Simultaneous Determination of Steroidal Alkaloids and Polyphenol Group from Eight Varieties of Siberian Solanum tuberosum L. through Tandem Mass Spectrometry
Abstract
:1. Introduction
- •
- Early ripeness, varieties of early and mid-early ripeness groups, because the growing season is 90–100 days;
- •
- Resistance to the most common fungal and viral diseases inherent in the region—late blight (Phytophthora infestans (Mont.) de Bary), Alternaria blight (Alternaria solani (Ell.Et Matr) Sor), Fusarium blight (Fusarium oxysporum Schlecht.), Rhizoctonia blight (Rhizoctonia solani J.G. Kühn) and viruses;
- •
- Stably high productivity;
- •
- High consumer and culinary qualities;
- •
- Suitability for mechanized cultivation;
- •
- Keeping quality of tubers during storage.
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Fractional Maceration
2.4. Liquid Chromatography
2.5. Mass Spectrometry
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No | Class of Compounds | Identification | Formula | Calculated Mass | Observed Mass [M − H]− | Observed Mass [M + H]+ | MS/MS Stage 1 Fragmentation | MS/MS Stage 2 Fragmentation | References |
---|---|---|---|---|---|---|---|---|---|
POLYPHENOLS | |||||||||
1 | Flavone | Apigenin | C15H10O5 | 270.2369 | 271 | 243 | 230 | Hedyotis diffusa [16]; Cirsium japonicum [17]; Triticum aestivum L. [18] | |
2 | Flavone | Chrysoeriol [Chryseriol] | C16H12O6 | 300.2629 | 301 | 269; 169 | 241 | Triticum aestivum L. [18]; Rice [19]; Mentha [20] | |
3 | Flavone | Diosmetin | C16H12O6 | 300.2629 | 301 | 273; 169 | 241 | Cirsium japonicum [17]; Mentha [20] | |
4 | Flavone | Myricetin | C15H10O8 | 318.2351 | 319 | 289; 260; 219; 173 | 261; 191 | Vitis vinifera [21]; Vaccinium macrocarpon [22]; F. glaucescens [23] | |
5 | Flavone | Ampelopsin | C15H12O8 | 320.251 | 321 | 304; 287; 247; 129 | 193; 113 | Impatients glandulifera Royle [24]; Rhus coriaria [25] | |
6 | Flavone | 5,6-Dihydroxy-7,8,3’,4’-tetramethoxyflavone | C19H18O8 | 374.3414 | 375 | 345; 297; 275; 257; 245; 217 | 315; 257; 245 | Mentha [20] | |
7 | Flavone | Dihydroxy tetramethoxyflavanone | C19H20O8 | 376.3573 | 377 | 345; 275 | 245 | G. linguiforme [23] | |
8 | Flavone | Diosmin [Diosmetin-7-O-rutinoside; Barosmin; Diosimin] | C28H32O15 | 608.5447 | 609 | 591; 531 | 531 | Mentha [20]; F. glaucescens [23] | |
9 | Flavonol | Kaempferol | C15H10O6 | 286.2363 | 287 | 278; 241; 185 | 206 | Potato leaves [4]; Potato [5]; Vitis vinifera [21]; Ocimum [26] | |
10 | Flavonol | Quercetin | C15H10O7 | 302.2357 | 303 | 275; 203; 163 | 245; 175 | Potato leaves [4]; Eucalyptus [27]; Triticum [28]; Vitis vinifera [21]; Tomato [29]; Vaccinium macrocarpon [22,30] | |
11 | Flavonol | Herbacetin | C15H10O7 | 302.2357 | 303 | 275; 203 | 245; 175 | Ocimum [26]; Rhodiola rosea [31] | |
12 | Flavonol | Isorhamnetin | C16H12O7 | 316.2623 | 317 | 256 | 228; 116 | Vaccinium macrocarpon [22]; Eucalyptus [27] | |
13 | Flavonol | Quercetin 3-O- glucoside | C21H20O12 | 464.3763 | 465 | 447; 279; 136 | 429; 279; 201 | Potato [5,13]; Vitis vinifera [21]; Rhus coriaria [25]; Lonicera japonica [32]; Solanaceae [33] | |
14 | Flavonol | Myricetin-3-O-galactoside | C21H20O13 | 480.3757 | 481 | 299; 174 | 271 | Vitis vinifera [21]; Vaccinium macrocarpon [22,30]; Impatients glandulifera Royle [24] | |
15 | Flavonol | Kaempferol diacetyl hexoside | C25H24O13 | 532.4503 | 533 | 415 | 385; 315 | A. cordifolia [23] | |
16 | Flavonol | Quercetin glucuronide sulfate | C21H18O16S | 558.4230 | 559 | 412; 299; 186 | 394; 299; 186 | F. herrerae [23] | |
17 | Flavonol | Quercetin malonyl dihexoside | C30H32O20 | 712.5631 | 711 | 303; 279 | 259; 205 | F. glaucescens; F. herrerae [23] | |
18 | Flavanone | Naringenin [Naringetol; Naringenine] | C15H12O5 | 272.5228 | 273 | 255; 213; 161 | 226 | Vitis vinifera [21]; G. linguiforme [23]; Tomato [29] | |
19 | Flavanone | Eriodictyol-7-O-glucoside | C21H22O11 | 450.3928 | 449 | 431; 413; 333; 267; 233; 140 | 356; 290; 227; 150 | Vitis vinifera [21]; Impatients glandulifera Royle [24] | |
20 | Flavan-3-ol | Catechin [D-Catechol] | C15H14O6 | 290.2681 | 291 | 273; 261; 243; 231; 213; 191; 175 | 202; 157 | Eucalyptus [27]; Triticum [28]; Vaccinium macrocarpon [30]; Potato [34] | |
21 | Flavan-3-ol | Epicatechin | C15H14O6 | 290.2681 | 291 | 261; 175 | 175; 157 | Vitis vinifera [21]; C. edulis [23]; Eucalyptus [27]; Vaccinium macrocarpon [30]; Rubus occidentalis [35] | |
