The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Base
3.1. Definition of the Agricultural Technology Progress
3.2. Methods of Estimating the Agricultural Technology Level
3.3. Methods of Estimating the Agricultural Carbon Emission and Carbon Sink
4. Empirical Result and Implication
4.1. Data Description
4.2. Estimation and Determinants of the Agricultural Technology Progress
4.3. Estimation of the Agricultural Carbon Emission and Carbon Sink
4.4. The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink
5. Discussion
5.1. Decomposition of Agricultural Technology Level
5.2. Measurement Method and Empirical Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, J. Review on the contribution of agricultural technology progress. Anhui Agric. Sci. Bull. 2005, 11, 17–18, 21. [Google Scholar] [CrossRef]
- Xia, M.; Zeng, D.; Huang, Q.; Chen, X. Coupling Coordination and Spatiotemporal Dynamic Evolution between Agricultural Carbon Emissions and Agricultural Modernization in China 2010–2020. Agriculture 2022, 12, 1809. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, S.; Wang, S.; Yuan, L. 70 Years of Technological Progress in China’s Agricultural Sector. Agric. Econ. Probl. 2020, 2020, 11–29. [Google Scholar] [CrossRef]
- Wu, F. The concept, measurement and problems of agricultural technology progress. Agric. Technol. Econ. 1996, 1996, 31–35. [Google Scholar] [CrossRef]
- Smith, A. An Inquiry into the Nature and Causes of the Wealth of Nations; Modern Library: New York, NY, USA, 1937. [Google Scholar]
- Dimand, R.W.; Spencer, B.J. Trevor Swan and the neoclassical growth model. Hist. Political Econ. 2009, 41, 107–126. [Google Scholar] [CrossRef]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Romer, P.M. The origins of endogenous growth. J. Econ. Perspect. 1994, 8, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Induced Invention Theory and the direction of Chinese Agriculture Technique Innovation. J. Zhengzhou Inst. Aeronaut. Ind. Manag. 2006, 24, 25–28. [Google Scholar] [CrossRef]
- Wei, J.; Qi, C. Coupling Coordination Degree Analysis of the Agricultural Technology Progress and Factor Endowment in China. China Popul. Resour. Environ. 2015, 25, 90–96. [Google Scholar] [CrossRef]
- Zhou, C.L.H. Relationship between agricultural technology progress and carbon emission intensity: An empirical analysis under different influence paths. J. China Agric. Univ. 2020, 25, 162–171. [Google Scholar] [CrossRef]
- Dong, Y.; Mu, Y. Agricultural Technological Progress, Rural Labor Transfer and the Effect on Regional Wage and Income Gap—Based on SFA-CGE Two-Stage Model. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2015, 17, 91–98. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhao, J.; Bian, X. Carbon Footprint Analysis of Farmland Ecosystem in China. J. Soil Water Conserv. 2011, 25, 6. [Google Scholar]
- Chen, S.; Duan, Y. Research on status, focus and developing trend of agricultural carbon effect in China. Adv. Earth Sci. 2022, 38, 86–98. [Google Scholar]
- Holka, M.; Kowalska, J.; Jakubowska, M. Reducing Carbon Footprint of Agriculture–Can Organic Farming Help to Mitigate Climate Change? Agriculture 2022, 12, 1383. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Z.; Dai, Z.; Duan, J.; Wang, D.; Feng, Y. Temporal and Spatial Differentiation and Driving Factors of China’s Agricultural Eco-Efficiency Considering Agricultural Carbon Sinks. Agriculture 2022, 12, 1726. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, M. Re-evalutation of China’s Agricultural Carbon Emissions: Basic Status, Dynamic Evolution and Spatial Spillover Effect. Chin. Rural. Econ. 2022, 3, 104–127. [Google Scholar]
