Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Soil Sampling
2.2. Wetting and Drying (W-D) Cycles
2.3. X-ray Computed Tomography (XCT)
2.4. Subvolume Selection
2.5. Soil Physical Properties
2.6. Representative Elementary Volume (REV) Estimation
3. Results
3.1. Soil Porosity (P)
3.2. Fractal Dimension (FD)
3.3. Degree of Anisotropy (DA)
3.4. Pore Connectivity (C)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Pub. Co.: New York, NY, USA, 1972; 764p. [Google Scholar]
- Gerke, K.M.; Karsanina, M.V. How pore structure non-stationarity compromises flow properties representativity (REV) for soil samples: Pore-scale modelling and stationarity analysis. Eur. J. Soil Sci. 2021, 72, 527–545. [Google Scholar] [CrossRef]
- Gane, P.A.C.; Ridgway, C.J.; Schoelkopf, J. Absorption rate and volume dependency on the complexity of porous network structures. Transp. Porous Media 2004, 54, 79–106. [Google Scholar] [CrossRef]
- Vandenbygaart, A.J.; Protz, R. The representative elementary area (REA) in studies of quantitative soil micromorphology. Geoderma 1999, 89, 333–346. [Google Scholar] [CrossRef]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicza, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Arrúe, J.L.; Cantero-Martínez, C.; López, M.L. Aggregate breakdown during tillage in a Mediterranean loamy soil. Soil Tillage Res. 2008, 101, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Cooper, H.V.; Sjögersten, S.; Lark, R.M.; Girkin, N.T.; Vane, C.H.; Calonego, J.C.; Rosolem, C.; Mooney, S.J. Long-term zero-tillage enhances the protection of soil carbon in tropical agriculture. Eur. J. Soil Sci. 2021, 72, 2477–2492. [Google Scholar] [CrossRef]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Assessing the long-term effects of zero-tillage on the macroporosity of brazilian soils using X-ray computed tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Chang, S.X.; Cui, S.; Jagadamma, S.; Zhang, Q.; Cai, Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture. Sci. Total Environ. 2020, 740, 140147. [Google Scholar] [CrossRef]
- de Oliveira, J.A.T.; Cássaro, F.A.M.; Pires, L.F. Quantification of the pore size distribution of a Rhodic Hapludox under different management systems with X-ray microtomography and computational simulation. Soil Tillage Res. 2021, 209, 104941. [Google Scholar] [CrossRef]
- Deurer, M.; Grinev, D.; Young, I.; Clothier, B.E.; Müller, K. The impact of soil carbon management on soil macropore structure: A comparison of two apple orchard systems in New Zealand. Eur. J. Soil Sci. 2009, 60, 945–955. [Google Scholar] [CrossRef]
- Pires, L.F.; Ferreira, T.R.; Cássaro, F.A.M.; Cooper, H.V.; Mooney, S.J. A comparison of the differences in soil structure under long-term conservation agriculture relative to a secondary forest. Agriculture 2022, 12, 1783. [Google Scholar] [CrossRef]
- Borges, J.A.R.; Pires, L.F.; Cássaro, F.A.M.; Roque, W.L.; Heck, R.J.; Rosa, J.A.; Wolf, F.G. X-ray microtomography analysis of representative elementary volume (REV) of soil morphological and geometrical properties. Soil Tillage Res. 2018, 182, 112–122. [Google Scholar] [CrossRef]
- Tseng, C.L.; Alves, M.C.; Crestana, S. Quantifying physical and structural soil properties using X-ray microtomography. Geoderma 2018, 318, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Becker, E.; Liang, G.; Houssou, A.A.; Wub, H.; Wu, X.; Cai, D.; Degré, A. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon. Geoderma 2017, 288, 97–104. [Google Scholar] [CrossRef]
- Camargo, M.A.; Cássaro, F.A.M.; Pires, L.F. How do geometric factors influence soil water retention? A study using computerized microtomography. Bull. Eng. Geol. Environ. 2022, 81, 137. [Google Scholar] [CrossRef]
