Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Chemical and Biochemical Soil Analyses
2.3. Statistical Analyses
3. Results
3.1. Tillage and Mulching Effects on Soil Properties
3.2. Tillage and Mulching Effect on Citrus Yield
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westwood, J.; Charudattan, R.; Duke, S.; Fennimore, S.; Marrone, P.; Slaughter, D.; Swanton, C.; Zollinger, R. Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Duke, S.O.; Scheffler, B.E.; Boyette, D.; Lydon, J.; Oliva, A. Herbicides, biotechnology for control of weeds. In Encyclopedia of Agrochemicals; Plimmer, J.R., Gammon, D.W., Ragsdale, N.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Van Der Weide, R.Y.; Bleeker, P.O.; Achten, V.T.J.M.; Lotz, L.A.P.; Fogelberg, F.; Melander, B. Innovation in mechanical weed control in crop rows. Weed Res. 2008, 48, 215–224. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Mahajan, G.; Chauhan, B.S. Nonconventional weed management strategies for modern agriculture. Weed Sci. 2015, 63, 723–747. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Tang, J.; Chen, X. Effects of weed management practices on orchard soil biological and fertility properties in southeastern China. Soil Tillage Res. 2007, 93, 179–185. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Palazzolo, E.; Catania, P.; Vallone, M.; García, A.D.; Badalucco, L. Soil Quality Indicators as Affected by Shallow Tillage in a Vineyard Grown in a Semiarid Mediterranean Environment. Land Degrad. Dev. 2017, 28, 1038–1046. [Google Scholar] [CrossRef]
- Catania, P.; Vallone, M.; Pipitone, F.; Argento, G.F.; Spartà, G.; Laudicina, V.A. Soil management effect on soil penetration resistance in the vineyard. J. Agric. Eng. 2013, 44, 344–347. [Google Scholar] [CrossRef]
- Catania, P.; Badalucco, L.; Laudicina, V.A.; Vallone, M. Effects of tilling methods on soil penetration resistance, organic carbon and water stable aggregates in a vineyard of semiarid Mediterranean environment. Environ. Earth Sci. 2018, 77, 348. [Google Scholar] [CrossRef]
- Panettieri, M.; Moreno, B.; de Sosa, L.L.; Benítez, E.; Madejón, E. Soil management and compost amendment are the main drivers of carbon sequestration in rainfed olive trees agroecosystems: An evaluation of chemical and biological markers. Catena 2022, 214, 106258. [Google Scholar] [CrossRef]
- Badagliacca, G.; Laudicina, V.A.; Amato, G.; Badalucco, L.; Frenda, A.S.; Giambalvo, D.; Ingraffia, R.; Plaia, A.; Ruisi, P. Long-term effects of contrasting tillage systems on soil C and N pools and on main microbial groups differ by crop sequence. Soil Tillage Res. 2021, 211, 104995. [Google Scholar] [CrossRef]
- Prasuhn, V. On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil Tillage Res. 2012, 120, 137–146. [Google Scholar] [CrossRef]
- Mondala, S.; Chakraborty, D. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Barbera, V.; Gristina, L.; Badalucco, L. Management Practices to Preserve Soil Organic Matter in Semiarid Mediterranean Environments. In Soil Organic Matter: Ecology, Environmental Impact and Management; Björklund, P.A., Mello, F.V., Eds.; Nova Science Publishers, Inc: New York, NY, USA, 2012; pp. 39–61. [Google Scholar]
- Hatcher, P.E.; Melander, B. Combining physical, cultural and biological methods: Prospects for integrated non-chemical weed management strategies. Weed Res. 2003, 43, 303–322. [Google Scholar] [CrossRef]
- Hossard, L.; Guichard, L.; Pelosi, C.; Makowski, D. Lack of evidence for a decrease in synthetic pesticide use on the main arable crops in France. Sci. Total Environ. 2017, 575, 152–161. [Google Scholar] [CrossRef] [PubMed]
- The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org (accessed on 10 January 2023).
