Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Substrate
2.3. Rumen Fluid Donor Cows
2.4. Buffer
2.5. Preparation and Launch of Incubations
2.6. Measurements, Samplings and Analysis
- The TGP was continuously registered for 70 h and recorded using the software provided by Bioprocess Control (version ge_2.1[v1.2948]). Treatments supplemented with Mn, Zn or Cu after 24 or 48 h were considered as CON before the addition of the TMs (MnO_24 h, MnS_24 h, MnO_48 h, MnS_48 h, ZnO_24 h, ZnS_24 h, ZnO_48 h, ZnS_48 h, CuS_0.015_24 h and CuS_0.015_48 h, respectively). The cumulated values of TGP after 24, 48 and 72 h were used for the comparisons of the treatments.
- At the end of the incubations:
- The flasks were opened consecutively, and the pH of the medium was measured immediately (flasks maintained in the water bath).
- The nylon bags containing the undegraded substrate were removed from the flasks, rinsed briefly with cold water, then frozen (−18 °C) for 24 h (adaptation of the in situ model for rumen degradation of DM) [30]. Freezing of the nylon bags aimed to halt the fermentation and substrate degradation as fast as possible, and to detach (at least partially) the bacteria from feed particles. After defrosting, the nylon bags were washed a second time in cold water for 2 min in the washing machine and oven-dried for 48 h at 60 °C. The nylon bags containing the dry matter (DM) residues were weighed, and the dDM% was calculated [31].
- Replicates of the same treatment in the final fermentation medium were pooled and sampled (12 mL/pool). The samples were frozen (−18 °C) before being sent for VFA analysis (total concentration and individual profile) using gas chromatography (Upscience, Saint-Nolff, France).
- The pooled final fermentation medium was centrifuged to separate 3 different fractions, based on the method described by [24]: UNSOL (containing undegraded feed particles, protozoa and insolubilized minerals), BACT and SOL. The pooled fermentation medium was first refrigerated (4 °C) for 6 h [32] and then agitated with a magnetic stirrer (400 rpm) for 45 s to detach the bacteria bound to fiber particles. Next, the fermentation medium was centrifuged (Haraeus Multifuge X3R, Thermo Fisher Scientific, Strasbourg, France) at 100× g for 5 min at 4 °C; the total quantity of obtained pellet (UNSOL) was then recovered and frozen at −80 °C before freeze-drying (CHRIST BETA 1-8 LSC PLUS, Martin Christ, Osterode am Harz, Germany). The obtained supernatant was centrifuged at 18,500× g for 20 min at 4 °C. The total quantity of the SOL was registered and then sampled (10 mL) and frozen at −80 °C; the total quantity of obtained pellet (BACT) was recovered and frozen at −80 °C before freeze-drying. Following the freeze-drying, the UNSOL and BACT were sent for DAPA (Upscience, Saint-Nolff, France) and TM (UT2A, Pau, France) analysis. The SOL samples were analyzed only for TM content (UT2A, Pau, France), as previous studies in the lab had consistently shown that this fraction contained no DAPA.
- TM (total TM and % of total TM) in each fraction (UNSOL, BACT and SOL) of the final fermentation medium was calculated based on TM content in the fractions [33].
- Total DAPA was used as a rumen bacterial synthesis marker and calculated based on DAPA concentration of UNSOL and BACT [34]. The DAPA concentration of BACT was also used to confirm the enrichment with bacteria.
- Data were statistically analyzed via analysis of variance and Tukey test with R software (version 4.1.3), with the treatment as a fixed factor, the replicates (incubation flasks) or the incubations (for TM analysis in the fractions) as a random factor.