22 | Flavan-3-ol | Gallocatechin | C15H14O7 | 306.2675 | 307 | 277; 207 | 247; 159 | G. linguiforme [23]; Solanaceae [33] | |
23 | Oligomeric proanthocyanidin | Epiafzelechin [(epi)Afzelechin] | C15H14O5 | 274.2687 | 275 | 245; 175 | 175; 127 | A. cordifolia; F. glaucescens; F. herrerae [23] | |
24 | Oligomeric proanthocyanidin | (Epi)Afzelechin-(epi)afzelechin | C30H24O10 | 544.5056 | 545 | 535; 362; 301 | 359; 227 | A. cordifolia, C. edulis [23] | |
25 | Anthocyanin | Petunidin | C16H13O7+ | 317.2702 | 318 | 300; 256 | 212; 112 | A. cordifolia; C. edulis [23] | |
26 | Dihydrochalcone | Phlorizin [Phloridzin; Phlorizoside] | C21H24O10 | 436.4093 | 437 | 275; 329 | 245; 176 | Potato [5]; Vitis vinifera [21]; A.cordifolia [23]; Eucalyptus [27] | |
27 | Hydroxycinammic acid | p-Coumaric acid | C9H8O3 | 164.16 | 165 | 147 | 119 | Potato [5]; Tomato [29]; Vaccinium macrocarpon [30]; Rubus occidentalis [35] | |
28 | Hydroxycinnamic acid | Chlorogenic acid [3-O-Caffeoylquinic acid] | C16H18O9 | 354.3087 | 353 | 191 | 127; 171 | Potato leaves [4]; Vaccinium macrocarpon [22]; tomato [29]; Potato [5,13,14,36] | |
29 | Hydroxybenzoic acid (Phenolic acid) | 4-Hydroxybenzoic acid [PHBA; Benzoic acid; p-Hydroxybenzoic acid] | C7H6O3 | 138.1207 | 139 | 137 | 129 | Potato [5]; Vitis vinifera [21]; Triticum [28]; Vigna unguiculata [35]; Mentha [37] | |
30 | Hydroxybenzoic acid (Phenolic acid) | Salvianolic acid G | C18H12O7 | 340.2837 | 341 | 323; 273; 137 | 275; 176 | Mentha [20] | |
31 | Hydroxycoumarin | Fraxidin | C11H10O5 | 222.1941 | 208; 135 | 189 | Rat plasma [38] | ||
OTHERS | |||||||||
32 | L-alpha amino acid | L-Pyroglutamic acid [Pidolic acid; 5-Oxo-L-Proline] | C5H7NO3 | 129.1140 | 130 | 112 | Potato leaves [4] | ||
33 | Amino acid | Leucine [(S)-2-Amino-Methylpentanoic acid] | C6H13NO2 | 131.1729 | 132 | 129 | Potato leaves [4]; Vigna unguiculata [35] | ||
34 | Amino acid | L-Glutamate | C5H7NO4 | 145.1134 | 146 | Lonicera japonica [32] | |||
35 | Amino acid | L-Lysine | C6H14N2O2 | 146.1876 | 147 | 130 | Lonicera japonica [32] | ||
36 | Amino acid | Phenylalanine [L-Phenylalanine] | C9H11NO2 | 165.1891 | 166 | 120 | Potato leaves [4]; G. linguiforme [23]; Vigna unguiculata [35]; Passiflora incarnata [39] | ||
37 | Amino acid | Nordenine | C10H15NO | 165.2322 | 166 | 149; 120 | 139; 120 | A. cordifolia [23] | |
38 | Cyclohexenecarboxylic acid | Shikimic acid [L-Schikimic acid] | C7H10O5 | 174.1513 | 175 | 157; 130; 112 | 140; 126; 112 | A. cordifolia [23]; Red wines [40] | |
39 | Monobasic carboxylic acid | Hydroxyphenyllactic acid | C9H10O4 | 182.1733 | 182 | 165; 136 | 147 | Mentha [37] | |
40 | Polyhydroxycarboxylic acid | Quinic acid | C7H12O6 | 192.1666 | 191 | 173; 129; 111 | Potato leaves [4]; Potato [14] | ||
41 | Tricarboxylic acid | Citric acid [Anhydrous; Citrate] | C6H8O7 | 192.1235 | 191 | 111; 173 | Potato leaves [4]; Vigna unguiculata [35] | ||
42 | Trans-cinnamic acid | Ferulic acid | C10H10O4 | 194.184 | 195 | 193; 112 | Potato [5,13]; Vaccinium macrocarpon [30] | ||
43 | Essential amino acid | L-Tryptophan [Tryptophan; (S)-Tryptophan] | C11H12N2O2 | 204.2252 | 205 | 188 | 146; 170 | Vigna unguiculata [35]; Passiflora incarnata [39]; Strawberry [41] | |
44 | Unsaturated fatty acid | Dodecatetraenedioic acid [2,4,8,10-Dodecateraenedioic acid] | C12H14O4 | 222.2372 | 223 | 208; 163; 135 | 190 | F. herrerae [23] | |
45 | Carboxylic acid | Myristoleic acid [Cis-9-Tetradecanoic acid] | C14H26O2 | 226.3550 | 227 | 209; | 138; 127 | F. glaucescens [23] | |
46 | Benzoic acid | 3,4-Diacetoxybenzoic acid | C10H11O6 | 238.1935 | 239 | 222; 151 | 123 | Potato leaves [4]; Triticum aestivum L. [42] | |
47 | Phenolic amine | N-Caffeoylputrescine | C13H18N2O3 | 250.2936 | 251 | 223; 151 | 177 | Potato leaves [4]; Potato [14] | |
48 | Phenolic amine | N-feruloylputrescine | C14H20N2O3 | 264.3202 | 265 | 248; 177; 114 | 177; 145 | Potato [14] | |
49 | Omega-3 fatty acid | Stearidonic acid | C18H28O2 | 276.4137 | 277 | 248; 201; 132 | 218; 189 | Salviae Miltiorrhizae [43] | |
50 | Phenylpropanoid | Triandrin [Sachaliside] | C15H20O7 | 312.3151 | 311 | 293; 201; 171 | 265; 185 | Potato leaves [4] | |
51 | Unsaturated fatty acid | Octadecanedioic acid [1,16-Hexadecanedicarboxylic acid] | C18H34O4 | 314.4602 | 315 | 280; 199; 127 | 135 | F. glaucescens [23] | |