- Johnson, J.; Franzluebbers, A.; Weyers, S.; Reicosky, D. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Mosier, A.; Halvorson, A.; Reule, C.; Liu, X. Net Global Warming Potential and Greenhouse Gas Intensity in Irrigated Cropping Systems in Northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1589. [Google Scholar] [CrossRef] [Green Version]
- West, T.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Xiong, C.; Yang, D.; Huo, J.; Wang, G. Agricultural Net Carbon Effect and Agricultural Carbon Sink Compensation Mechanism in Hotan Prefecture, China. Pol. J. Environ. Stud. 2017, 26, 365–373. [Google Scholar] [CrossRef]
- Ma, T. Assessment on the Current Situation of Carbon Sink of Agricultural Carbon Sources in Shanghai and Analysis on the Potential of Increasing Carbon Sink. Agro-Environ. Dev. 2011, 2011, 38–41. [Google Scholar]
- Sun, Y. Preliminary Analysis of the Relationship between Agricultural Carbon Emission and Agricultural Economy in Anhui. Environ. Sci. Surv. 2022, 41, 36–41. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Volume 996, pp. 113–119. [Google Scholar]
- She, W.; Wu, Y.; Huang, H.; Chen, Z.; Cui, G.; Zheng, H.; Guan, C.; Chen, F. Integrative analysis of carbon structure and carbon sink function for major crop production in China’s typical agriculture regions. J. Clean. Prod. 2017, 162, 702–708. [Google Scholar] [CrossRef]
- Fan, J.; McConkey, B.G.; Liang, B.C.; Angers, D.A.; Janzen, H.H.; Kröbel, R.; Cerkowniak, D.D.; Smith, W.N. Increasing crop yields and root input make Canadian farmland a large carbon sink. Geoderma 2019, 336, 49–58. [Google Scholar] [CrossRef]
- Smith, P.; Goulding, K.W.; Smith, K.A.; Powlson, D.S.; Smith, J.U.; Falloon, P.; Coleman, K. Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential. Nutr. Cycl. Agroecosyst. 2001, 60, 237–252. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Cai, A.; Liu, S.; Ren, T.; Zhang, J. Global policies in agricultural greenhouse gas reduction and carbon sequestration and their enlightenment to China in the view of carbon neutrality. Clim. Chang. Res. 2022, 18, 110–118. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J. Regional Differentiation Research on Net Carbon Effect of Agricultural Production in China. J. Nat. Resour. 2013, 28, 1298–1309. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Z. Study on the temporal and spatial differentiation and equity of carbon sink and carbon emission of China’s provincial planting industry. World Agric. 2022, 2022, 100–109. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, L. Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in northern China. Chin. J. Eco-Agric. 2022, 30, 641–650. [Google Scholar] [CrossRef]
- Naorem, A.; Jayaraman, S.; Dalal, R.; Patra, A.; Rao, C.; Lal, R. Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils–A Review. Agriculture 2022, 12, 1256. [Google Scholar] [CrossRef]
- Balogh, J. The impacts of agricultural development and trade on CO2 emissions? Evidence from the Non-European Union countries. Environ. Sci. Policy 2022, 137, 99–108. [Google Scholar] [CrossRef]
- Ismael, M.; Srouji, F.; Boutabba, M. Agricultural technologies and carbon emissions: Evidence from Jordanian economy. Environ. Sci. Pollut. Res. 2018, 25, 10867–10877. [Google Scholar] [CrossRef]
- Yang, J. The Effects of Technological Advances on Agricultural Carbon Emission. Soft Sci. 2013, 27, 116–120. [Google Scholar]