- Oliveira, J.A.T.; Cássaro, F.A.M.; Posadas, A.N.D.; Pires, L.F. Soil Pore Network Complexity Changes Induced by Wetting and Drying Cycles—A Study Using X-ray Microtomography and 3D Multifractal Analyses. Int. J. Environ. Res. Public Health 2022, 19, 10582. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Pires, L.F.; Wildenschild, D.; Heck, R.J.; Antonino, C.D. X-ray microtomography analysis of lime application effects on soil porous system. Geoderma 2018, 324, 119–130. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Charrier, P.; Morari, F. Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment. Geoderma 2013, 204–205, 84–93. [Google Scholar] [CrossRef]
- Assouline, S.; Or, D. Conceptual and parametric representation of soil hydraulic properties: A review. Vadose Zone J. 2013, 12, 1–20. [Google Scholar] [CrossRef]
- Vogel, H.J.; Cousin, I.; Roth, K. Quantification of pore structure and gas diffusion as a function of scale. Eur. J. Soil Sci. 2002, 53, 465–473. [Google Scholar] [CrossRef]
- Wang, J.; Watts, D.B.; Meng, Q.; Ma, F.; Zhang, Q.; Zhang, P.; Way, T.R. Influence of Soil Wetting and Drying Cycles on Soil Detachment. AgriEngineering 2022, 4, 533–543. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, Y.; Heitman, J.; Horton, R.; Ren, T. Temporal changes of soil water retention behavior as affected by wetting and drying following tillage. Soil Sci. Soc. Am. J. 2018, 81, 1288–1295. [Google Scholar] [CrossRef]
- Ma, R.; Cai, C.; Li, Z.; Wang, J.; Xiao, T.; Peng, G.; Yang, W. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil Tillage Res. 2015, 149, 1–11. [Google Scholar] [CrossRef]
- da Costa, P.A.; Mota, J.C.A.; Romero, R.E.; Freire, A.G.; Ferreira, T.O. Changes in soil pore network in response to twenty-three years of irrigation in a tropical semiarid pasture from northeast Brazil. Soil Tillage Res. 2014, 137, 23–32. [Google Scholar] [CrossRef]
- Leij, F.J.; Ghezzehei, T.A.; Or, D. Modeling the dynamics of the soil pore-size distribution. Soil Tillage Res. 2002, 64, 61–78. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Archilha, N.L.; Pires, L.F. An analysis of three XCT-based methods to determine the intrinsic permeability of soil aggregates. J. Hydrol. 2022, 612, 128024. [Google Scholar] [CrossRef]
- Peth, S.; Horn, R.; Beckmann, F.; Donath, T.; Fischer, J.; Smucker, A.J.M. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J. 2008, 72, 897–907. [Google Scholar] [CrossRef]
- Koestel, J.; Fukumasu, J.; Garland, G.; Larsbo, M.; Svensson, D.N. Approaches to delineate aggregates in intact soil using X-ray imaging. Geoderma 2021, 402, 115360. [Google Scholar] [CrossRef]
- Juyal, A.; Eickhorst, T.; Falconer, R.; Baveye, P.C.; Spiers, A.; Otten, W. Control of pore geometry in soil microcosms and its effect on the growth and spread of Pseudomonas and Bacillus sp. Front. Environ. Sci. 2018, 6, 73. [Google Scholar] [CrossRef]
- Costanza-Robinson, M.S.; Estabrook, B.D.; Fouhey, D.F. Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsatured porous media: Data quality implications. Water Resour. Res. 2011, 47, 12. [Google Scholar] [CrossRef]
- Baveye, P.; Rogasik, H.; Wendroth, O.; Onasch, I.; Crawford, J.W. Effect of sampling volume on the measurement of soil physical properties: Simulation with X-ray tomography data. Meas. Sci. Technol. 2002, 13, 775–784. [Google Scholar] [CrossRef]
- Soil Survey Staff. Simplified Guide to Soil Taxonomy; USDA Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2013. [Google Scholar]
