A Comprehensive Study on the Combustion of Sunflower Husk Pellets by Thermogravimetric and Kinetic Analysis, Kriging Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agropellets
2.2. Thermogravimetric Analysis
2.3. Kinetic Theory
2.3.1. OFW Method
2.3.2. CR Method
Symbol | Model | Integral Form g(α) | Differential Form f(α) | Rate-Determining Mechanism |
---|---|---|---|---|
1. Sigmoidal rate equations or random nucleation and subsequent growth | ||||
A1 | Avrami−Erofeev equation | −ln(1 − α) | 1 − α | Assumed random nucleation and its subsequent growth, n = 1 |
An | Avrami−Erofeev equation | [−ln(1 − α)]1/n | n(1 − α)[−ln(1 − α)]1/n(n−1) | Assumed random nucleation and its subsequent growth, n ≠ 1 |
2. Chemical process or mechanism non−invoking equations | ||||
F1 | First order | −ln(1 − α) | 1 − α | Chemical reaction |
Fn | n-th order | (1 − α)−(n−1) − 1 | (1 − α)n | Chemical reaction |
3. Acceleratory rate equations | ||||
P2 | Mampel power law | ln(α1/2) | 2(α)1/2 | Nucleation |
4. Deceleratory rate equations | ||||
4.1. Phase boundary reaction | ||||
R2 | Power law | 1 − (1 − α)1/2 | 2(1 − α)1/2 | Contracting cylinder, cylindrical symmetry |
R3 | Power law | 1 − (1 − α)1/3 | 3(1 − α)2/3 | Contracting sphere, spherical symmetry |
4.2. Based on the diffusion mechanism | ||||
D1 | Parabola low | α2 | 1/2α | 1D diffusion |
D2 | Valensi equation | (1 − α)ln(1 − α) + α | [−ln(1 − α)]−1 | 2D diffusion |
D3 | Jander equation | [1 − (1 − α)1/3]2 | 1.5(1 − α)2/3[1 − (1 − α)1/3]−1 | 3D diffusion, spherical symmetry |
D4 | Ginstling−Brounstein equation | (1 − 2α/3) − (1 − α)2/3 | 1.5[(1 − α)−1/3 − 1]−1 | 3D diffusion, cylindrical symmetry |
D5 | Zhuravlev, Lesokin, Tempelman equation | [(1 − α)−1/3 − 1]2 | 1.5(1 − α)4/3[(1 − α)−1/3 − 1]−1 | 3D diffusion |
D6 | Anti-Jander equation | [(1 + α)1/3 − 1]2 | 1.5(1 + α)2/3[(1 + α)1/3 − 1]−1 | 3D diffusion |
D7 | Anti-Ginstling−Brounstein equation | 1 + 2α/3 − (1 + α)2/3 | 1.5[(1 + α)−1/3 − 1]−1 | 3D diffusion |
D8 | Anti-Zhuravlev, Lesokin, Tempelman equation | [(1 + α)−1/3 − 1]2 | 1.5(1 + α)4/3[(1 + α)−1/3 − 1]−1 | 3D diffusion |
5. Another kinetics equations with unjustified mechanism | ||||
G1 | - | 1 − (1 − α)2 | 1/2(1 − α) | - |
G2 | - | 1 − (1 − α)3 | 1/3(1 − α)2 | - |
2.4. Kriging Method
3. Results
3.1. Thermogravimetric Analysis
3.2. Kinetic Study of Sunflower Husk Pellets
3.2.1. Kinetic Analysis by OFW Method
3.2.2. Kinetic Analysis by CR Method
3.2.3. Relationship between the Kinetic Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anca-Couce, A.; Tsekos, C.; Retschitzegger, S.; Zimbardi, F.; Funke, A.; Banks, S.; Kraia, T.; Marques, P.; Scharler, R.; Jong, W.; et al. Biomass pyrolysis TGA assessment with an international round robin. Fuel 2020, 276, 11800. [Google Scholar] [CrossRef]
- Liu, L.; Pang, Y.; Lv, D.; Wang, K.; Wang, Y. Thermal and kinetic analyzing of pyrolysis and combustion of self-heating biomass particle. Process Saf. Environ. Prot. 2021, 151, 39–50. [Google Scholar] [CrossRef]
- Perea-Moreno, M.-A.; Manzano-Agugliaro, F.; Perea-Moreno, A.J. Sustainable energy based on sunflower seed husk boiler for residential buildings. Sustainability 2018, 10, 3407. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.I.; Abdelkader, A.; Johnston, C.R.; Morgan, K.; Rooney, D.W. Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and Other applications. Ind. Eng. Chem. Res. 2017, 56, 12119–12130. [Google Scholar] [CrossRef] [Green Version]
- Bala-Litwiniak, A.; Zajemska, M. Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler. Renew. Energy 2020, 162, 151–159. [Google Scholar] [CrossRef]
- Turzyński, T.; Kluska, J.; Ochnio, M.; Kardaś, D. Comparative analysis of pelletized and unpelletized sunflower husks combustion process in a batch-type reactor. Materials 2021, 14, 2484. [Google Scholar] [CrossRef]