- Haney, R.L.; Senseman, S.A.; Hons, F.M.; Zuberer, D.A. Effect of glyphosate on soil microbial activity and biomass. Weed Sci. 2000, 48, 89–93. [Google Scholar] [CrossRef]
- Lancaster, S.H.; Hollister, E.B.; Senseman, S.A.; Gentry, T.J. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest. Manag. Sci. 2010, 66, 59–64. [Google Scholar] [CrossRef]
- Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: http://data.europa.eu/eli/dir/2009/128/oj (accessed on 22 December 2022).
- Riemens, M.; Sønderskov, M.; Moonen, A.C.; Storkey, J.; Kudsk, P. An Integrated Weed Management framework: A pan-European perspective. Eur J. Agron 2022, 133, 126443. [Google Scholar] [CrossRef]
- Gaudon, J.M.; McTavish, M.J.; Hamberg, J.; Cray, H.A.; Murphy, S.D. Noise attenuation varies by interactions of land cover and season in an urban/peri-urban landscape. Urban. Ecosyst. 2022, 25, 811–818. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2016/1313 of 1 August 2016 Amending Implementation Regulation (EU) No 540/2011 as Regards the Conditions of Approval of the Active Substance GlyphosateMinisterial. Available online: http://data.europa.eu/eli/reg_impl/2016/1313/oj (accessed on 22 December 2022).
- Ministerial Decree 9 August 2016 (in Italian)—Assegnazione Risorse Gli Interventi Smart & Start Italia (Startup Innovative e Nuove Imprese a Tasso Zero). Available online: https://www.mise.gov.it/it/normativa/decreti-ministeriali/decreto-ministeriale-9-agosto-2016-assegnazione-risorse-gli-interventi-smart-start-italia-start-up-innovative-e-nuove-imprese-a-tasso-zero (accessed on 22 December 2022).
- Måge, F. Black plastic mulching, compared to other orchard soil management methods. Sci. Hortic. 1982, 16, 131–136. [Google Scholar] [CrossRef]
- Bond, W. Non-chemical Weed Management. In Weed Management Handbook; Naylor, R.E.L., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2002; pp. 280–301. [Google Scholar]
- Guo, Z.L.; Gu, S.-L. Effect of film-mulching method on yield and economic efficiency of millet. Agric. Res. Arid. Areas 2000, 18, 33–39. [Google Scholar]
- Liang, Y.C.; Hu, F.; Yang, M.C. Mechanisms of high yield and irrigation water use efficiency of rice. Sci. Agric. Sin. 1999, 32, 26–32. [Google Scholar]
- Liu, X.R. Research on comprehensive techniques for mulched broad beans in dryland farming areas. Agric. Res. Arid Areas 2000, 18, 40–46. [Google Scholar]
- Zangani, D.; Fuggini, C.; Loriga, G. Electronic textiles for geotechnical and civil engineering. In Electronic Textiles; Dias, T., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 275–300. [Google Scholar]
- Chen, Q.; Yang, F.; Cheng, X. Effects of land use change type on soil microbial attributes and their controls: Data synthesis. Ecol. Indic. 2022, 138, 108852. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106.; FAO: Rome, Italy, 2015. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Sicilian Agrometeorological Information Service. Available online: http://www.sias.regione.sicilia.it/ (accessed on 18 January 2023).
