Research on the Process of Convective Drying of Apples and Apricots Using an Original Drying Installation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Drying Equiment
2.3. Methods
2.3.1. Sample Preparation
2.3.2. Drying Process
2.3.3. Quality Analysis
2.3.4. Data Analysis
3. Results and Discussions
3.1. Physicochemical Parameters of Dried Apples
3.1.1. Color Changes of Apples Caused by the Oxidation Process
3.1.2. Water Activity and Moisture Content of Apples
3.1.3. Color Parameters of Apples
3.1.4. Ascorbic Acid Content of Apples
3.1.5. Energy Consumption for Drying Apples
3.2. Physicochemical Parameters of Dried Apricots
3.2.1. Color Changes of Apricots Caused by the Oxidation Process
3.2.2. Water Activity and Moisture Content of Apricots
3.2.3. Color Parameters of Apricots
3.2.4. Ascorbic Acid Content of Apricots
3.2.5. Energy Consumption for Drying Apricots
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2021. [Google Scholar]
- Mujumdar, A.S.; Law, C.L. Drying Technology: Trends and Applications in Postharvest Processing. Food Bioprocess Technol. 2010, 3, 843–852. [Google Scholar] [CrossRef]
- Górnicki, K.; Choińska, A.; Kaleta, A. Effect of Variety on Rehydration Characteristics of Dried Apples. Processes 2020, 8, 1454. [Google Scholar] [CrossRef]
- Link, J.V.; Tribuzi, G.; Laurindo, J.B. Improving quality of dried fruits: A comparison between conductive multi-flash and traditional drying methods. LWT 2017, 84, 717–725. [Google Scholar] [CrossRef]
- Krška, B. Genetic Apricot Resources and their Utilisation in Breeding. In Breeding and Health Benefits of Fruit and Nut Crops; IntechOpen: London, UK, 2018; pp. 63–82. [Google Scholar]
- Li, J.; Hu, C.; Ding, Y.; Yang, Q.N.; Yi, X.K. Research and Development of Apricot Drying Technology in Xinjiang. Mod. Agric. Equip. 2021, 42, 6–10. [Google Scholar]
- Hu, C.; Li, J.; Yang, Q.; Yi, X.; Cheng, H.; Xu, C.; Du, Z. Experimental Characterization and Mathematical Modelling of Natural Drying of Apricots at Low Temperatures. Agriculture 2022, 12, 1960. [Google Scholar] [CrossRef]
- Yang, H.; Sombatngamwilai, T.; Yu, W.-Y.; Kuo, M.-I. Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food Coproducts. Processes 2020, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Akman, H.E.; Boyar, I.; Gozlekci, S.; Saracoglu, O.; Ertekin, C. Effects of Convective Drying of Quince Fruit (Cydonia oblonga) on Color, Antioxidant Activity and Phenolic Compounds under Various Fruit Juice Dipping Pre-Treatments. Agriculture 2022, 12, 1224. [Google Scholar] [CrossRef]
- Farias, R.P.; Gomez, R.S.; Lima, E.S.; Silva, W.P.; Santos, I.B.; Figueredo, M.J.; Almeida, G.S.; Rolim, F.D.; Oliveira, V.A.B.; Neto, G.L.O.; et al. Geometric and Thermo-Gravimetric Evaluation of Bananas during Convective Drying: An Experimental Investigation. Agriculture 2022, 12, 1181. [Google Scholar] [CrossRef]
- Radojčin, M.; Pavkov, I.; Bursać Kovačević, D.; Putnik, P.; Wiktor, A.; Stamenković, Z.; Kešelj, K.; Gere, A. Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Processes 2021, 9, 132. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Kowalska, J.; Ciurzyńska, A.; Samborska, K.; Bialik, M.; Lenart, A. Rehydration properties of hybrid method dried fruit enriched by natural components. Int. Agrophys. 2018, 32, 175–182. [Google Scholar] [CrossRef]
- Chibuza, N.; Ulu, O.; Mbachiantim, J.; Chigozie, B.; Carew, I. Technological advancements in the drying of fruits and vegetables: A review. Afr. J. Food Sci. 2021, 15, 367–379. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.-H.; Wang, J.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2017, 59, 1408–1432. [Google Scholar] [CrossRef]
- Ellong, E.N.; Billard, C.; Adenet, S.; Rochefort, K. Polyphenols, Carotenoids, Vitamin C Content in Tropical Fruits and Vegetables and Impact of Processing Methods. Food Nutr. Sci. 2015, 06, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Kumari, D. Recent Development in Osmotic Dehydration of Fruit and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Azam, S.M.R.; Zhang, M.; Law, C.L.; Mujumdar, A.S. Effects of drying methods on quality attributes of peach (Prunus persica) leather. Dry. Technol. 2019, 37, 341–351. [Google Scholar] [CrossRef]