- Jach-Nocoń, M.; Pełka, G.; Luboń, W.; Mirowski, T.; Nocoń, A.; Pachytel, P. An assessment of the efficiency and emissions of a pellet boiler combusting multiple pellet types. Energies 2021, 14, 4465. [Google Scholar] [CrossRef]
- Balogun, A.O.; Adeleke, A.A.; Ikubanni, P.P.; Adegoke, S.O.; Alayat, A.M.; McDonald, A.G. Kinetics modeling, thermodynamics and thermal performance assessments of pyrolytic decomposition of Moringa oleifera husk and Delonix regia pod. Sci. Rep. 2021, 11, 13862. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.M.; Ramalho, E.; Neto, M.P.; Pilão, R.M. Thermogravimetric analysis of high-density cork granules using isoconversional methods. Energy Rep. 2022, 8, 442–447. [Google Scholar] [CrossRef]
- Patidar, K.; Singathia, A.; Vashishtha, M.; Sangal, V.K.; Upadhyaya, S. Investigation of kinetic and thermodynamic parameters approaches to non-isothermal pyrolysis of mustard stalk using model-free and master plots methods. Mater. Sci. Energy Technol. 2022, 5, 6–14. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Ismail, M.A.; Mostafa, M.E. Thermal decomposition and combustion characteristics of biomass materials using TG/DTG at different high heating rates and sizes in the air. Environ. Prog. Sustain. Energy 2019, 38, 13124. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; Elhassan, O.; Mansour, S.; McKay, G. Biochar development from thermal TGA studies of individual food waste vegetables and their blended systems. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Mahmood, H.; Shakeel, A.; Abdullah, A.; Khan, M.I.; Moniruzzaman, M. A Comparative study on suitability of model-free and model-fitting kinetic methods to non-isothermal degradation of lignocellulosic materials. Polymers 2021, 13, 2504. [Google Scholar] [CrossRef]
- Postawa, K.; Fałtynowicz, H.; Szczygieł, J.; Beran, E.; Kułażyński, M. Analyzing the kinetics of waste plant biomass pyrolysis via thermogravimetry modeling and semi-statistical methods. Bioresour. Technol. 2022, 344, 126181. [Google Scholar] [CrossRef]
- Noszczyk, T.; Dyjakon, A.; Koziel, J.A. Kinetic parameters of nut shells pyrolysis. Energies 2021, 14, 682. [Google Scholar] [CrossRef]
- Casoni, A.I.; Gutierrez, V.S.; Volpe, M.A. Conversion of sunflower seed hulls, waste from edible oil production, into valuable products. J. Environ. Chem. Eng. 2019, 7, 102893. [Google Scholar] [CrossRef]
- Hirunpraditkoon, S. A study on the kinetics of sunflower shell pyrolysis. Bio Heat Transfer. 2006, 12. [Google Scholar] [CrossRef]
- Kazimierski, P.; Januszewicz, K.; Godlewski, W.; Fijuk, A.; Suchocki, T.; Chaja, P.; Barczak, B.; Kardaś, D. The course and the effects of agricultural biomass pyrolysis in the production of high-calorific biochar. Materials 2022, 15, 1038. [Google Scholar] [CrossRef]
- Zabaniotou, A.A.; Kantarelis, E.K.; Theodoropoulos, D.C. Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: Laboratory study pyrolysis and kinetics. Bioresour. Technol. 2008, 99, 3174–3181. [Google Scholar] [CrossRef]
- Guida, M.Y.; Rebbah, B.; Anter, N.; Medaghri-Alaoui, A.; Rakib, E.M.; Hannioui, A. Biofuels and biochars production from agricultural biomass wastes by thermochemical conversion technologies: Thermogravimetric analysis and pyrolysis studies. Prog. Agric. Eng. Sci. 2021, 17, 15–36. [Google Scholar] [CrossRef]
- Islamova, S.; Karaeva, J.; Timofeeva, S.; Kadyirov, A. An experimental study of sunflower husk pellets combustion. BIO Web Conf. 2021, 37, 00070. [Google Scholar] [CrossRef]
- Bilgic, E.; Yaman, S.; Haykiri-Acma, H.; Kucukbayrak, S. Limits of variations on the structure and the fuel characteristics of sunflower seed shell through torrefaction. Fuel Process. Technol. 2016, 144, 197–202. [Google Scholar] [CrossRef]