52 | Unsaturated essential fatty acid | Oxo-eicosatetraenoic acid | C20H30O3 | 318.4504 | 319 | 277 | 259; 165 | F. potsii [23] | |
53 | Fructose-phenylalanine | C15H21NO7 | 327.3297 | 328 | 169; 291 | 140 | Potato leaves [4] | ||
54 | Higher-molecular-weight carboxylic acid | 9,10-Dihydroxy-8-oxooctadec-12-enoic acid | C18H32O5 | 328.4437 | 327 | 229; 171; 127 | 153 | Bituminaria [44]; Broccoli [45]; Phyllostachys nigra [46] | |
55 | Oxylipin | Epoxyoctadecane-dioic acid | C18H32O5 | 328.4437 | 327 | 171; 201; 125 | 153 | Potato leaves [4] | |
56 | Phenolic amine | N-feruloyloctopamine | C18H19NO5 | 329.3472 | 328 | 310 | 295; 161; 135 | Potato [14] | |
57 | Oxylipin | 13- Trihydroxy-Octadecenoic acid [THODE] | C18H34O5 | 330.4596 | 329 | 309; 229; 171; 127 | 153 | Bituminaria [44]; Broccoli [45]; Phyllostachys nigra [46] | |
58 | Oxylipin | 9,12,13- Trihydroxy-trans-10-octadecenoic acid | C18H34O5 | 330.4596 | 329 | 171; 201; 311 | 153 | Potato leaves [4] | |
59 | Cyclohexenecarboxylic acid | 3-O-caffeoylshikimic acid [3-Csa] | C16H16O8 | 336.2934 | 337 | 319; 257; 175; 112 | 257; 175 | Grataegi Fructus [47]; Zostera marina [48] | |
60 | Pentacyclic diterpenoid | Gibberellic acid | C19H22O6 | 346.3744 | 347 | 284; 154 | 256 | Triticum aestivum [49] | |
61 | Higher-molecular-weight carboxylic acid | Pentacosenoic acid | C25H48O2 | 380.6474 | 381 | 363; 263; 180 | 275; 247; 207 | F. glaucescens [23] | |
62 | Steroidal alkaloid | Solanidine | C27H43NO | 397.6364 | 399 | 157; 383; 327; 253 | 142 | Potato [15,50] | |
63 | Sterol | Stigmasterol [Stigmasterin; Beta-Stigmasterol] | C29H48O | 412.6908 | 413 | 301 | 189 | Hedyotis diffusa [16]; A.cordifolia; F. pottsii [23]; Salvia hypargeia [51] | |
64 | Steroidal alkaloid | Tomatidinol | C27H43NO2 | 413.6358 | 414 | 394; 272; 204 | 256; 204 | Potato [50]; Lucopersicon esculentum, Solanum nigrum [52] | |
65 | Anabolic steroid | Vebonol | C30H44O3 | 452.6686 | 453 | 435; 336; 209 | 336; 226 | Rhus coriaria [25] | |
66 | Phenolic amine | N1,N8-bis(dihydrocaffeoyl) spermidine | C25H35N3O6 | 473.5619 | 474 | 343 | 228; 315 | Potato [14] | |
67 | Polyhydroxycarboxylic acid | 1-O-caffeoyl-5-O-feruloylquinic acid | C26H26O12 | 530.4774 | 531 | 353; 303; 230 | 337; 280; 143 | Lemon [53]; Senecio clivicolus [54] | |
68 | Glycoalkaloid | Unknown glycoalkaloid | C32H33NO8 | 559.6063 | 560 | 398; 183 | 383; 253; 213; 159; 125 | ||
69 | Glycoalkaloid | β-chaconine | C39H63NO10 | 705.9182 | 706 | 560; 493; 398; 307; 214 | 398; 196 | Passiflora incarnata [39] | |
70 | Glycoalkaloid | Unknown glycoalkaloid | C39H63NO11 | 721.9176 | 722 | 704; 560 | 396 | ||
71 | Glycoalkaloid | Dehydrochaconine | C45H71NO14 | 850.0435 | 850 | 704; 558; 396 | 558; 396; 272 | Potato [3,8] | |
72 | Glycoalkaloid | α-chaconine | C45H73NO14 | 852.0594 | 852 | 706; 560; 398; 253 | 560; 398 | Potato [8,13,14,15] | |
73 | Glycoalkaloid | Solanidadienol chacotriose | C45H71NO15 | 866.0429 | 866 | 720; 574; 412; 850 | 574; 412 | Potato [8] | |
74 | Glycoalkaloid | Solanidadiene solatriose | C45H71NO15 | 866.0429 | 866 | 396; 558; 704 | 396; 325; 199; 166 | Potato [8] | |
75 | Glycoalkaloid | Solanidenone chacotriose | C45H71NO15 | 866.0429 | 866 | 720 | 574; 412; 254 | Potato [8] | |
76 | Glycoalkaloid | α-solanine | C45H73NO15 | 868.9588 | 868 | 398; 706; 560 | 383; 327; 253; 157 | Potato [8,13,14,15] | |
77 | Glycoalkaloid | Leptinine I | C45H73NO15 | 868.9588 | 868 | 850; 704; 396 | 704; 558; 396 | Potato [8] | |
78 | Glycoalkaloid | Solanidenol chacotriose | C45H73NO15 | 868.9588 | 868 | 722; 560; 398 | 560; 398; 326 | Potato [8] | |
79 | Glycoalkaloid | Solanidadiene solatriose | C45H73NO15 | 868.9588 | 868 | 706; 560; 486; 398; 327 | 560; 398; | Potato [8] | |
80 | Glycoalkaloid | Solanidadienol solatriose | C45H71NO16 | 882.0423 | 882 | 412; 736; 574 | 182; 394; 341; 251 | Potato [8] | |
81 | Glycoalkaloid | Leptinine II | C45H73NO16 | 884.0582 | 884 | 866; 704; 396 | 396; 558; 720 | Potato [8] | |
82 | Glycoalkaloid | Solanidenol solatriose | C45H73NO16 | 884.0582 | 884 | 866; 722; 396 | 396; 558; 704 | Potato [8] | |
83 | Glycoalkaloid | Unknown glycoalkaloid | C45H75NO16 | 886.0741 | 886 | 850; 704 | 704; 558 | ||
84 | Glycoalkaloid | Unknown glycoalkaloid | C45H77NO16 | 888.0900 | 888 | 870 | 852 | ||
85 | Glycoalkaloid | Unknown glycoalkaloid | C46H75NO16 | 898.0848 | 897 | 850; 704 | 704; 246 | ||