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis. Part. 3, Chemical Methods. SSSA Book Series No 5.; Sparks, D.L., Ed.; Soil Science Society of America (SSSA) and American Society of Agronomy (ASA): Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part. 3, Chemical Methods. SSSA Book Series No 5.; Sparks, D.L., Ed.; Soil Science Society of America (SSSA) and American Society of Agronomy (ASA): Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Brookes, P.C.; Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004, 36, 5–7. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Palazzolo, E.; Badalucco, L. Natural organic compounds in soil solution: Potential role as soil quality indicators. Curr. Org. Chem. 2013, 17, 2991–2997. [Google Scholar] [CrossRef]
- Schutter, M.E.; Dick, R.P. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 2000, 64, 1659–1668. [Google Scholar] [CrossRef]
- Frostegård, A.; Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil Soils 1996, 22, 59–65. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Dennis, P.G.; Palazzolo, E.; Badalucco, L. Key biochemical attributes to assess soil ecosystem sustainability. In Environmental Protection Strategies for Sustainable Development; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 193–228. [Google Scholar] [CrossRef] [Green Version]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soil, 14th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Khan, A.R. Influence of tillage on soil aeration. J. Agron. Crop. Sci. 1996, 177, 253–259. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Palazzolo, E.; Piotrowska-Długosz, A.; Badalucco, L. Soil profile dismantlement by land levelling and deep tillage damages soil functioning but not quality. Appl. Soil Ecol. 2016, 107, 298–306. [Google Scholar] [CrossRef]
- Six, J.A.E.T.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Anderson, T.H. Microbial eco-physiological indicators to asses soil quality. Agric. Ecosyst. Environ. 2003, 98, 285–293. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Morell, F.J.; Madejón, E.; Lampurlanés, J.; Arrúe, J.L.; Cantero-Martínez, C. Soil biochemical properties in a semiarid Mediterranean agroecosystem as affected by long-term tillage and N fertilization. Soil Tillage Res. 2013, 129, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Heinze, S.; Rauber, R.; Joergensen, R.G. Influence of moldboard plough and rotary harrow tillage on microbial biomass and nutrient stocks in two long-term experiments on loess derived Luvisols. Appl. Soil Ecol. 2010, 46, 405–412. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Badalucco, L.; Palazzolo, E. Effects of compost imput and tillage intensity on soil microbial biomass and activity under Mediterranean conditions. Biol. Fertil. Soils 2011, 47, 63–70. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- Dilly, O.; Munch, J.C. Ratios between estimates of microbial biomass content and microbial activity in soils. Biol. Fertil. Soils 1998, 27, 374–379. [Google Scholar] [CrossRef]
- Badagliacca, G.; Lo Presti, E.; Ferrarini, A.; Fornasier, F.; Laudicina, V.A.; Monti, M.; Preiti, G. Early Effects of No-Till Use on Durum Wheat (Triticum durum Desf.): Productivity and Soil Functioning Vary between Two Contrasting Mediterranean Soils. Agronomy 2022, 12, 3136. [Google Scholar] [CrossRef]
- Fanin, N.; Kardol, P.; Farrell, M.; Nilsson, M.C.; Gundale, M.J.; Wardle, D.A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 2019, 128, 111–114. [Google Scholar] [CrossRef]
