.530 *** (3.391) | −0.046 *** (−3.574) | 0.477 (0.523) | 0.204 *** (3.449) | 0.061 * (1.821) | 0.079 (0.132) | −0.306 (−0.121) |
Constant term | 1.002 *** (19.007) | 0.089 *** (18.293) | 0.727 (1.259) | 0.335 *** (24.126) | 0.083 *** (14.337) | 0.678 (1.138) | 0.314 *** (14.259) |
Number of observations | 5629 | 5629 | 5629 | 5629 | 5629 | 5629 | 5629 |
R2 | 0.278 | 0.182 | 0.223 | 0.305 | 0.173 | 0.129 | 0.166 |
Variable | TGH | PGH |
---|---|---|
Distance between village and county | 0.314 *** (0.957) | 0.238 *** (1.152) |
Control variable | Yes | Yes |
Number of observations | 5629 | 5629 |
F value | 3.633 *** | 2.863 *** |
TGH | PGH | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Before2 | 0.003 (0.276) | 0.011 (0.38) | ||
Before1 | 0.025 (0.291) | 0.037 (0.649) | 0.014 (0.030) | 0.018 (0.717) |
Current | 0.035 (0.751) | 0.041 (0.574) | 0.051 (0.714) | 0.091 (0.320) |
After1 | −0.059 ** (2.135) | −0.054 * (1.748) | −0.068 * (1.721) | −0.066 * (1.803) |
After2 | 0.089 *** (3.107) | 0.072 *** (2.989) | 0.093 ** (2.035) | 0.088 ** (2.478) |
Time | 0.106 *** (14.290) | 0.121 *** (13.741) | 0.114 *** (16.231) | 0.135 *** (15.277) |
Control variable | Yes | Yes | Yes | Yes |
Constant term | 2.554 *** (9.007) | 1.462 *** (8.293) | 0.702 *** (4.259) | 0.335 *** (3.261) |
Number of observations | 5629 | 5629 | 5629 | 5629 |
R2 | 0.667 | 0.667 | 0.667 | 0.667 |
Variable | ALI | ATI | TGH | PGH | TGH | PGH |
---|---|---|---|---|---|---|
DP | −0.131 *** (2.691) | 0.369 *** (3.276) | 0.264 *** (2.875) | 0.199 *** (6.381) | 0.253 *** (2.874) | 0.192 *** (6.381) |
ALI | 0.133 ** (2.035) | 0.057 ** (1.717) | ||||
ATI | 0.208 *** (5.035) | 0.048 * (1.699) | ||||
Control variable | Yes | Yes | Yes | Yes | Yes | Yes |
R2 | 0.304 | 0.213 | 0.514 | 0.413 | 0.511 | 0.408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, D.; Kang, X.; Liang, X.; Xie, F. The Impact of Rural Households’ Part-Time Farming on Grain Output: Promotion or Inhibition? Agriculture 2023, 13, 671. https://doi.org/10.3390/agriculture13030671
Ge D, Kang X, Liang X, Xie F. The Impact of Rural Households’ Part-Time Farming on Grain Output: Promotion or Inhibition? Agriculture. 2023; 13(3):671. https://doi.org/10.3390/agriculture13030671
Chicago/Turabian StyleGe, Dongdong, Xiaolan Kang, Xian Liang, and Fangting Xie. 2023. "The Impact of Rural Households’ Part-Time Farming on Grain Output: Promotion or Inhibition?" Agriculture 13, no. 3: 671. https://doi.org/10.3390/agriculture13030671
APA StyleGe, D., Kang, X., Liang, X., & Xie, F. (2023). The Impact of Rural Households’ Part-Time Farming on Grain Output: Promotion or Inhibition? Agriculture, 13(3), 671. https://doi.org/10.3390/agriculture13030671