86 | Glycoalkaloid | Unknown glycoalkaloid | C45H76NO17 | 903.0814 | 902 | 866; 704 | 704; 558 | ||
87 | Glycoalkaloid | Unknown glycoalkaloid | C49H79NO18 | 970.1475 | 969 | 850; 704 | 704; 558; 492 |
No | Identified Compounds | Identification | Formula | Calculated Mass | Tuleevsky | Memory of Antoshkina | Kuznechanka | Sinilga | Hybrid 15/F-2-13 | Hybrid 22103-10 | Hybrid 17-5/6-11 | Tomichka |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Polyphenols | ||||||||||||
1 | Flavone | Apigenin | C15H10O5 | 270.2369 | ||||||||
2 | Flavone | Chrysoeriol | C16H12O6 | 300.2629 | ||||||||
3 | Flavone | Diosmetin | C16H12O6 | 300.2629 | ||||||||
4 | Flavone | Myricetin | C15H10O8 | 318.2351 | ||||||||
5 | Flavone | Ampelopsin | C15H12O8 | 320.251 | ||||||||
6 | Flavone | 5,6-Dihydroxy-7,8,3’,4’tetramethoxyflavone | C19H18O8 | 374.3414 | ||||||||
7 | Flavone | Dihydroxy tetramethoxyflavanone | C19H20O8 | 376.3573 | ||||||||
8 | Flavone | Diosmin | C28H32O15 | 608.5447 | ||||||||
9 | Flavonol | Kaempferol | C15H10O6 | 286.2363 | ||||||||
10 | Flavonol | Quercetin | C15H10O7 | 302.2357 | ||||||||
11 | Flavonol | Herbacetin | C15H10O7 | 302.2357 | ||||||||
12 | Flavonol | Isorhamnetin | C16H12O7 | 316.2623 | ||||||||
13 | Flavonol | Quercetin 3-O- glucoside | C21H20O12 | 464.3763 | ||||||||
14 | Flavonol | Myricetin-3-O-galactoside | C21H20O13 | 480.3757 | ||||||||
15 | Flavonol | Kaempferol diacetyl hexoside | C25H24O13 | 532.4503 | ||||||||
16 | Flavonol | Quercetin glucuronide sulfate | C21H18O16S | 558.4230 | ||||||||
17 | Flavonol | Quercetin malonyl dihexoside | C30H32O20 | 712.5631 | ||||||||
18 | Flavan-3-ol | Catechin | C15H14O6 | 290.2681 | ||||||||
19 | Flavan-3-ol | Epicatechin | C15H14O6 | 290.2681 | ||||||||
20 | Flavan-3-ol | Gallocatechin | C15H14O7 | 306.2675 | ||||||||
21 | Flavanone | Naringenin | C15H12O5 | 272.5228 | ||||||||
22 | Flavanone | Eriodictyol-7-O-glucoside | C21H22O11 | 450.3928 | ||||||||
23 | Oligomeric proanthocyanidin | Epiafzelechin | C15H14O5 | 274.2687 | ||||||||
24 | Oligomeric proanthocyanidin | Epiafzelechin-epiafzelechin | C30H24O10 | 544.5056 | ||||||||
25 | Hydroxybenzoic acid | 4-Hydroxybenzoic acid | C7H6O3 | 138.1207 | ||||||||
26 | Hydroxycinammic acid | p-Coumaric acid | C9H8O3 | 164.16 | ||||||||
27 | Trans-cinnamic acid | Ferulic acid | C10H10O4 | 194.184 | ||||||||
28 | Benzoic acid | 3,4-Diacetoxybenzoic acid | C10H11O6 | 238.1935 | ||||||||
29 | Hydroxybenzoic acid (Phenolic acid) | Salvianolic acid G | C18H12O7 | 340.2837 | ||||||||
30 | Hydroxycinnamic acid | Chlorogenic acid | C16H18O9 | 354.3087 | ||||||||
31 | Anthocyanin | Petunidin | C16H13O7+ | 317.2702 | ||||||||
32 | Hydroxycoumarin | Fraxidin | C11H10O5 | 222.1941 | ||||||||
33 | Dihydrochalcone | Phlorizin | C21H24O10 | 436.4093 | ||||||||
Others | ||||||||||||
34 | L-alpha amino acid | L-Pyroglutamic acid | C5H7NO3 | 129.1140 | ||||||||
35 | Amino acid | Leucine | C6H13NO2 | 131.1729 | ||||||||
36 | Amino acid | L-Glutamate | C5H7NO4 | 145.1134 | ||||||||
37 | Amino acid | L-Lysine | C6H14N2O2 | 146.1876 | ||||||||
38 | Amino acid | Phenylalanine [L-Phenylalanine] | C9H11NO2 | 165.1891 | ||||||||
39 | Amino acid | Nordenine | C10H15NO | 165.2322 | ||||||||
40 | Cyclohexenecarboxylic acid | Schikimic acid | C7H10O5 | 174.1513 | ||||||||
41 | Monobasic carboxylic acid | Hydroxyphenyllactic acid | C9H10O4 | 182.1733 | ||||||||
42 | Polyhydroxycarboxylic acid | Quinic acid | C7H12O6 | 192.1666 | ||||||||
43 | Tricarboxylic acid | Citric acid | C6H8O7 | 192.1235 | ||||||||
44 | Essential amino acid | L-Tryptophan | C11H12N2O2 | 204.2252 | ||||||||
45 | Unsaturated fatty acid | Dodecatetraenedioic acid | C12H14O4 | 222.2372 | ||||||||
46 | Carboxylic acid | Myristoleic acid | C14H26O2 | 226.3550 | ||||||||
47 | Phenolic amine | N-Caffeoylputrescine | C13H18N2O3 | 250.2936 | ||||||||
48 | Phenolic amine | N-feruloylputrescine | C14H20N2O3 | 264.3202 | ||||||||
49 | Omega-3 fatty acid | Stearidonic acid | C18H28O2 | 276.4137 | ||||||||
50 | Phenylpropanoid | Triandrin | C15H20O7 | 312.3151 | ||||||||
51 | Unsaturated fatty acid | Octadecanedioic acid | C18H34O4 | 314.4602 | ||||||||
52 | Unsaturated essential fatty acid | Oxo-eicosatetraenoic acid | C20H30O3 | 318.4504 | ||||||||
53 | Fructose-phenylalanine | C15H21NO7 | 327.3297 | |||||||||
54 | Higher-molecular-weight carboxylic acid | 9,10-Dihydroxy-8-oxooctadec-12-enoic acid | C18H32O5 | 328.4437 | ||||||||