3. Results
3.1. Manganese
3.1.1. Fermentation Parameters
3.1.2. Ruminal Mineral Solubility and Bioavailability
3.2. Zinc
3.2.1. Fermentation Parameters
3.2.2. Ruminal Mineral Solubility and Bioavailability
3.3. Copper
3.3.1. Fermentation Parameters
3.3.2. Ruminal Mineral Solubility and Bioavailability
4. Discussion
4.1. Manganese
4.2. Zinc
4.3. Copper
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hosnedlová, B.; Travnicek, J.; Šoch, M. Current View of the Significance of Zinc for Ruminants: A Review. Agric. Trop. Subtrop. 2007, 40, 57–64. [Google Scholar]
- Sloup, V.; Jankovská, I.; Nechybová, S.; Peřinková, P.; Langrova, I. Zinc in the Animal Organism: A Review. Sci. Agric. Bohem. 2017, 48, 13–21. [Google Scholar] [CrossRef]
- Hostetler, C.E.; Kincaid, R.L.; Mirando, M.A. The Role of Essential Trace Elements in Embryonic and Fetal Development in Livestock. Vet. J. 2003, 166, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Hilal, E.; Elkhairey, M.; Osman, A. The Role of Zinc, Manganse and Copper in Rumen Metabolism and Immune Function: A Review Article. Open. J. Anim. Sci. 2016, 6, 304–324. [Google Scholar] [CrossRef]
- Chamberlain, C.C.; Burroughs, W. Effect of Fluoride, Magnesium and Manganese Ions on In Vitro Cellulose Digestion by Rumen Microorganisms. J. Anim. Sci. 1962, 21, 428–432. [Google Scholar] [CrossRef]
- Martinez, A.; Church, D.C. Effect of Various Mineral Elements on In Vitro Rumen Cellulose Digestion. J. Anim. Sci. 1970, 31, 982–990. [Google Scholar] [CrossRef]
- Arelovich, H.M.; Owens, F.N.; Horn, G.W.; Vizcarra, J.A. Effects of Supplemental Zinc and Manganese on Ruminal Fermentation, Forage Intake, and Digestion by Cattle Fed Prairie Hay and Urea. J. Anim. Sci. 2000, 78, 2972–2979. [Google Scholar] [CrossRef]
- Martínez, A. Effect of Some Major and Trace Element Interactions upon In Vitro Rumen Cellulose Digestion. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1971. [Google Scholar]
- Hosseini-Vardanjani, S.F.; Rezaei, J.; Karimi-Dehkordi, S.; Rouzbehan, Y. Effect of Feeding Nano-ZnO on Performance, Rumen Fermentation, Leukocytes, Antioxidant Capacity, Blood Serum Enzymes and Minerals of Ewes. Small Rumin. Res. 2020, 191, 106170. [Google Scholar] [CrossRef]
- Bonhomme, A.; Durand, M.; Dumay, C.; Beaumatin, P. Etude In vitro du comportement des populations microbiennes du rumen en présence de zinc sous forme de sulfate. Ann. Biol. Anim. Bioch. Biophys. 1979, 19, 937–942. [Google Scholar] [CrossRef]
- Hernández-Sánchez, D.; Cervantes-Gómez, D.; Ramírez-Bribiesca, J.E.; Cobos-Peralta, M.; Pinto-Ruiz, R.; Astigarraga, L.; Gere, J.I. The Influence of Copper Levels on In Vitro Ruminal Fermentation, Bacterial Growth and Methane Production. J. Sci. Food Agric. 2019, 99, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Slyter, L.L.; Wolin, M.J. Copper Sulfate-Induced Fermentation Changes in Continuous Cultures of the Rumen Microbial Ecosystem. Appl. Microbiol. 1967, 15, 1160–1164. [Google Scholar] [CrossRef]
- Arce-Cordero, J.A.; Monteiro, H.F.; Lelis, A.L.; Lima, L.R.; Restelatto, R.; Brandao, V.L.N.; Leclerc, H.; Vyas, D.; Faciola, A.P. Copper Sulfate and Sodium Selenite Lipid-Microencapsulation Modifies Ruminal Microbial Fermentation in a Dual-Flow Continuous-Culture System. J. Dairy. Sci. 2020, 103, 7068–7080. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, S.; Sidhu, V.K.; Roy, D.; Kumar, M.; Kushwaha, R. Effect of Copper Supplementation on In -Vitro Rumen Fermentation Characteristics. Int. J. Livest. Res. 2017, 16, 63–65. [Google Scholar] [CrossRef]
- Wang, C.; Han, L.; Zhang, G.W.; Du, H.S.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Zhang, Y.L.; et al. Effects of Copper Sulphate and Coated Copper Sulphate Addition on Lactation Performance, Nutrient Digestibility, Ruminal Fermentation and Blood Metabolites in Dairy Cows. Br. J. Nutr. 2021, 125, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Trumeau, D. Les Oligo-Éléments En Élevage Bovin: Analyse Descriptive Des Profils Métaboliques En Oligo-Éléments Établis En Laboratoire d’analyse et Liens Avec Les Aspects Cliniques; ONIRIS: Nantes, France, 2014. [Google Scholar]
- European Commission; Directorate General for Health and Food Safety. European Union Register of Feed Additives Pursuant to Regulation (EC) No. 1831/2003. Annex I, List of Additives (Released Date 06.12.2022); Publications Office of the European Union: Luxembourg, 2023. Available online: https://data.europa.eu/doi/10.2875/110483 (accessed on 26 February 2023).