- Hu, Z. Technical Progress, Technical Efficiency and Agricultural Carbon Emissions in China. East China Econ. Manag. 2018, 32, 100–105. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, M. Does Technological Progress Promote Carbon Emission Reduction of Agricultural Energy? Test Based on Rebound Effect and Spatial Spillover Effect. Reform 2022, 12, 45–58. [Google Scholar]
- Yang, Y.; Tian, Y.; Peng, X.; Yin, M.; Wang, W.; Yang, H. Research on Environmental Governance, Local Government Competition, and Agricultural Carbon Emissions under the Goal of Carbon Peak. Agriculture 2022, 12, 1703. [Google Scholar] [CrossRef]
- He, Y.; Cheng, X.; Wang, F. Study on the Regional Spillover Effect of Agricultural Carbon Emission Based on the Perspective of Agricultural Technology Diffusion. J. Agrotech. Econ. 2022, 4, 132–144. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, S. Factors of Agricultural Technical Imporvement and Its Quantitative Analysis. Issues Agric. Econ. 2005, s1, 70–75. [Google Scholar]
- Wen, S.; Hu, Y.; Liu, H. Measurement and Spatial–Temporal Characteristics of Agricultural Carbon Emission in China: An Internal Structural Perspective. Agriculture 2022, 12, 1749. [Google Scholar] [CrossRef]
- He, T.; Zhang, L. The Situation of Agricultural Carbon Release in Anhui Province and an Analysis of Approaches for Low-carbon Agricultural Development. J. Anhui Agric. Univ. (Soc. Sci. Ed.) 2012, 21, 30–34. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W. A research of agricultural eco-efficiency measure in China and space-time differences. China Popul. Resour. Environ. 2016, 26, 11–19. [Google Scholar] [CrossRef] [PubMed]
Coefficient | Value | Scale | Source |
---|---|---|---|
AM1 | 0.18 | kg·kw | West and Marland (2002) [20]; He and Zhang (2012) [42] |
AM2 | 16.47 | kg·hectare | West and Marland (2002) [20]; He and Zhang (2012) [42] |
PF | 5.18 | kg·kg | Wang and Zhang (2016) [43] |
PE | 4.9341 | kg·kg | West and Marland (2002) [20] |
IR | 266.48 | kg·hectare | Duan et al. (2011) [13] |
FE | 0.8956 | kg·kg | West and Marland (2002) [20] |
ACS | 5.0925 | ton·hectare | Duan et al. (2011) [13] |
Variable | Full Name | Scale |
---|---|---|
Total Agricultural Machinery Power | 10,000 kW (kilowatt) | |
Total Sown Area | 1000 hectares; m | |
Agricultural Plastic Film | ton; 1000 kg | |
Pesticide | 10,000 tons; kg | |
Irrigated Area of Cultivated Land | 1000 hectares; m | |
Consumption of Chemical Fertilizers | 10,000 tons; kg | |
Total Output of the Primary Industry | 100 million yuan; current price | |
Total Population (year-end) | 10,000 persons | |
Consumer Price Index (1995 = 100) | – | |
Sown Area of Grain Crops | 1000 hectares | |
Total Sown Area | 1000 hectares | |
Average Wage of Employed People in Agricultural Industry | yuan | |
Average Wage of Employed People | yuan | |
Number of Agricultural Meteorological Station | unit | |
Number of Eco-agricultural Meteorological Station | unit | |
Evaluated Agricultural Technology Progress | logarithm, , measured in Equation (8) | |
Approximation of Agricultural Production Technology | ratio; | |
Approximation of Agricultural Management Technology | ratio; |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
620 | 2730.985 | 2675.105 | 93.97 | 13,353.02 | |
620 | 5141.767 | 3720.329 | 88.55 | 14,902.72 | |
620 | 67,341.859 | 63,435.875 | 128.33 | 343,524 | |
620 | 5.099 | 4.255 | 0.06 | 17.35 | |
620 | 1946.462 | 1523.878 | 109.24 | 6177.59 | |