55 | Oxylipin | Epoxyoctadecane-dioic acid | C18H32O5 | 328.4437 | ||||||||
56 | Phenolic amine | N-feruloyloctopamine | C18H19NO5 | 329.3472 | ||||||||
57 | Oxylipin | 13- Trihydroxy-Octadecenoic acid | C18H34O5 | 330.4596 | ||||||||
58 | Oxylipin | 9,12,13- Trihydroxy-trans-10-octadecenoic acid | C18H34O5 | 330.4596 | ||||||||
59 | Cyclohexenecarboxylic acid | 3-O-caffeoylshikimic acid [3-Csa] | C16H16O8 | 336.2934 | ||||||||
60 | Pentacyclic diterpenoid | Gibberellic acid | C19H22O6 | 346.3744 | ||||||||
61 | Higher-molecular-weight carboxylic acid | Pentacosenoic acid | C25H48O2 | 380.6474 | ||||||||
62 | Steroidal alkaloid | Solanidine | C27H43NO | 397.6364 | ||||||||
63 | Sterol | Stigmasterol | C29H48O | 412.6908 | ||||||||
64 | Steroidal alkaloid | Tomatidinol | C27H43NO2 | 413.6358 | ||||||||
65 | Anabolic steroid | Vebonol | C30H44O3 | 452.6686 | ||||||||
66 | Phenolic amine | N1,N8-bis(dihydrocaffeoyl) spermidine | C25H35N3O6 | 473.5619 | ||||||||
67 | Polyhydroxycarboxylic acid | 1-O-caffeoyl-5-O-feruloylquinic acid | C26H26O12 | 530.4774 | ||||||||
68 | Steroidal alkaloid | Unknown glycoalkaloid | C32H33NO8 | 559.6063 | ||||||||
69 | Glycoalkaloid | Beta-chaconine | C39H63NO10 | 705.9182 | ||||||||
70 | Glycoalkaloid | Unknown glycoalkaloid | C39H63NO11 | 721.9176 | ||||||||
71 | Glycoalkaloid | Dehydrochaconine | C45H71NO14 | 850.0435 | ||||||||
72 | Glycoalkaloid | Alpha-chaconine | C45H73NO14 | 852.0594 | ||||||||
73 | Glycoalkaloid | Solanidadienol chacotriose | C45H71NO15 | 866.0429 | ||||||||
74 | Glycoalkaloid | Solanidadiene solatriose | C45H71NO15 | 866.0429 | ||||||||
75 | Glycoalkaloid | Solanidenone chacotriose | C45H71NO15 | 866.0429 | ||||||||
76 | Glycoalkaloid | Alpha-solanine | C45H73NO15 | 868.9588 | ||||||||
77 | Glycoalkaloid | Leptinine I | C45H73NO15 | 868.9588 | ||||||||
78 | Glycoalkaloid | Solanidenol chacotriose | C45H73NO15 | 868.9588 | ||||||||
79 | Glycoalkaloid | Solanidadiene solatriose | C45H73NO15 | 868.9588 | ||||||||
80 | Glycoalkaloid | Solanidadienol solatriose | C45H71NO16 | 882.0423 | ||||||||
81 | Glycoalkaloid | Leptinine II | C45H73NO16 | 884.0582 | ||||||||
82 | Glycoalkaloid | Solanidenol solatriose | C45H73NO16 | 884.0582 | ||||||||
83 | Glycoalkaloid | Unknown glycoalkaloid | C45H75NO16 | 886.0741 | ||||||||
84 | Glycoalkaloid | Unknown glycoalkaloid | C45H77NO16 | 888.0900 | ||||||||
85 | Glycoalkaloid | Unknown glycoalkaloid | C46H75NO16 | 898.0848 | ||||||||
86 | Glycoalkaloid | Unknown glycoalkaloid | C45H76NO17 | 903.0814 | ||||||||
87 | Glycoalkaloid | Unknown glycoalkaloid | C49H79NO18 | 970.1475 |
References
- Spooner, D.M.; Hijmans, R.J. Potato systematics and germplasm collecting, 1989–2000. Am. J. Potato Res. 2001, 78, 237–268. [Google Scholar] [CrossRef]
- Roessner, U.; Willmitzer, L.; Fernie, A.R. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol. 2001, 127, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Stobiecki, M.; Matysiak-Kata, I.; Franski, R.; Skala, J.; Szopa, J. Monitoring changes in anthocyanin and steroid alkaloid glycoside content in lines of transgenic potato plants using liquid chromatography/mass spectrometry. Phytochemistry 2003, 62, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Molecules 2018, 112, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. [Google Scholar] [CrossRef]
- Griffiths, D.W.; Bain, H.; Dale, M.F.B. The effect of low-temperature storage on the glycoalkaloid content of potato (Solanum tuberosum) tubers. J. Sci. Food Agric. 1997, 74, 301–307. [Google Scholar] [CrossRef]
- Krits, P.; Fogelman, E.; Ginzberg, I. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 2007, 227, 143–150. [Google Scholar] [CrossRef]
- Shakya, R.; Navarre, D.A. LC-MS Analysis of Solanidane Glycoalkaloid Diversity among Tubers of Four Wild Potato Species and Three Cultivars (Solanum tuberosum). J. Agric. Food Chem. 2008, 56, 6949–6958. [Google Scholar] [CrossRef]
- Arnqvist, L.; Dutta, P.C.; Jonsson, L.; Sitbon, F. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol. 2003, 131, 1792–1799. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M.; McDonald, G.M. Potato glycoalkaloids: Chemistry, analysis, safety, and plant physiology. Crit. Rev. Plant Sci. 1997, 16, 55–132. [Google Scholar] [CrossRef]