- da Silva, E.G.; de Lima, E.S.; de Lima, W.P.B.; de Lima, A.B.; Nascimento, J.S.; Simões, F. Convective and Microwave Drying of Prolate Spheroidal Solids: Modeling and Simulation. Defect Diffus. Forum 2019, 391, 233–238. [Google Scholar] [CrossRef]
- Wiktor, A.; Śledź, M.; Nowacka, M.; Chudoba, T.; Witrowa-Rajchert, D. Pulsed Electric Field Pretreatment for Osmotic Dehydration of Apple Tissue: Experimental and Mathematical Modeling Studies. Dry. Technol. 2014, 32, 408–417. [Google Scholar] [CrossRef]
- Kaleta, A.; Górnicki, K.; Winiczenko, R.; Chojnacka, A. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Convers. Manag. 2013, 67, 179–185. [Google Scholar] [CrossRef]
- Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F. Quality properties of fruits as affected by drying operation. Crit. Rev. Food Sci. Nutr. 2015, 57, 95–108. [Google Scholar] [CrossRef]
- Landim, A.P.M.; Barbosa, M.I.M.J.; Júnior, J.L.B. Influence of osmotic dehydration on bioactive compounds, antioxidant capacity, color and texture of fruits and vegetables: A review. Cienc. Rural. 2016, 46, 1714–1722. [Google Scholar] [CrossRef] [Green Version]
- Inyang, U.; Oboh, I.; Etuk, B. Drying and the different techniques. Int. J. Food Nutr. Saf. 2017, 8, 45–72. [Google Scholar]
- Mercer, D.G. An Introduction to the Dehydration and Drying of Fruits and Vegetables; University of Guelph: Guelph, ON, Canada, 2014; p. 166. [Google Scholar]
- Tan, S.; Wang, Z.; Xiang, Y.; Deng, T.; Zhao, X.; Shi, S.; Zheng, Q.; Gao, X.; Li, W. The effects of drying methods on chemical profiles and antioxidant activities of two cultivars of Psidium guajava fruits. LWT 2020, 118, 108723. [Google Scholar] [CrossRef]
- Kim, A.N.; Lee, K.Y.; Bo, G.K.; Si, W.C.; Choi, S.G. Thermal processing under oxygen–free condition of blueberry puree: Effect on anthocyanin, ascorbic acid, antioxidant activity, and enzyme activities. Food Chem. 2020, 342, 128345. [Google Scholar] [CrossRef]
- Guo, C.; Bi, J.; Li, X.; Lyu, J.; Xu, Y.; Hu, J. Investigation on the phenolic composition, related oxidation and antioxidant activity of thinned peach dried by different methods. LWT 2021, 147, 111573. [Google Scholar] [CrossRef]
- Adepoju, L.A.; Osunde, Z.D. Effect of pre-treatments and drying methods on some qualities of dried mango (Mangifera indica) fruit. Agric. Eng. Int. CIGR J. 2017, 19, 187–194. [Google Scholar]
- Khattak, M.; Hanif, M.; Khan, M.; Ramzan, M. Comparison of drying process and preservatives on drying kinetics, texture and antioxidants retention in mulberry fruits. J. Anim. Plant Sci. 2019, 29, 803–806. [Google Scholar]
- Fan, X.G.; Jiao, W.X.; Wang, X.M.; Cao, J.; Jiang, W. Polyphenol composition and antioxidant capacity in pulp and peel of apricot fruits of various varieties and maturity stages at harvest. Int. J. Food Sci. Technol. 2018, 53, 327–336. [Google Scholar] [CrossRef]
- Seiiedlou, S.; Ghasemzadeh, H.R.; Hamdami, N.; Talati, F.; Moghaddam, M. Convective drying of apple: Mathematical modeling and determination of some quality parameters. Int. J. Agric. Biol. 2010, 12, 171–178. [Google Scholar]
- Stasiak, M.; Musielak, G.; Mierzwa, D. Optimization Method for the Evaluation of Convective Heat and Mass Transfer Effective Coefficients and Energy Sources in Drying Processes. Energies 2020, 13, 6577. [Google Scholar] [CrossRef]
- Royen, M.J.; Noori, A.W.; Haydary, J. Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes 2020, 8, 1562. [Google Scholar] [CrossRef]
- Țenu, I.; Roșca, R.; Cârlescu, P. Researches regarding the designing, achievement and testing of a laboratory test rig for drying agricultural and food products. Lucr. Stiintifice USAMV—Ser. Hortic. 2012, 55, 491–496. Available online: https://www.uaiasi.ro/revista_horti/files/Nr2_2012/Vol-55-2_2012%20(84).pdf (accessed on 10 January 2023).