- Meschy, F. Alimentation minérale et vitaminique des ruminants: Actualisation des connaissances. INRAE Prod. Anim. 2007, 20, 119–128. [Google Scholar] [CrossRef]
- Inra. Alimentation des Ruminants: Apports Nutritionnels-Besoins et Réponses des Animaux-Rationnement-Tables des Valeurs des Aliments; Nozière, P., Sauvant, D., Delaby, L., Eds.; Directeur de Publication: Versailles, France, 2018; Volume 4, pp. 157–163. [Google Scholar]
- Spears, J.W. Trace Mineral Bioavailability in Ruminants. J. Nutr. 2003, 133, 1506S–1509S. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, Implementation and Interpretation of in Vitro Batch Culture Experiments to Assess Enteric Methane Mitigation in Ruminants—A Review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef]
- Eryavuz, A.; Dehority, B.A. Effects of Supplemental Zinc Concentration on Cellulose Digestion and Cellulolytic and Total Bacterial Numbers In Vitro. Anim. Feed Sci. Technol. 2009, 151, 175–183. [Google Scholar] [CrossRef]
- Krawielitzki, R.; Piatkowski, B.; Kreienbring, F. Untersuchungen Zum Gehalt an 2,6-Diaminopimelinsäure (DAP) Und Das DAP: N-Verhältnis in Pansenbakterien in Abhängigkeit von Der Zeit Nach Der Fütterung. Archiv für Tierernaehrung 1978, 28, 701–708. [Google Scholar] [CrossRef]
- Krawielitzki, R.; Voigt, J.; Piatkowski, B. Der Einfluß Unterschiedlicher Zentrifugationsbedingungen Bei Der Isolierung Gemischter Pansenbakterien Auf Deren Gehalt an Stickstoff Und Diaminopimelinsäure: Verwendung von Duodenalchymus Als Ausgangsmaterial. Archiv für Tierernaehrung 1989, 39, 813–821. [Google Scholar] [CrossRef]
- Petrič, D.; Mravčáková, D.; Kucková, K.; Kišidayová, S.; Cieslak, A.; Szumacher-Strabel, M.; Huang, H.; Kolodziejski, P.; Lukomska, A.; Slusarczyk, S.; et al. Impact of Zinc and/or Herbal Mixture on Ruminal Fermentation, Microbiota, and Histopathology in Lambs. Front. Vet. Sci. 2021, 8, 630971. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Denman, S.E. Effect of Sulfur Supplements on Cellulolytic Rumen Micro-Organisms and Microbial Protein Synthesis in Cattle Fed a High Fibre Diet. J. Appl. Microbiol. 2007, 103, 1757–1765. [Google Scholar] [CrossRef]
- Mould, F.L.; Morgan, R.; Kliem, K.E.; Krystallidou, E. A Review and Simplification of the In Vitro Incubation Medium. Anim. Feed Sci. Technol. 2005, 123–124, 155–172. [Google Scholar] [CrossRef]
- Ledoux, D.; Shannon, M. Bioavailability and Antagonists of Trace Minerals in Ruminant Metabolism. Fla. Rumin. Nutr. Symp. 2005, 23–37. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Dulphy, J.-P.; Demarquilly, C.; Baumont, R.; Jailler, M.; L’Hotelier, L.; Dragomir, C. Study of modes of preparation of fresh and conserved forage samples for measurement of their dry matter and nitrogen degradations in the rumen. Ann. Zootech. 1999, 48, 275–288. [Google Scholar] [CrossRef]
- Valentin, S.F.; Williams, P.E.V.; Forbes, J.M.; Sauvant, D. Comparison of the In Vitro Gas Production Technique and the Nylon Bag Degradability Technique to Measure Short- and Long-Term Processes of Degradation of Maize Silage in Dairy Cows. Anim. Feed Sci. Technol. 1999, 78, 81–99. [Google Scholar] [CrossRef]
- Dehority, B.A.; Grubb, J.A. Effect of Short-Term Chilling of Rumen Contents on Viable Bacterial Numbers. Appl. Environ. Microbiol. 1980, 39, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Genther, O.N.; Hansen, S.L. The Effect of Trace Mineral Source and Concentration on Ruminal Digestion and Mineral Solubility. J. Dairy Sci. 2015, 98, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Dufva, G.S.; Bartley, E.E.; Arambel, M.J.; Nagaraja, T.G.; Dennis, S.M.; Galitzer, S.J.; Dayton, A.D. Diaminopimelic Acid Content of Feeds and Rumen Bacteria and Its Usefulness as a Rumen Bacterial Marker. J. Dairy Sci. 1982, 65, 1754–1759. [Google Scholar] [CrossRef]