- Islamova, S.I.; Ermolaev, D.V.; Bulygina, K.S. Oxidative Torrefaction of Sunflower Husk Pellets in the Kaolin Layer. BioEnergy Res. 2021, 15, 183–192. [Google Scholar] [CrossRef]
- Jones, J.M.; Saddawi, A.; Dooley, B.; Mitchell, E.J.S.; Werner, J.; Waldron, D.J.; Weatherstone, S.; Williams, A. Low temperature ignition of biomass. Fuel Process. Technol. 2015, 134, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Lopez, R.; Fernandez, C.; Fierro, J.; Cara, J.; Martínez, O.; Sanchez, M.E. Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis. Energy 2014, 74, 845–854. [Google Scholar] [CrossRef]
- Ren, X.; Chen, J.; Li, G.; Wang, Y.; Lang, X.; Fan, S. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model. Bioresour. Technol. 2018, 261, 403–411. [Google Scholar] [CrossRef]
- Raina, N.; Slathia, P.S.; Sharma, P. Response surface methodology (RSM) for optimization of thermochemical pretreatment method and enzymatic hydrolysis of deodar sawdust (DS) for bioethanol production using separate hydrolysis and co-fermentation (SHCF). Biomass Convers. Biorefin. 2022, 12, 5175–5195. [Google Scholar] [CrossRef]
- Huang, X.; Lv, Z.; Zhao, B.; Zhang, H.; Yao, X.; Shuai, Y. Optimization of operating parameters for methane steam reforming thermochemical process using Response Surface Methodology. Int. J. Hydrogen Energy 2022, 47, 28313–28321. [Google Scholar] [CrossRef]
- Gupta, G.K.; Mondal, M.K. Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology. Energy 2019, 170, 423–437. [Google Scholar] [CrossRef]
- Viegas, C.; Nobre, C.; Correia, R.; Gouveia, L.; Gonçalves, M. Optimization of biochar production by co-torrefaction of microalgae and lignocellulosic biomass using response surface methodology. Energies 2021, 14, 7330. [Google Scholar] [CrossRef]
- Xiaobo, Z. Comparison of response surface method and Kriging method for approximation modeling. In Proceedings of the 2nd International Conference on Power and Renewable Energy (ICPRE), Chengdu, China, 20–23 September 2017. [Google Scholar] [CrossRef]
- Xiao, Y.; Gu, X.; Yin, S.; Shao, J.; Cui, Y.; Zhang, Q.; Niu, Y. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. SpringerPlus 2016, 5, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatramanan, S.; Viswanathan, P.M.; Chung, S.Y. GIS and Geostatistical Techniques for Groundwater Science, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 389. [Google Scholar] [CrossRef]
- De Cock, D.R. Kriging as an Alternative to Polynomial Regression in Response Surface Analysis. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2003. [Google Scholar] [CrossRef]
- Karaeva, J.; Timofeeva, S.; Islamova, S.; Bulygina, K.; Aliev, F.; Panchenko, V.; Bolshev, V. Pyrolysis of Amaranth Inflorescence Wastes: Bioenergy Potential, Biochar and Hydrocarbon Rich Bio-Oil Production. Agriculture 2023, 13, 260. [Google Scholar] [CrossRef]
- Jiang, G.; Wei, L. Phase Change Materials and Their Applications; InTechOpen Limited: London, UK, 2018; Volume 8. [Google Scholar] [CrossRef] [Green Version]
- Karaeva, J.V.; Timofeeva, S.S.; Islamova, S.I.; Gerasimov, A.V. Pyrolysis kinetics of new bioenergy feedstock from anaerobic digestate of agro-waste by thermogravimetric analysis. J. Environ. Chem. Eng. 2022, 10, 107850. [Google Scholar] [CrossRef]
- Doyle, C.D. Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 1962, 6, 639–642. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Xu, X.; Zhang, D.; Hao, R. Combustion characteristics, kinetics and thermodynamics of Pinus Sylvestris pine needle via non-isothermal thermogravimetry coupled with model-free and model-fitting methods. Case Stud. Therm. Eng. 2020, 22, 100756. [Google Scholar] [CrossRef]
- Al-Moftah, A.M.S.H.; Marsh, R.; Steer, J. Thermal decomposition kinetic study of non-recyclable paper and plastic waste by thermogravimetric analysis. ChemEngineering 2021, 5, 54. [Google Scholar] [CrossRef]