- Veleșcu, I.D. Research Regarding the Optimization of Work Process for Fruits and Vegetables Drying. Ph.D. Thesis, Iasi University of Life Sciences “Ion Ionescu de la Brad” University for Life Sciences, Iași, Romania, 2014. [Google Scholar]
- Paunovic, D.M.; Zlatkovic, B.P.; Mirkovic, D.D. Kinetics of drying and quality of the apple cultivars Granny Smith, Idared and Jonagold. J. Agric. Sci. Belgrade 2010, 55, 261–272. [Google Scholar] [CrossRef]
- Babetto, A.C.; Freire, F.B.; Barrozo, M.A.S.; Freire, J.T. Drying of garlic slices: Kinetics and nonlinearity measures for selecting the best equilibrium moisture content equation. J. Food Eng. 2011, 107, 347–352. [Google Scholar] [CrossRef]
- Ando, Y.; Hagiwara, S.; Nabetani, H.; Sotome, I.; Okunishi, T.; Okadome, H.; Orikasa, T.; Tagawa, A. Effects of prefreezing on the drying characteristics, structural formation and mechanical properties of microwave-vacuum dried apple. J. Food Eng. 2019, 244, 170–177. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Yeganeh, R.; Momeny, M. Influence of ultrasound pre-treatment and temperature on the quality and thermodynamic properties in the drying process of nectarine slices in a hot air dryer. J. Food Process. Preserv. 2020, 44, e14818. [Google Scholar] [CrossRef]
- Antal, T.; Kerekes, B.; Sikolya, L.; Tarek, M. Quality and Drying Characteristics of Apple Cubes Subjected to Combined Drying (FD Pre-Drying and HAD Finish-Drying). J. Food Process. Preserv. 2015, 39, 994–1005. [Google Scholar] [CrossRef]
- Ghinea, C.; Prisacaru, A.E.; Leahu, A. Physico-Chemical and Sensory Quality of Oven-Dried and Dehydrator-Dried Apples of the Starkrimson, Golden Delicious and Florina Cultivars. Appl. Sci. 2022, 12, 2350. [Google Scholar] [CrossRef]
- Michalska, A.; Lech, K. The Effect of Carrier Quantity and Drying Method on the Physical Properties of Apple Juice Powders. Beverages 2018, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Ropelewska, E. Application of Imaging and Artificial Intelligence for Quality Monitoring of Stored Black Currant (Ribes nigrum L.). Foods 2022, 11, 3589. [Google Scholar] [CrossRef] [PubMed]
- Baigts-Allende, D.; Ramírez-Rodrígues, M.; Rosas-Romero, R. Monitoring of the Dehydration Process of Apple Snacks with Visual Feature Extraction and Image Processing Techniques. Appl. Sci. 2022, 12, 11269. [Google Scholar] [CrossRef]
- Cichowska-Bogusz, J.; Figiel, A.; Carbonell-Barrachina, A.A.; Pasławska, M.; Witrowa-Rajchert, D. Physicochemical Properties of Dried Apple Slices: Impact of Osmo-Dehydration, Sonication, and Drying Methods. Molecules 2020, 25, 1078. [Google Scholar] [CrossRef] [Green Version]
- Alibas, I.; Yilmaz, A. Microwave and convective drying kinetics and thermal properties of orange slices and effect of drying on some phytochemical parameters. J. Therm. Anal. Calorim. 2021, 147, 8301–8321. [Google Scholar] [CrossRef] [PubMed]
- ISO 6557-2:1984, Fruits, vegetables and derived products—Determination of ascorbic acid content—Part 2: Routine methods. International Standard ISO 6557/2 was prepared by Technical Committee ISO/TC 34. This part of ISO 6557 specifies two routine methods for the determination of the ascorbic acid content1) of fruits, vegetables and derived products: Method A: 2,6-dichlorophenolindophenol titrimetric method; Method B: 2,6-dichlorophenolindophenol spectrometric method after extraction with xylene. Method A can only be used in the absence of certain interferences. Method B is applicable to derived fruit and vegetable products in strongly coloured solutions.