- Pharmacopoeia of the Eurasian Economic Union. Approved by Decision of the Board of Eurasian Economic Commission No. 100. 2020. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/LSMI/Documents/Фармакoпея%20Сoюза%2011%2008.pdf (accessed on 15 July 2020).
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Deuber, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 2012, 135, 2814–2824. [Google Scholar]
- Huang, W.; Serra, O.; Dastmalchi, K.; Jin, L.; Yang, L.; Stark, R.E. Comprehensive MS and Solid-state NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars. J. Agric. Food Chem. 2017, 65, 2258–2274. [Google Scholar] [CrossRef]
- Hossain, M.B.; Brunton, N.P.; Rai, D.K. Effect of Drying Methods on the Steroidal Alkaloid Content of Potato Peels, Shoots and Berries. Molecules 2016, 21, 403. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhu, P.; Liu, B.; Ge, D.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC–MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharm. Biomed. Anal. 2018, 159, 490–512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Wojakowska, A.; Perkowski, J.; Goral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass. Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant. 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae haplocalycis herba by ultra-high performance liquid chromatography–high resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef] [Green Version]
- Goufo, P.; Singh, R.K.; Cortez, I. Phytochemical A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
- Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS–Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
- Viera, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatients glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Neto, C.P.; Silvestre, A.J.D. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B 2013, 938, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparison analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Front. Plant. Sci. 2016, 7, 1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallverdu-Queralt, A.; Jauregui, O.; Medina-Remon, A.; Lamuela-Raventos, R.M. Evaluation of a Method to Characterize the Phenolic Profile of Organic and Conventional Tomatoes. Agricult. Food Chem. 2012, 60, 3373–3380. [Google Scholar] [CrossRef]
- Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
- Petsalo, A.; Jalonen, J.; Tolonen, A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J Chromatogr. A. 2006, 1112, 224–231. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasir, M.; Sultana, B.; Anwar, F. LC–ESI–MS/MS based characterization of phenolic components in fruits of two species of Solanaceae. J. Food Sci. Technol. 2018, 55, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
- Paudel, L.; Wyzgovski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin Secondary Metabolites of Black Raspberry (Rubus occidentalis L.) Fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS Analyses. J. Agricult. Food. Chem. 2013, 61, 12032–12043. [Google Scholar] [CrossRef] [PubMed]
- Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020, 25, 3778. [Google Scholar] [CrossRef]
- De Masi, L.; Bontempo, P.; Rigano, D.; Stiuso, P.; Carafa, V.; Nebbioso, A.; Piacente, S.; Montoro, P.; Aversano, R.; D’Amelia, V.; et al. Comparative Phytochemical Characterization, Genetic Profile, and Antiproliferative Activity of Polyphenol-Rich Extracts from Pigmented Tubers of Different Solanum tuberosum Varieties. Molecules 2020, 25, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.). Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T.; Fukui, M.; Nakazawa, T.; Hoshikawa, A.; Ohsawa, K. Metabolic Fate of Fraxin Administrated Orally to Rats. J. Nat. Prod. 2006, 69, 755–757. [Google Scholar] [CrossRef]
- Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. [Google Scholar] [CrossRef]
- Ivanova-Petropulos, V.; Naceva, Z.; Sandor, V.; Makszin, L.; Deutsch-Nagy, L.; Berkics, B.; Stafilov, T.; Kilar, F. Fast determination of lactic, succinic, malic, tartaric, shikimic, and citric acids in red Vranec wines by CZE-ESI-QTOF-MS. Electrophoresis 2018, 39, 1597–1605. [Google Scholar] [CrossRef]
- Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 2014, 146, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Stallmann, J.; Schweiger, R.; Pons, C.A.A.; Muller, C. Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation. Sci. Rep. 2020, 10, 10112. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef] [Green Version]
- Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment. J. Agricult. Food. Chem. 2016, 64, 3353–3361. [Google Scholar] [CrossRef]
- Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2013, 28, 224–230. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. [Google Scholar] [CrossRef] [Green Version]
- Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K. Zostera marina L. Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
- Hou, S.; Zhu, J.; Ding, M.; Lv, G. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography–electrospray tandem mass spectrometry. Talanta 2008, 76, 798–802. [Google Scholar] [CrossRef]
- Bianco, G.; Schmitt-Kopplin, P.; De Benedetto, G.; Kettrup, A.; Cataldi, T.R.I. Determination of glycoalkaloids and relative aglycones by nonaqueous capillary electrophoresis coupled with electrospray ionization-ion trap mass spectrometry. Electrophoresis 2002, 23, 2904–2912. [Google Scholar] [CrossRef]
- Bakir, D.; Akdeniz, M.; Ertas, A.; Yilmaz, M.A.; Yener, I.; Firat, M.; Kolak, U. A GC–MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol. Food Biochem. 2020, 44, e13350. [Google Scholar] [CrossRef]
- Bednarz, H.; Roloff, N.; Niehaus, K. Mass Spectrometry Imaging of the Spatial and Temporal Localization of Alkaloids in Nightshades. Agric. Food Chem. 2019, 67, 13470–13477. [Google Scholar] [CrossRef] [PubMed]
- Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Faraone, I.; Rai, D.K.; Chiummiento, L.; Fernandez, E.; Choudhary, A.; Prinzo, F.; Milella, L. Antioxidant Activity and Phytochemical Characterization of Senecio clivicolus Wedd. Crit. Mol. 2018, 23, 2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No | Variety | Variety Description | Photos of Varieties (Photos Taken by V. Kulikova, September 2021) |
---|---|---|---|
1 | Tuleevsky | Mid-season, table use. Large white corolla. The tubers are elongated, the peel and flesh are yellow, the eyes are small. Resistant to the causative agent of potato cancer, moderately susceptible to late blight on tops and tubers, relatively resistant to common scab, Alternaria. The value of the variety is a high stable yield, excellent taste, resistance to viral diseases, and a long dormant period; | |
2 | Hybrid 17-5/6-11 | The corolla is white. The tubers are oval, the peel and pulp are white, the eyes are small. Resistant relatively to late blight, common scab, rhizoctoniosis. Consumer qualities are high, taste is good. | |
3 | Kuznechanka | Variety Kuznechanka: medium early, universal purpose. Corolla red-violet. The tubers are rounded, the skin is smooth red, the flesh is creamy, the eyes are small. The plant is multituberous. Taste and consumer qualities are good. High yield. Resistant to cancer, relatively resistant to late blight, common scab. The value of the variety is suitable for processing into crispy potatoes, high quality starch. | |
4 | Memory of Antoshkina | Variety Memory of Antoshkina of early ripening, for table use. The corolla is white, medium in size. The tubers are oval-round, the peel is yellow mesh, the flesh is light yellow, the eyes are small. Resistant to cancer and golden potato nematode, medium resistance to late blight, relative to Alternaria, Fusarium wilt, common scab and rhizoctoniosis. The taste qualities are excellent. The value of the variety is a high early harvest | |
5 | Tomichka | Variety Tomichka of early ripening. The color of the corolla is light purple with a white tip. The tubers are round-oval, the skin is yellow, the flesh is yellow, the eyes are very small. The variety is resistant to potato cancer and golden potato nematode, relatively resistant to late blight, common scab, rhizoctoniosis, wrinkled mosaic, striped mosaic, leaf curl. Taste and consumer qualities are good | |
6 | Hybrid 15/F-2-13 | Violet corolla. The tuber is elongated-oval, the skin and flesh are purple. Susceptible to the causative agent of potato cancer and golden potato nematode, relatively resistant to viral and fungal diseases, to common scab, rhizoctoniosis and alternariosis. It is recommended for diet food, for salads both fresh and boiled. | |
7 | Sinilga | Variety Sinilga medium-early table appointment. Violet corolla. The tuber is elongated-oval, the skin and flesh are purple. Susceptible to the causative agent of potato cancer and golden potato nematode, relatively resistant to viral and fungal diseases, to common scab, rhizoctoniosis and alternariosis. It is recommended for diet food, for salads both fresh and boiled. |