- Coats, A.; Redfern, J. Kinetic parameters from thermogravimetric data. II. J. Polym. Sci. C Polym. Lett. 1965, 3, 917–920. [Google Scholar] [CrossRef]
- Islamova, S.I.; Timofeeva, S.S.; Khamatgalimov, A.R.; Ermolaev, D.V. Kinetic analysis of the thermal decomposition of lowland and high-moor peats. Solid Fuel Chem. 2020, 54, 154–162. [Google Scholar] [CrossRef]
- Vlaev, L.; Nedelchev, N.; Gyurova, K.; Zagorcheva, M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J. Anal. Appl. Pyrolysis 2008, 81, 253–262. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997; p. 483. [Google Scholar]
- Parthasarathy, P.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Effect of heating rate on the pyrolysis of camel manure. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Guo, Q.; Cheng, Z.; Chen, G.; Yan, B.; Hou, L.; Ronsse, F. Optimal strategy for clean and efficient biomass combustion based on ash deposition tendency and kinetic analysis. J. Clean. Prod. 2020, 271, 122529. [Google Scholar] [CrossRef]
- Qu, X.; Zhou, G.; Cao, Y.; Li, P.; He, Y.; Zhang, J. Synergetic effect on the combustion of lignite blended with humus: Thermochemical characterization and kinetics. Appl. Therm. Eng. 2019, 152, 137–146. [Google Scholar] [CrossRef]
- Luo, Q.; Yao, Z.; Qi, W.; Sun, J.; Gedanken, A.; Chen, X.; Sun, Y.; Liu, J.; Xu, S.; Wu, W. A comprehensive study on the combustion kinetic modeling of typical electronic plastic waste—Television set (TV) plastic shell. J Air Waste Manag. Assoc. 2021, 71, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; P’erez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
- Islam, M.A.; Auta, M.; Kabir, G.; Hameed, B.H. A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char. Bioresour. Technol. 2015, 200, 335–341. [Google Scholar] [CrossRef]
- Zhu, G.; Yang, L.; Gao, Y.; Xu, J.; Chen, H.; Zhu, Y.; Wang, Y.; Liao, C.; Lu, C.; Zhu, C. Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA. Fuel 2019, 244, 479–491. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Cai, H.; Gao, F. Study of combustion characteristics and kinetics of agriculture briquette using thermogravimetric analysis. ACS Omega 2021, 6, 15827–15833. [Google Scholar] [CrossRef]
- Chandrasekaran, S.R.; Hopke, P.K. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres. Bioresour. Technol. 2012, 125, 52–58. [Google Scholar] [CrossRef]
- Ashraf, M.; Ramzan, N.; Khan, R.U.; Durrani, A.K. Analysis of mixed cattle manure: Kinetics and thermodynamic comparison of pyrolysis and combustion processes. Case Stud. Therm. Eng. 2021, 26, 101078. [Google Scholar] [CrossRef]
- Ashraf, A.; Sattar, H.; Munir, S. A comparative applicability study of model-fitting and model-free kinetic analysis approaches to non-isothermal pyrolysis of coal and agricultural residues. Fuel 2019, 240, 326–333. [Google Scholar] [CrossRef]
- Li, B.; Liu, G.; Gao, W.; Cong, H.-Y.; Bi, M.-S.; Ma, L.; Deng, J.; Shu, C.-M. Study of combustion behaviour and kinetics modelling of Chinese Gongwusu coal gangue: Model-fitting and model-free approaches. Fuel 2020, 268, 117284. [Google Scholar] [CrossRef]
- Huang, X.; Cao, J.-P.; Zhao, X.-Y.; Wang, J.-X.; Fan, X.; Zhao, Y.-P.; Wei, X.-Y. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 2016, 169, 93–98. [Google Scholar] [CrossRef]
- Castells, B.; Amez, I.; Medic, L.; García-Torrent, J. Torrefaction influence on combustion kinetics of Malaysian oil palm wastes. Fuel Process. Technol. 2021, 218, 106843. [Google Scholar] [CrossRef]
- Okot, D.K. Briquetting and Torrefaction of Agricultural Residues for Energy Production. Ph.D. Thesis, School of Engineering, Newcastle University, Newcastle upon Tyne, UK, 2019. Available online: http://theses.ncl.ac.uk/jspui/handle/10443/4716 (accessed on 22 November 2022).