- Caparino, O.A.; Tang, J.; Nindo, C.I.; Sablani, S.S.; Powers, J.R.; Fellman, J.K. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. J. Food Eng. 2012, 111, 135–148. [Google Scholar] [CrossRef]
- Polat, A.; Taskin, O.; Izli, N.; Asik, B.B. Continuous and intermittent microwave-vacuum drying of apple: Drying kinetics, protein, mineral content, and color. J. Food Process Eng. 2019, 42, e13012. [Google Scholar] [CrossRef]
- Williams, L.J.; Herve, A. Fisher’s Least Significant Difference (LSD) Test. In Encyclopedia of Research Design; Salkind, N., Ed.; Sage: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Cruz, A.C.; Guiné, R.P.F.; Gonçalves, J.C. Drying Kinetics and Product Quality for Convective Drying of Apples (cvs. Golden Delicious and Granny Smith). Int. J. Fruit Sci. 2015, 15, 54–78. [Google Scholar] [CrossRef]
- Velić, D.; Planinić, M.; Tomas, S.; Bilić, M. Influence of airflow velocity on kinetics of convection apple drying. J. Food Eng. 2004, 64, 97–102. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Wang, A.; Jiang, Y.; Ban, Z. Effect of heat treatment on physiochemical, colour, antioxidant and microstructural characteristics of apples during storage. Int. J. Food Sci. Technol. 2013, 48, 727–734. [Google Scholar] [CrossRef]
- Pasban, A.; Sadrnia, H.; Mohebbi, M.; Shahidi, S.A. Spectral method for simulating 3D heat and mass transfer during drying of apple slices. J. Food Eng. 2017, 212, 201–212. [Google Scholar] [CrossRef]
- Bora, G.C.; Pathak, R.; Ahmadi, M.; Mistry, P. Image processing analysis to track colour changes on apple and correlate to moisture content in drying stages. Food Qual. Saf. 2018, 2, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Martynenko, A.; Janaszek-Mańkowska, M.; Trajer, J. Multi-objective optimization of convective drying of apple cubes. Comput. Electron. Agric. 2018, 145, 341–348. [Google Scholar] [CrossRef]
- Kahraman, O.; Malvandi, A.; Vargas, L.; Feng, H. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 2021, 73, 105510. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Kazimierczak, R.; Ponder, A.; Hallmann, E. Biologically Active Compounds in Selected Organic and Conventionally Produced Dried Fruits. Foods 2020, 9, 1005. [Google Scholar] [CrossRef]
- Kidoń, M.; Grabowska, J. Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT 2021, 136, 110302. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Zhou, X.; Wang, J.; Zhang, Q.; Yang, X.; Zhu, L.; Geng, Z. Prediction of Apple Slices Drying Kinetic during Infrared-Assisted-Hot Air Drying by Deep Neural Networks. Foods 2022, 11, 3486. [Google Scholar] [CrossRef] [PubMed]
- Nirmaan, A.M.C.; Rohitha Prasantha, B.D.; Peiris, B.L. Comparison of microwave drying and oven-drying techniques for moisture determination of three paddy (Oryza sativa L.) varieties. Chem. Biol. Technol. Agric. 2020, 7, 1–7. [Google Scholar] [CrossRef]