- Nitsche, P.R.; Caramori, P.H.; Ricce WD, S.; Pinto, L.F.D. Atlas Climático do Estado do Paraná; IAPAR: Londrina, Brazil, 2019. [Google Scholar]
- Borges, J.A.R.; Pires, L.F.; Cássaro, F.A.M.; Auler, A.C.; Rosa, J.A.; Heck, R.J.; Roque, W.L. X-ray computed tomography for assessing the effect of tillage systems on topsoil morphological attributes. Soil Tillage Res. 2019, 189, 25–35. [Google Scholar] [CrossRef]
- Pires, L.F.; Roque, W.L.; Rosa, J.A.; Mooney, S.J. 3D analysis of the soil porous architecture under long term contrasting management systems by X-ray computed tomography. Soil Tillage Res. 2019, 191, 197–206. [Google Scholar] [CrossRef]
- Booman, G.; Leiker, S. Soil Sampling Guide; Document ID: RND_SSG_001; Regen Network Development, Inc.: Northfield, MA, USA, 2021. [Google Scholar]
- Rasband, W. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 2007. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Koestel, J.; Larsbo, M.; Jarvis, N. Scale and VER analyses for porosity and pore connectivity measures in undisturbed soil. Geoderma 2020, 366, 114206. [Google Scholar] [CrossRef]
- Yio, M.H.N.; Wong, H.S.; Buenfeld, N.R. Representative elementary volume (REV) of cementitious materials from three-dimensional pore structure analysis. Cem. Concr. Res. 2017, 102, 187–202. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.; Wu, J.; Hu, B.X. A new criterion for determining the representative elementary volume of translucent porous media and inner contaminant. Hydrol. Earth Syst. Sci. 2020, 24, 5903–5917. [Google Scholar] [CrossRef]
- Caniego, F.J.; Martí, M.A.; San José, F. Rényi dimensions of soil pore size distribution. Geoderma 2003, 112, 205–216. [Google Scholar] [CrossRef]
- Dullien, F.A.L. Porous Media: Fluid Transport and Pore Structure, 2nd ed.; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Doube, M.; Kłosowski, M.M.; Carreras, I.A.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef] [Green Version]
- Pires, L.F.; Auler, A.C.; Roquec, W.L.; Mooney, S.J. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles. Geoderma 2020, 362, 114103. [Google Scholar] [CrossRef]
- Diel, J.; Vogel, H.J.; Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 2019, 345, 63–71. [Google Scholar] [CrossRef]
- Blanco-Moure, N.; Moret-Fernández, D.; Victoria López, M. Dynamics of aggregate destabilization by water in soils under long-term conservation tillage in semiarid Spain. Catena 2012, 99, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.Y.; XU, H.S.; MA, X.J. Computed tomography analysis of representative elementary volume (REV) of porous medium. In: Advanced Materials Research. Trans. Tech. Publ. Ltd. 2014, 868, 234–237. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Q.; Guo, L.; Feng, Y. Multi-fractal characteristics of three-dimensional distribution of reconstructed soil pores at opencast coal-mine dump based on high-precision CT scanning. Soil Tillage Res. 2018, 182, 144–152. [Google Scholar] [CrossRef]
- Roy, A.; Perfect, E. Lacunarity analyses of multifractal and natural grayscale patterns. Fractals 2014, 22, 1440003. [Google Scholar] [CrossRef]
- Young, I.M.; Crawford, J.W.; Rappoldt, C. New methods and models for characterising structural heterogeneity of soil. Soil Tillage Res. 2001, 61, 33–45. [Google Scholar] [CrossRef]
- Perret, J.; Prasher, S.; Kacimov, A. Mass fractal dimension of soil macropores using computed tomography: From the box-counting to the cube-counting algorithm. Eur. J. Soil Sci. 2003, 54, 569–579. [Google Scholar] [CrossRef]
- Lopes de Silva, W.G.A.; Rios, E.H.; Hoerlle, F.O.; Pontedeiro, E.M.B.D.; de Almeida, L.F.B.; Alves, J.L.D.; Couto, P. Representative elementar volume of a region of interest of a heterogeneous carbonate rock using computed microtomography and numerical simulation. Rev. Bras. Geofis. 2018, 36, 1–8. [Google Scholar]