- Wang, L.; Lei, H.; Liua, J.; Bu, Q. Thermal decomposition behavior and kinetics for pyrolysis and catalytic pyrolysis of Douglas fir. RSC Adv. 2018, 8, 2196–2202. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, S.; Topçu, Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour. Technol. 2014, 156, 182–188. [Google Scholar] [CrossRef]
- Fernandez, A.; Ortiz, L.R.; Asensio, D.; Rodriguez, R.; Mazza, G. Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. J. Environ. Chem. Eng. 2020, 8, 103829. [Google Scholar] [CrossRef]
- Mishra, A.; Nanda, S.; Parida, M.R.; Jena, P.K.; Dwibedi, S.K.; Samantaray, S.M.; Samantaray, D.; Mohanty, M.K.; Dash, M. A comparative study on pyrolysis kinetics and thermodynamic parameters of little millet and sunflower stems biomass using thermogravimetric analysis. Bioresour. Technol. 2023, 367, 128231. [Google Scholar] [CrossRef]
- Yang, G.; Yang, Z.; Zhang, J.; Yang, Z.; Shao, J. Combustion Characteristics and Kinetics Study of Pulverized Coal and Semi-Coke. High Temp. Mater. Process. 2019, 38, 783–791. [Google Scholar] [CrossRef]
- Mumbach, G.D.; Alves, J.L.F.; da Silva, J.C.G.; Di Domenico, M.; de Sena, R.F.; Marangoni, C.; Machado, R.A.F.; Bolzan, A. Pyrolysis of cocoa shell and its bioenergy potential: Evaluating the kinetic triplet, thermodynamic parameters, and evolved gas analysis using TGA-FTIR. Biomass Convers. Biorefin. 2022, 12, 723–739. [Google Scholar] [CrossRef]
- Pereira, L.M.S.; Milan, T.M.; Tapia-Blácido, D.R. Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass Bioenergy 2021, 151, 106166. [Google Scholar] [CrossRef]
α | Eα (kJ/mol) | A (1/s) | R2 |
---|---|---|---|
0.1 | 116.44 | 6.26 × 101³ | 0.9556 |
0.15 | 133.42 | 2.07 × 1015 | 0.9930 |
0.2 | 141.66 | 7.77 × 1015 | 0.9901 |
0.25 | 147.64 | 2.78 × 1016 | 0.9968 |
0.3 | 155.68 | 1.66 × 1017 | 0.9948 |
0.35 | 165.80 | 8.86 × 1017 | 0.9951 |
0.4 | 179.20 | 2.29 × 1019 | 0.9905 |
0.45 | 196.30 | 5.71 × 1020 | 0.9912 |
0.5 | 210.96 | 4.99 × 1021 | 0.9856 |
0.55 | 217.37 | 1.59 × 1022 | 0.9620 |
0.6 | 192.97 | 3.81 × 1019 | 0.9009 |
0.65 | 156.17 | 3.94 × 1015 | 0.9765 |
0.7 | 148.70 | 5.60 × 1014 | 0.9109 |
0.75 | 151.43 | 2.17 × 1014 | 0.9470 |
0.8 | 214.00 | 7.36 × 1018 | 0.9984 |
0.85 | 249.94 | 4.06 × 1021 | 0.9996 |
0.9 | 203.99 | 1.34 × 1018 | 0.9990 |
Average | 175.39 |
β (K/min) | Reaction Model | Fitted Linear Regression Equation | g(α) | Eα (kJ/mol) | A (1/s) |
---|---|---|---|---|---|