- Bai, J.-W.; Dai, Y.; Wang, Y.-C.; Cai, J.-R.; Zhang, L.; Tian, X.-Y. Potato Slices Drying: Pretreatment Affects the Three-Dimensional Appearance and Quality Attributes. Agriculture 2022, 12, 1841. [Google Scholar] [CrossRef]
- Nakagawa, K.; Horie, A.; Nakabayashi, M.; Nishimura, K.; Yasunobu, T. Influence of processing conditions of atmospheric freeze-drying/low-temperature drying on the drying kinetics of sliced fruits and their vitamin C retention. J. Agric. Food Res. 2021, 6, 100231. [Google Scholar] [CrossRef]
- Mayor, L.; Sereno, A. Modelling shrinkage during convective drying of food materials: A review. J. Food Eng. 2004, 61, 373–386. [Google Scholar] [CrossRef]
- Marzec, A.; Kowalska, H.; Kowalska, J.; Domian, E.; Lenart, A. Influence of Pear Variety and Drying Methods on the Quality of Dried Fruit. Molecules 2020, 25, 5146. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Domian, E.; Masiarz, E.; Ciurzyńska, A.; Galus, S.; Małkiewicz, A.; Lenart, A.; Kowalska, J. Physical and Sensory Properties of Japanese Quince Chips Obtained by Osmotic Dehydration in Fruit Juice Concentrates and Hybrid Drying. Molecules 2020, 25, 5504. [Google Scholar] [CrossRef]
- Shrestha, L.; Kulig, B.; Moscetti, R.; Massantini, R.; Pawelzik, E.; Hensel, O.; Sturm, B. Optimisation of Physical and Chemical Treatments to Control Browning Development and Enzymatic Activity on Fresh-cut Apple Slices. Foods 2020, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Karakasova, L.; Stefanovska, E.; Babanovska-Milenkovska, F.; Stamatovska, V.; Durmishi, N.; Culeva, B. Comparing the quality properties of fresh and dried apple fruit—Varieties pinova and red delicious. J. Agric. Food Environ. Sci. 2019, 73, 36–45. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S. Physical and sensory properties of ready to eat apple chips produced by osmo-convective drying. J. Food Sci. Technol. 2014, 51, 3691–3701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojdyło, A.; Lech, K.; Nowicka, P. Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Molecules 2020, 25, 5521. [Google Scholar] [CrossRef] [PubMed]
- Önal, B.; Adiletta, G.; Crescitelli, A.; Di Matteo, M.; Russo, P. Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. Food Bioprod. Process. 2019, 115, 87–99. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Kowalska, J.; Samborska, K.; Tywonek, M.; Lenart, A. Development of apple chips technology. Heat Mass Transf. 2018, 54, 3573–3586. [Google Scholar] [CrossRef] [Green Version]
- Fratianni, F.; Cozzolino, R.; D’Acierno, A.; Ombra, M.N.; Spigno, P.; Riccardi, R.; Malorni, L.; Stocchero, M.; Nazzaro, F. Biochemical Characterization of Some Varieties of Apricot Present in the Vesuvius Area, Southern Italy. Front. Nutr. 2022, 9, 4868. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, I.; Bilenler, T.; Sislioglu, K.; Gokbulut, I.; Ozdemir, I.S.; Seyhan, F.; Ozturk, K. Chemical composition of apricots affected by fruit size and drying methods. Dry. Technol. 2018, 36, 1937–1948. [Google Scholar] [CrossRef]