- Wardak, D.L.R.; Padia, F.N.; Heer, M.I.; Sturrock, C.J.; Mooney, S.J. Zero tillage has important consequences for soil pore architecture and hydraulic transport: A review. Geoderma 2022, 422, 115927. [Google Scholar] [CrossRef]
- Passoni, S.; Pires, L.F.; Heck, R.; Rosa, J.A. Three dimensional characterization of soil macroporosity by X-ray microtomography. Rev. Bras. Ciência Solo 2015, 39, 448–457. [Google Scholar] [CrossRef] [Green Version]
- dos Reis, A.M.H.; Auler, A.C.; Armindo, R.A.; Cooper, M.; Pires, L.F. Micromorphological analysis of soil porosity under integrated crop-livestock management systems. Soil Tillage Res. 2021, 205, 104783. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Sartori, L.; Simonetti, G.; Berti, A.; Morari, F. Soil macro- and microstructure as affected by different tillage systems and their effects on maize root growth. Soil Tillage Res. 2014, 140, 55–65. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, R.; McLaughlin, N.; Zhang, Y.; Chen, X.; Wu, D.; Zhang, X.; Liang, A. Impacts induced by the combination of earthworms, residue and tillage on soil organic carbon dynamics using 13C labelling technique and X-ray computed tomography. Soil Tillage Res. 2021, 205, 104737. [Google Scholar] [CrossRef]
- Pires, L.F.; Cooper, M.; Cássaro, F.A.M.; Reichardt, K.; Bacchi, O.O.S.; Dias, N.M.P. Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena 2008, 72, 297–304. [Google Scholar] [CrossRef]
- Wu, H.; Yai, Y.; Zhou, Y.; Qiu, F. Analyses of representative elementary volume for coal using X-ray μ-CT and FIB-SEM and its application in permeability predication model. Fuel 2019, 254, 115563. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Katuwal, S.; Munkholm, L.J. Characterisation of soil pore structure anisotropy caused by the growth of bio-subsoilers. Geoderma 2022, 409, 115571. [Google Scholar] [CrossRef]
- Garbout, A.; Munkholm, L.J.; Hansen, S.B. Tillage effect on topsoil structural quality assessed using X-ray CT soil cores and visual soil evaluation. Soil Tillage Res. 2013, 128, 104–109. [Google Scholar] [CrossRef]
- Mitchell-Fostyk, B.A.; Haruna, S.I. Spatial and fractal characterization of soil hydraulic properties along a catena. Soil Sci. Soc. Am J. 2021, 85, 1710–1726. [Google Scholar] [CrossRef]
- Tarquis, A.M.; Heck, R.J.; Andina, D.; Alvarez, A.; Antón, J.M. Pore network complexity and thresholding of 3D soil images. Ecol. Complex. 2009, 6, 230–239. [Google Scholar] [CrossRef]
- Hubert, F.; Hallaire, V.; Sardini, P.; Caner, L.; Heddadj, D. Pore morphology changes under tillage and no-tillage practices. Geoderma 2007, 142, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.R.; Albuquerque, J.A.; Costa, A.C.; Fontoura, S.M.V.; Bayer, C.; Warmling, M.I. Physical properties of a Hapludox after three decades under different soil management systems. Rev. Bras. Ciência Solo 2016, 40, e0140331. [Google Scholar] [CrossRef] [Green Version]
- Czyz, E.A.; Dexter, A.R. Soil physical properties as affected by traditional, reduced and no-tillage for winter wheat. Int. Agrophysics 2009, 23, 319–326. [Google Scholar]
- Xue, Y.; Cai, Z.; Zhang, H.; Liu, Q.; Chen, L.; Gao, J.; Hu, F. Insights into heterogeneity and representative elementary volume of vuggy dolostones. Energies 2022, 15, 5817. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, S.; Udawatta, R.P.; Anderson, S.H.; de Jonge, L.W.; Katuwal, S. X-ray micro-computed tomography characterized soil pore network as influenced by long-term application of manure and fertilizer. Geoderma 2021, 385, 114872. [Google Scholar] [CrossRef]