620 | 169.627 | 138.681 | 2.5 | 716.09 | |
620 | 1297.067 | 1178.461 | 36.4 | 5477.1 | |
620 | 4298.669 | 2762.571 | 258 | 12,489 | |
620 | 137.638 | 22.485 | 99.637 | 216.553 | |
620 | 0.453 | 0.917 | −1.969 | 2.219 | |
620 | 0.337 | 0.130 | 0.029 | 0.646 | |
434 | 0.589 | 0.138 | 0.147 | 0.934 | |
465 | 22.667 | 13.420 | 1 | 121 | |
419 | 14.456 | 15.503 | 1 | 100 |
Regression: | reg. (1) | reg. (2) | reg. (3) | reg. (4) | reg. (5) |
---|---|---|---|---|---|
Dependent: | ln(A) | ln(A) | ln(A) | ln(A) | ln(A) |
0.550 ** | 2.419 *** | 1.444 *** | |||
(0.232) | (0.538) | (0.415) | |||
0.650 *** | 1.604 *** | 0.679 *** | |||
(0.121) | (0.276) | (0.215) | |||
−3.082 *** | −1.310 ** | ||||
(0.804) | (0.613) | ||||
0.003 ** | 0.003 ** | 0.002 ** | |||
(0.001) | (0.001) | (0.001) | |||
0.008 *** | 0.008 *** | 0.007 *** | |||
(0.001) | (0.001) | (0.001) | |||
0.00013 | |||||
(0.00051) | |||||
constant | 0.026 | −0.546 *** | 0.460 *** | 0.462 *** | −0.123 |
(0.11) | (0.184) | (0.027) | (0.028) | (0.146) | |
Observations | 434 | 434 | 419 | 419 | 395 |
R2 | 0.075 | 0.108 | 0.469 | 0.469 | 0.508 |
Regression: | reg. (6) | reg. (7) | reg. (8) | reg. (9) | reg. (10) |
---|---|---|---|---|---|
Dependent: | ln() | ln() | ln() | ln() | ln() |
0.452 *** | 0.482 *** | ||||
(0.022) | (0.024) | ||||
−0.036 *** | |||||
(0.012) | |||||
−2.028 *** | −0.795 | 0.060 | |||
(0.487) | (0.585) | (0.566) | |||
4.249 *** | 1.115 | 0.085 | |||
(0.660) | (0.763) | (0.716) | |||
−0.608 * | |||||
(0.342) | |||||
0.670 ** | |||||
(0.285) | |||||
0.024 *** | |||||
(0.004) | |||||
−0.00017 *** | |||||
(0.00035) | |||||
0.0077 *** | 0.0046 *** | ||||
(0.0009) | (0.0009) | ||||
−0.00010 *** | −0.000071 *** | ||||
(0.000014) | (0.000013) | ||||
Constant | 21.087 *** | 21.112 *** | 21.385 *** | 21.494 *** | 21.051 *** |
(0.011) | (0.014) | (0.084) | (0.110) | (0.167) | |
Observations | 620 | 620 | 620 | 419 | 395 |
R2 | 0.422 | 0.431 | 0.114 | 0.178 | 0.265 |
Regression: | reg. (11) | reg. (12) | reg. (13) | reg. (14) | reg. (15) |
---|---|---|---|---|---|
Dependent: | ln() | ln() | ln() | ln() | ln() |
−0.025 | −0.022 | ||||
(0.020) | (0.022) | ||||
−0.004 | |||||
(0.011) | |||||
−0.689 *** | −0.321 * | −0.033 | |||
(0.167) | (0.169) | (0.522) | |||
−0.381 | |||||
(0.660) | |||||
0.148 * | 0.075 | −0.211 | |||
(0.087) | (0.078) | (0.315) | |||
0.248 | |||||
(0.263) | |||||
0.0092 ** | 0.0093 ** | ||||
(0.0037) | (0.0037) | ||||
−0.000066 ** | −0.000067 ** | ||||
(0.000032) | (0.000033) | ||||
0.0015 * | 0.0015 * | ||||
(0.0008) | (0.0008) | ||||
−0.000019 * | −0.000019 * | ||||
(0.000012) | (0.000012) | ||||
Constant | 23.545 *** | 23.548 *** | 23.672 *** | 23.504 *** | 23.531 *** |
(0.01) | (0.013) | (0.079) | (0.097) | (0.154) | |
Observations | 620 | 620 | 434 | 395 | 395 |
R2 | 0.003 | 0.003 | 0.051 | 0.060 | 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wang, Z. The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China. Agriculture 2023, 13, 793. https://doi.org/10.3390/agriculture13040793
Li S, Wang Z. The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China. Agriculture. 2023; 13(4):793. https://doi.org/10.3390/agriculture13040793
Chicago/Turabian StyleLi, Shulong, and Zhizhang Wang. 2023. "The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China" Agriculture 13, no. 4: 793. https://doi.org/10.3390/agriculture13040793
APA StyleLi, S., & Wang, Z. (2023). The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China. Agriculture, 13(4), 793. https://doi.org/10.3390/agriculture13040793