- Mrad, N.D.; Boudhrioua, N.; Kechaou, N.; Courtois, F.; Bonazzi, C. Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food Bioprod. Process. 2012, 90, 433–441. [Google Scholar] [CrossRef]
- Arslan, D.; Özcan, M. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food Bioprod. Process. 2011, 89, 504–513. [Google Scholar] [CrossRef]
- Dey, S.; Nagababu, B.H. Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chem. Adv. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Rahimzade, M.; Hesari, J. Osmotic dehydration kinetics of apricot using sucrose solution. J. Food Eng. 2006, 78, 1355–1360. [Google Scholar]
- Igual, M.; Garcia, M.E.; Martin, A. Effect of processing on the drying kinetics and functional value of dried apricot. Food Res. Int. 2012, 47, 284–290. [Google Scholar] [CrossRef]
- Qobilov, K.; Sharipova, N.R.; Salimova, S.A. Drying Apricots on the Basis of New Technologies. Eurasian Res. Bull. 2022, 7, 161–166. [Google Scholar]
- Djuraev, K.F.; Rasulov, S.; Adizova, M.R. Fundamentals of Kinetics of Tomato drying Process; Genius Journals Publishing Group: Brussels, Belgium, 2022; pp. 26–30. [Google Scholar]
- Li, Z.Q.; Yang, H.; Li, W.Q.; Jia, W.Q.; Liu, C.J. Research Status of Fresh Apricot Technology in Xinjiang. Farm Prod. Process. 2020, 20, 89–94. [Google Scholar]
- Ivanova, D.; Valov, N.; Stojanov, V. Dynamic models for apricots drying using genetic algorithm. Inf. Commun. Control Syst. Technol. 2013, 1, 29–33. [Google Scholar]
- Donka, I.; Valov, N.; Valova, I.; Stefanova, D. Optimization of Convective Drying of Apricots. TEM J. 2017, 6, 572–577. [Google Scholar] [CrossRef]
- Akin, E.B.; Karabulut, I.; Topcu, A. Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem. 2008, 107, 939–948. [Google Scholar] [CrossRef]
- Fratianni, A.; Albanese, D.; Mignogna, R.; Cinquanta, L.; Panfili, G.; Di Matteo, M. Degradation of Carotenoids in Apricot (Prunus armeniaca L.) During Drying Process. Plant Foods Hum. Nutr. 2013, 68, 241–246. [Google Scholar] [CrossRef] [PubMed]
- García-Martínez, E.; Igual, M.; Martín-Esparza, M.E.; Martínez-Navarrete, N. Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment. Food Bioprocess Technol. 2013, 6, 3247–3255. [Google Scholar] [CrossRef]
- Saǧırlı, F.; Taǧı, S.; Özkan, M.; Yemiş, O. Chemical and microbial stability of high moisture dried apricots during storage. J. Sci. Food Agric. 2008, 88, 858–869. [Google Scholar] [CrossRef]
- Karatas, F.; Kamish, F. Variations of vitamins (A, C and E) and MDA in apricots dried in IR and microwave. J. Food Eng. 2007, 78, 662–668. [Google Scholar] [CrossRef]
- Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.-O.; Dommes, J.; Pincemail, J. Evolution of Antioxidant Capacity during Storage of Selected Fruits and Vegetables. J. Agric. Food Chem. 2007, 55, 8596–8603. [Google Scholar] [CrossRef] [PubMed]
Product | Experimental Variants | Drying Agent Temperature (°C) | Drying Agent Velocity (m/s) | Activity |
---|---|---|---|---|
Apples | V1/V2/V3 | 50 | 1.0/1.5/2.0 | Physical determination: weight of the products; the volume of the products; the internal temperature of the product. Determination of chromatic indices. Physical and chemical determination: moisture content; dry matter; water activity; ascorbic acid content. Energy consumption. |
V4/V5/V6 | 60 | 1.0/1.5/2.0 | ||
V7/V8/V9 | 70 | 1.0/1.5/2.0 | ||
V10/V11/V12 | 80 | 1.0/1.5/2.0 | ||
Apricots | V13/V14/V15 | 50 | 1.0/1.5/2.0 | |
V16/V17/V18 | 60 | 1.0/1.5/2.0 | ||
V19/V20/V21 | 70 | 1.0/1.5/2.0 | ||
V22/V23/V24 | 80 | 1.0/1.5/2.0 |
Experimental Variant | L* | a* | b* | a*/b* |
---|---|---|---|---|
Fresh apple | 78.61 ± 0.139 | 0.88 ± 0.056 | 30.64 ± 0058 | 0.0287 ± 0.0018 |
V1 | 65.37 ± 0.292 | 5.51 ± 0.202 | 37.60 ± 0.318 | 0.1468 ± 0.0062 |
V2 | 67.83 ± 0.169 | 5.38 ± 0.073 | 34.11 ± 0.098 | 0.1577 ± 0.0025 |
V3 | 72.13 ± 0.092 | 4.92 ± 0.089 | 31.39 ± 0.086 | 0.1567 ± 0.0026 |
V4 | 72.35 ± 0.328 | 5.12 ± 0.183 | 30.24 ± 0.249 | 0.1694 ± 0.0064 |
V5 | 70.61 ± 0.116 | 5.35 ± 0.028 | 30.39 ± 0.138 | 0.1760 ± 0.0012 |
V6 | 65.44 ± 0.133 | 7.55 ± 0.031 | 30.52 ± 0.048 | 0.2471 ± 0.0009 |
V7 | 67.48 ± 0.168 | 8.90 ± 0.216 | 33.72 ± 0.264 | 0.2640 ± 0.0007 |
V8 | 67.55 ± 0.155 | 8.60 ± 0.030 | 33.44 ± 0.099 | 0.2572 ± 0.0003 |
V9 | 67.59 ± 0.173 | 7.50 ± 0.048 | 32.71 ± 0.067 | 0.2292 ± 0.0010 |
V10 | 66.87 ± 0.291 | 7.10 ± 0.273 | 27.21 ± 0.273 | 0.2605 ± 0.0083 |
V11 | 66.14 ± 0.133 | 6.95 ± 0.017 | 26.35 ± 0.061 | 0.2637 ± 0.0005 |
V12 | 65.36 ± 0.141 | 6.37 ± 0.098 | 25.20 ± 0.078 | 0.2527 ± 0.0032 |
Experimental Variant | Chroma* | Hue Angle* | Browning Index* (BI) |
---|---|---|---|
Fresh apple | 30.65 ± 0.059 | −3.740 ± 2.445 | 48.75 ± 0.207 |
V1 | 38.03 ± 0.297 | −1.046 ± 0.781 | 87.65 ± 0.999 |
V2 | 34.53 ± 0.087 | 3.200 ± 1.794 | 73.24 ± 0.377 |
V3 | 31.77 ± 0.094 | 2.499 ± 1.092 | 60.55 ± 0.362 |
V4 | 30.67 ± 0.242 | −2.526 ± 0.239 | 57.93 ± 0.617 |
V5 | 30.86 ± 0.136 | −1.541 ± 0.143 | 60.34 ± 0.328 |
V6 | 31.44 ± 0.051 | 0.787 ± 0.023 | 69.52 ± 0.181 |
V7 | 34.89 ± 0.250 | 1.719 ± 0.400 | 76.78 ± 0.766 |
V8 | 34.53 ± 0.130 | 1.083 ± 0.013 | 75.53 ± 0.228 |
V9 | 33.56 ± 0.076 | 0.366 ± 0.023 | 72.29 ± 0.430 |
V10 | 28.12 ± 0.317 | 1.638 ± 0.453 | 58.89 ± 0.940 |
V11 | 27.24 ± 0.061 | 1.311 ± 0.022 | 57.42 ± 0.236 |
V12 | 25.99 ± 0.098 | 0.974 ± 0.101 | 54.86 ± 0.423 |
Experimental Variant | L* | a* | b* | a*/b* |
---|---|---|---|---|
Fresh apricot | 41.57 ± 0.307 | 9.38 ± 0.038 | 22.46 ± 0.124 | 0.418 ± 0.002 |