Item | Occ. | Present in |
---|---|---|
Alpha-chaconine; | 5 | Tuleevsky, Memory of Atoshkina, Kuznechanka, Sinilga, Hybrid 15/F-2-13 |
Beta-chaconine; | 5 | Tuleevsky, Memory of Atoshkina, Kuznechanka, Sinilga, Hybrid 15/F-2-13 |
Shikimic acid; | 5 | Tuleevsky, Memory of Atoshkina, Kuznechanka, Sinilga, Hybrid 15/F-2-13 |
Solanidine; | 5 | Tuleevsky, Memory of Atoshkina, Kuznechanka, Sinilga, Hybrid 15/F-2-13 |
Alpha-solanine; | 4 | Tuleevsky, Kuznechanka, Sinilga, Hybrid 15/F-2-13 |
Epiafzelechin; | 4 | Tuleevsky, Memory of Atoshkina, Sinilga, Hybrid 15/F-2-13 |
L-Tryptophan; | 4 | Tuleevsky, Memory of Antoshkina, Kuznechanka, Sinilga |
N-feruloylputrescine; | 4 | Tuleevsky, Memory of Antoshkina, Kuznechanka, Sinilga |
Solanidenol chacotriose; | 4 | Tuleevsky, Memory of Antoshkina, Kuznechanka, Sinilga |
Citric acid; | 3 | Memory of Antoshkina, Sinilga, Hybrid 15/F-2-13 |
Dehydrochaconine; | 3 | Tuleevsky, Memory of Antoshkina, Sinilga |
Leptinine II; | 3 | Tuleevsky, Sinilga, Hybrid 15/F-2-13 |
Quercetin glucuronide sulfate; | 3 | Tuleevsky, Memory of Antoshkina, Sinilga |
5,6-Dihydroxy-7,8,3′ 4′-tetramethoxyflavone | 2 | Memory of Antoshkina, Sinilga |
Catechin; | 2 | Memory of Antoshkina, Sinilga |
Epoxyoctadecane-dioic acid; | 2 | Tuleevsky, Memory of Antoshkina |
Ferulic acid; | 2 | Tuleevsky, Sinilga |
Hydroxyphenyllactic acid; | 2 | Kuznechanka, Sinilga |
Kaempferol; | 2 | Kuznechanka, Sinilga |
L-Pyroglutamic acid; | 2 | Tuleevsky, Sinilga |
Leptinine I; | 2 | Kuznechanka, Sinilga |
Myricetin; | 2 | Tuleevsky, Kuznechanka |
Myristoleic acid; | 2 | Tuleevsky, Kuznechanka |
N-feruloyloctopamine; | 2 | Kuznechanka, Hybrid 15/F-2-13 |
Quercetin; | 2 | Tuleevsky, Kuznechanka |
Solanidadiene solatriose; | 2 | Sinilga, Hybrid 15/F-2-13 |
Unknown glycoalkaloid 1; | 2 | Tuleevsky, Kuznechanka |
Unknown glycoalkaloid 3; | 2 | Memory of Antoshkina, Kuznechanka |
Unknown glycoalkaloid 6; | 2 | Memory of Antoshkina, Sinilga |
Item | Occ. | Present in |
---|---|---|
Alpha-chaconine; | 5 | Tuleevsky, Memory of Antoshkina, Kuznechanka, Sinilga, Hybrid-15/F-2-13 |
Beta-chaconine; | 5 | Tuleevsky, Memory of Antoshkina, Kuznechanka, Sinilga, Hybrid-15/F-2-13 |
Solanidine; | 5 | Tuleevsky, Memory of Antoshkina, Kuznechanka, Sinilga, Hybrid-15/F-2-13 |
Alpha-solanine; | 4 | Tuleevsky, Kuznechanka, Sinilga, Hybrid-15/F-2-13 |
Solanidenol chacotriose; | 4 | Tuleevsky, Memory of Antoshkina, Kuznechanka, Sinilga |
Dehydrochaconine; | 3 | Tuleevsky, Memory of Antoshkina, Sinilga |
Leptinine II; | 3 | Tuleevsky, Sinilga, Hybrid-15/F-2-13 |
Leptinine I; | 2 | Kuznechanka, Sinilga |
Solanidadiene solatriose; | 2 | Sinilga, Hybrid-15/F-2-13 |
Unknown glycoalkaloid 1; | 2 | Tuleevsky, Kuznechanka |
Unknown glycoalkaloid 3; | 2 | Memory of Antoshkina, Kuznechanka |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razgonova, M.; Kulikova, V.; Khodaeva, V.; Bolotova, L.; Baigarashev, T.; Plotnikova, N.; Zakharenko, A.; Golokhvast, K. Simultaneous Determination of Steroidal Alkaloids and Polyphenol Group from Eight Varieties of Siberian Solanum tuberosum L. through Tandem Mass Spectrometry. Agriculture 2023, 13, 758. https://doi.org/10.3390/agriculture13040758
Razgonova M, Kulikova V, Khodaeva V, Bolotova L, Baigarashev T, Plotnikova N, Zakharenko A, Golokhvast K. Simultaneous Determination of Steroidal Alkaloids and Polyphenol Group from Eight Varieties of Siberian Solanum tuberosum L. through Tandem Mass Spectrometry. Agriculture. 2023; 13(4):758. https://doi.org/10.3390/agriculture13040758
Chicago/Turabian StyleRazgonova, Mayya, Valentina Kulikova, Vera Khodaeva, Lyudmila Bolotova, Timur Baigarashev, Nina Plotnikova, Alexander Zakharenko, and Kirill Golokhvast. 2023. "Simultaneous Determination of Steroidal Alkaloids and Polyphenol Group from Eight Varieties of Siberian Solanum tuberosum L. through Tandem Mass Spectrometry" Agriculture 13, no. 4: 758. https://doi.org/10.3390/agriculture13040758
APA StyleRazgonova, M., Kulikova, V., Khodaeva, V., Bolotova, L., Baigarashev, T., Plotnikova, N., Zakharenko, A., & Golokhvast, K. (2023). Simultaneous Determination of Steroidal Alkaloids and Polyphenol Group from Eight Varieties of Siberian Solanum tuberosum L. through Tandem Mass Spectrometry. Agriculture, 13(4), 758. https://doi.org/10.3390/agriculture13040758