5 | F8 | y = −20.12x + 27.153 | 7828.84 | 177.32 | 7.16 × 1017 |
10 | F8 | y = −20.194x + 26.584 | 7828.84 | 184.10 | 2.11 × 1018 |
20 | F8 | y = −20.6x + 26.799 | 7828.84 | 189.56 | 3.00 × 1019 |
α | Eα (kJ/mol) | A (1/s) | g(α) | T (K) | |||
---|---|---|---|---|---|---|---|
0.20 | 141.66 | 0.65 | 7.77 × 1015 | 4.89 × 10−7 | 3.768 | 0.00005 | 546.90 |
0.25 | 147.64 | 0.68 | 2.78 × 1016 | 1.75 × 10−6 | 6.492 | 0.00008 | 554.68 |
0.30 | 155.68 | 0.72 | 1.66 × 1017 | 1.05 × 10−5 | 11.143 | 0.00014 | 560.97 |
0.35 | 165.80 | 0.76 | 8.86 × 1017 | 5.58 × 10−5 | 19.399 | 0.00025 | 566.43 |
0.40 | 179.20 | 0.82 | 2.29 × 1019 | 1.44 × 10−3 | 34.722 | 0.00044 | 571.74 |
0.45 | 196.30 | 0.90 | 5.71 × 1020 | 3.59 × 10−2 | 64.684 | 0.00083 | 577.43 |
0.50 | 210.96 | 0.97 | 4.99 × 1021 | 3.14 × 10−1 | 127.000 | 0.00163 | 584.12 |
0.55 | 217.37 | 1.00 | 1.59 × 1022 | 1.00 | 266.616 | 0.00341 | 593.47 |
0.60 | 192.97 | 0.89 | 3.81 × 1019 | 2.40 × 10−3 | 609.352 | 0.00780 | 610.29 |
0.65 | 156.17 | 0.72 | 3.94 × 1015 | 2.48 × 10−7 | 1553.260 | 0.01988 | 641.92 |
0.70 | 148.70 | 0.68 | 5.60 × 1014 | 3.53 × 10−8 | 4571.474 | 0.05852 | 672.71 |
0.75 | 151.43 | 0.70 | 2.17 × 1014 | 1.36 × 10−8 | 16,383.000 | 0.20971 | 691.03 |
0.80 | 214.00 | 0.98 | 7.36 × 1018 | 4.63 × 10−4 | 78,124.000 | 1.00000 | 706.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islamova, S.; Tartygasheva, A.; Karaeva, J.; Panchenko, V.; Litti, Y. A Comprehensive Study on the Combustion of Sunflower Husk Pellets by Thermogravimetric and Kinetic Analysis, Kriging Method. Agriculture 2023, 13, 840. https://doi.org/10.3390/agriculture13040840
Islamova S, Tartygasheva A, Karaeva J, Panchenko V, Litti Y. A Comprehensive Study on the Combustion of Sunflower Husk Pellets by Thermogravimetric and Kinetic Analysis, Kriging Method. Agriculture. 2023; 13(4):840. https://doi.org/10.3390/agriculture13040840
Chicago/Turabian StyleIslamova, Svetlana, Anastasia Tartygasheva, Julia Karaeva, Vladimir Panchenko, and Yuriy Litti. 2023. "A Comprehensive Study on the Combustion of Sunflower Husk Pellets by Thermogravimetric and Kinetic Analysis, Kriging Method" Agriculture 13, no. 4: 840. https://doi.org/10.3390/agriculture13040840
APA StyleIslamova, S., Tartygasheva, A., Karaeva, J., Panchenko, V., & Litti, Y. (2023). A Comprehensive Study on the Combustion of Sunflower Husk Pellets by Thermogravimetric and Kinetic Analysis, Kriging Method. Agriculture, 13(4), 840. https://doi.org/10.3390/agriculture13040840