- Horwath, W.; Paul, E.A. Carbon cycling: The dynamics and formation of organic matter. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Eldor, A.P., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 339–382. [Google Scholar]
- Ringleberg, D.B.; Richmond, M.; Foley, K.; Reynolds, C. Utility of lipid biomarkers in support of bioremediation efforts at army sites. J. Microbiol. Methods 2008, 74, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Leslie, A.R. Handbook of Integrated Pest Management for Turf and Ornamentals; Lewis Publishers: Boca Raton, FL, USA, 1994. [Google Scholar]
Soil Management | CEC 1 cmol(+) kg−1 | TOC 2 g kg−1 | EOC 3 g kg−1 | MBC 4 mg kg−1 | Microbial Respiration g kg−1 d−1 | Microbial Quotient % | Metabolic Quotient mg CO2-C MBC g−1 h−1 |
---|---|---|---|---|---|---|---|
0–20 cm soil layer | |||||||
T0M15 | 27.1 Aa | 22.2 Aa | 213 Aa | 631 Aa | 14.4 BCa | 2.9 Aa | 0.9 Ca |
M7T8 | 20.1 Ba | 15.3 Ba | 111 Ca | 314 Ca | 15.9 ABa | 2.1 Ba | 2.1 Ba |
T7M8 | 20.6 Ba | 17.5 Ba | 147 Ba | 499 Ba | 13.4 Ca | 2.8 Aa | 1.1 Ca |
M0T15 | 16.6 Ca | 12.8 Ca | 101 Ca | 215 Da | 16.1 Aa | 1.7 Ca | 3.1 Aa |
20–40 cm soil layer | |||||||
T0M15 | 23.6 Ab | 16.8 Ab | 144 Ab | 411 Ab | 12.3 Ab | 2.4 Ab | 1.0 Ca |
M7T8 | 17.7 Bb | 10.1 Cb | 72 Bb | 230 Bb | 9.9 Cb | 2.3 Aa | 2.1 Ba |
T7M8 | 17.2 Bb | 14.4 Bb | 74 Bb | 363 Ab | 11.4 ABa | 2.5 Aa | 1.1 Ca |
M0T15 | 14.6 Ca | 10.2 Ca | 59 Bb | 171 Ca | 9.4 BCb | 1.7 Ba | 3.0 Aa |
Soil Management | ELFAs | Bacteria | Bacteria G+ | Bacteria G− | Fungi |
---|---|---|---|---|---|
0–20 cm soil layer | |||||
M15 | 391 Aa | 293 Aa | 163 Aa | 95 Aa | 75 Aa |
M7T8 | 220 Ca | 181 Ca | 106 Ba | 57 Ca | 22 Ba |
T7M8 | 262 Ba | 221 Ba | 109 Ba | 76 Ba | 27 Ba |
T15 | 132 Da | 112 Da | 63 Ca | 31 Da | 12 Ca |
20–40 cm soil layer | |||||
M15 | 191 Ab | 150 Ab | 87 Ab | 45 Ab | 30 Ab |
M7T8 | 106 Bb | 87 Bb | 55 Bb | 22 BCb | 13 BCb |
T7M8 | 115 Bb | 93 Bb | 52 Bb | 28 Bb | 16 Bb |
T15 | 78 Cb | 65 Cb | 37 Cb | 16 Cb | 9 Ca |
Soil Management | 2018 | 2019 | 2020 | Average |
---|---|---|---|---|
T0M15 | 13.4 A | 13.7 A | 14.9 A | 14.0 A |
M7T8 | 12.8 AB | 11.1 B | 11.9 C | 11.9 B |
T7M8 | 12.6 B | 13.9 A | 13.9 B | 13.5 A |
M0T15 | 11.0 C | 10.9 B | 11.8 C | 11.2 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliaga, S.; Lucia, C.; Pampinella, D.; Muscarella, S.M.; Badalucco, L.; Palazzolo, E.; Laudicina, V.A. Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards. Agriculture 2023, 13, 764. https://doi.org/10.3390/agriculture13040764
Paliaga S, Lucia C, Pampinella D, Muscarella SM, Badalucco L, Palazzolo E, Laudicina VA. Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards. Agriculture. 2023; 13(4):764. https://doi.org/10.3390/agriculture13040764
Chicago/Turabian StylePaliaga, Sara, Caterina Lucia, Daniela Pampinella, Sofia Maria Muscarella, Luigi Badalucco, Eristanna Palazzolo, and Vito Armando Laudicina. 2023. "Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards" Agriculture 13, no. 4: 764. https://doi.org/10.3390/agriculture13040764
APA StylePaliaga, S., Lucia, C., Pampinella, D., Muscarella, S. M., Badalucco, L., Palazzolo, E., & Laudicina, V. A. (2023). Shifting Long-Term Tillage to Geotextile Mulching for Weed Control Improves Soil Quality and Yield of Orange Orchards. Agriculture, 13(4), 764. https://doi.org/10.3390/agriculture13040764