- Müller, K.; Katuwal, S.; Young, I.; McLeod, M.; Moldrup, P.; de Jonge, L.W.; Clothier, B. Characterizing and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures. Geoderma 2018, 313, 82–91. [Google Scholar] [CrossRef] [Green Version]
- An, R.; Kong, L.; Zhang, X.; Li, C. Effects of dry-wet cycles on three-dimensional pore structure and permeability characteris tics of granite residual soil using X-ray micro computed tomography. JRMGE 2022, 14, 3. [Google Scholar] [CrossRef]
- An, R.; Zhang, X.; Kong, L.; Liu, X.; Chen, C. Drying-wetting impacts on granite residual soil: A multi-scale study from macro scopic to microscopic investigations. Bull. Eng. Geol. Environ. 2022, 81, 10. [Google Scholar] [CrossRef]
- Amami, R.; Ibrahimi, K.; Sher, F.; Milham, P.; Ghazouani, H.; Chehaibi, S.; Hussain, Z.; Iqbal, H.M.N. Impacts of different tillage practices on soil water infiltration for sustainable agriculture. Sustainability 2021, 13, 3155. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.J.; Lin, Q.; Krevor, S. Representative elementary volumes, hysteresis, and heterogeneity in multiphase flow from the pore to continuum scale. Water Resour Res. 2020, 56, e2019WR026396. [Google Scholar] [CrossRef] [Green Version]
- Piron, D.; Boizard, H.; Heddadj, D.; Pérès, G.; Hallaire, V.; Cluzeau, D. Indicators of earthworm bioturbation to improve visual assessment of soil structure. Soil Tillage Res. 2017, 173, 53–63. [Google Scholar] [CrossRef]
- Moreira, W.H.; Tormena, C.A.; Karlen, D.L.; da Silva, A.P.; Keller, T.; Betioli, E. Seasonal changes in soil physical properties under long-term no-tillage. Soil Tillage Res. 2016, 160, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Shao, M.A. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. J. Arid Environ. 2006, 64, 77–96. [Google Scholar] [CrossRef]
- Rajaram, G.; Erbach, D.C. Effect of wetting and drying on soil physical properties. J. Terramechanics 1999, 36, 39–49. [Google Scholar] [CrossRef]
- Lucas, M.; Vetterlein, D.; Vogel, H.-J.; Schlüter, S. Revealing pore connectivity across scales and resolutions with X-ray CT. Eur. J. Soil Sci. 2021, 72, 546–560. [Google Scholar] [CrossRef] [Green Version]
- Vogel, H.-J. Scale issues in soil hydrology. Vadose Zone J. 2019, 18, 190001. [Google Scholar] [CrossRef] [Green Version]
Subvolumes (V) | Window Length (L) | Core | Cube |
---|---|---|---|
(mm) | (mm3) | ||
1 | 3.0 | 271 | 27 |
2 | 6.0 | 1084 | 216 |
3 | 9.0 | 2438 | 729 |
4 | 12.0 | 4334 | 1728 |
5 | 15.1 | 6863 | 3442 |
6 | 18.1 | 9861 | 5930 |
7 | 21.0 | 13,274 | 9261 |
8 | 24.1 | 17,482 | 13,998 |
9 | 27.1 | 22,106 | 19,903 |
10 | 30.1 | 27,271 | 27,271 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspareto, J.V.; Oliveira, J.A.T.d.; Andrade, E.; Pires, L.F. Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis. Agriculture 2023, 13, 736. https://doi.org/10.3390/agriculture13030736
Gaspareto JV, Oliveira JATd, Andrade E, Pires LF. Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis. Agriculture. 2023; 13(3):736. https://doi.org/10.3390/agriculture13030736
Chicago/Turabian StyleGaspareto, José V., Jocenei A. T. de Oliveira, Everton Andrade, and Luiz F. Pires. 2023. "Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis" Agriculture 13, no. 3: 736. https://doi.org/10.3390/agriculture13030736
APA StyleGaspareto, J. V., Oliveira, J. A. T. d., Andrade, E., & Pires, L. F. (2023). Representative Elementary Volume as a Function of Land Uses and Soil Processes Based on 3D Pore System Analysis. Agriculture, 13(3), 736. https://doi.org/10.3390/agriculture13030736