V13 | 52.27 ± 0.253 | 3.92 ± 0.044 | 10.08 ± 0061 | 0.389 ± 0.004 |
V14 | 52.31 ± 0.109 | 3.91 ± 0.058 | 11.2 ± 0.132 | 0.349 ± 0.007 |
V15 | 51.83 ± 0.105 | 3.97 ± 0.029 | 11.72 ± 0.087 | 0.339 ± 0.004 |
V16 | 51.270 ± 0.206 | 6.17 ± 0.061 | 11.92 ± 0.074 | 0.518 ± 0.006 |
V17 | 50.84 ± 0.148 | 6.09 ± 0.029 | 12.31 ± 0.088 | 0.498 ± 0.004 |
V18 | 51.49 ± 0.094 | 6.34 ± 0.056 | 12.37 ± 0.115 | 0.513 ± 0.006 |
V19 | 49.54 ± 0.133 | 6.26 ± 0.042 | 13.74 ± 0.082 | 0.456 ± 0.003 |
V20 | 49.84 ± 0.156 | 6.32 ± 0.045 | 13.71 ± 0.114 | 0.461 ± 0.004 |
V21 | 49.72 ± 0.130 | 6.29 ± 0.051 | 13.82 ± 0.052 | 0.455 ± 0.004 |
V22 | 47.69 ± 0.135 | 6.47 ± 0.075 | 14.35 ± 0.061 | 0.451 ± 0.006 |
V23 | 46.87 ± 0.119 | 6.59 ± 0.069 | 14.53 ± 0.098 | 0.454 ± 0.004 |
V24 | 46.93 ± 0.111 | 6.61 ± 0.066 | 14.62 ± 0.076 | 0.453 ± 0.006 |
Experimental Variant | Chroma* | Hue angle* (ho) | Browning Index* (BI) |
---|---|---|---|
Fresh apricot | 24.34 ± 0.118 | 2.253 ± 0.015 | 91.56 ± 1.124 |
V13 | 10.81 ± 0.064 | 2.442 ± 0.030 | 26.53 ± 0.248 |
V14 | 11.85 ± 0.121 | 2.755 ± 0.065 | 29.13 ± 0.338 |
V15 | 12.37 ± 0.079 | 2.839 ± 0.036 | 30.81 ± 0.229 |
V16 | 13.41 ± 0.067 | 1.756 ± 0.025 | 34.83 ± 0.208 |
V17 | 13.72 ± 0.080 | 1.853 ± 0.018 | 36.04 ± 0.264 |
V18 | 13.89 ± 0.104 | 1.777 ± 0.028 | 36.04 ± 0.350 |
V19 | 15.09 ± 0.078 | 2.014 ± 0.020 | 41.24 ± 0.291 |
V20 | 15.09 ± 0.108 | 2.014 ± 0.023 | 40.96 ± 0.329 |
V21 | 15.18 ± 0.048 | 2.045 ± 0.032 | 41.34 ± 0.236 |
V22 | 15.74 ± 0.056 | 2.068 ± 0.032 | 45.19 ± 0.235 |
V23 | 15.95 ± 0.103 | 2.052 ± 0.024 | 46.83 ± 0.408 |
V24 | 16.04 ± 0.060 | 2.060 ± 0.031 | 47.06 ± 0.262 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitru Veleșcu, I.; Nicoleta Rațu, R.; Arsenoaia, V.-N.; Roșca, R.; Marian Cârlescu, P.; Țenu, I. Research on the Process of Convective Drying of Apples and Apricots Using an Original Drying Installation. Agriculture 2023, 13, 820. https://doi.org/10.3390/agriculture13040820
Dumitru Veleșcu I, Nicoleta Rațu R, Arsenoaia V-N, Roșca R, Marian Cârlescu P, Țenu I. Research on the Process of Convective Drying of Apples and Apricots Using an Original Drying Installation. Agriculture. 2023; 13(4):820. https://doi.org/10.3390/agriculture13040820
Chicago/Turabian StyleDumitru Veleșcu, Ionuț, Roxana Nicoleta Rațu, Vlad-Nicolae Arsenoaia, Radu Roșca, Petru Marian Cârlescu, and Ioan Țenu. 2023. "Research on the Process of Convective Drying of Apples and Apricots Using an Original Drying Installation" Agriculture 13, no. 4: 820. https://doi.org/10.3390/agriculture13040820
APA StyleDumitru Veleșcu, I., Nicoleta Rațu, R., Arsenoaia, V.-N., Roșca, R., Marian Cârlescu, P., & Țenu, I. (2023). Research on the Process of Convective Drying of Apples and Apricots Using an Original Drying Installation. Agriculture, 13(4), 820. https://doi.org/10.3390/agriculture13040820