- Overton, T.R.; Yasui, T. Practical Applications of Trace Minerals for Dairy Cattle. J. Anim. Sci. 2014, 92, 416–426. [Google Scholar] [CrossRef]
- van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W. The Effect of Adding Urea, Manganese and Linoleic Acid to Wheat Straw and Wood Chips on Lignin Degradation by Fungi and Subsequent In Vitro Rumen Degradation. Anim. Feed Sci. Technol. 2016, 213, 22–28. [Google Scholar] [CrossRef]
- Kišidayová, S.; Pristaš, P.; Zimovčáková, M.; Blanár Wencelová, M.; Homol’ová, L.; Mihaliková, K.; Čobanová, K.; Grešáková, Ľ.; Váradyová, Z. The Effects of High Dose of Two Manganese Supplements (Organic and Inorganic) on the Rumen Microbial Ecosystem. PLoS ONE 2018, 13, e0191158. [Google Scholar] [CrossRef]
- Weimer, P.J. Manipulating Ruminal Fermentation: A Microbial Ecological Perspective. J. Anim. Sci. 1998, 76, 3114–3122. [Google Scholar] [CrossRef]
- Maskaľová, I.; Vajda, V.; Bujnak, L. 2,6-Diaminopimelic Acid as a Biological Marker of Rumen Synthesis and Fermentation Capacities in the Transition Period and Early Lactation of Dairy Cows. Acta Vet. Brno 2014, 83, 355–361. [Google Scholar] [CrossRef]
- Reis, L.; Pardo, P.; Camargos, A.; Oba, E. Mineral Element and Heavy Metal Poisoning in Animals. J. Med. Med. Sci. 2010, 1, 560–579. [Google Scholar]
- PubChem Manganese(II) Oxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/14940 (accessed on 26 February 2023).
- PubChem Manganese Sulfate Monohydrate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/177577 (accessed on 26 February 2023).
- Guimaraes, O.; Wagner, J.J.; Spears, J.W.; Brandao, V.L.N.; Engle, T.E. Trace Mineral Source Influences Digestion, Ruminal Fermentation, and Ruminal Copper, Zinc, and Manganese Distribution in Steers Fed a Diet Suitable for Lactating Dairy Cows. Animal 2022, 16, 100500. [Google Scholar] [CrossRef]
- Jongbloed, A.W.; Kemme, P.A.; De Grotte, G.; Lippens, M.; Meschy, F. Bioavailability of Major Trace Minerals; EMFEMA, International Association of the European Manufacturers of Major Trace and Specific Feed Mineral Materials: Brussels, Belgium, 2002. [Google Scholar]
- Bielik, V.; Kolisek, M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int. J. Mol. Sci. 2021, 22, 6803. [Google Scholar] [CrossRef] [PubMed]
- Riazi, H.; Rezaei, J.; Rouzbehan, Y. Effects of Supplementary Nano-ZnO on In Vitro Ruminal Fermentation, Methane Release, Antioxidants, and Microbial Biomass. Turk. J. Vet. Anim. Sci. 2019, 43, 737–746. [Google Scholar] [CrossRef]
- Wang, C.; Xu, Y.Z.; Han, L.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Chen, L.; Zhang, Y.L.; Pei, C.X.; et al. Effects of Zinc Sulfate and Coated Zinc Sulfate on Lactation Performance, Nutrient Digestion and Rumen Fermentation in Holstein Dairy Cows. Livest. Sci. 2021, 251, 104673. [Google Scholar] [CrossRef]
- Fellner, V.; Durosoy, S.; Kromm, V.; Spears, J.W. Effects of Supplemental Zinc on Ruminal Fermentation in Continuous Cultures. Appl. Anim. Sci. 2021, 37, 27–32. [Google Scholar] [CrossRef]
- PubChem Zinc Oxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/14806 (accessed on 26 February 2023).
- PubChem Zinc Sulfate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/24424 (accessed on 26 February 2023).
- Hattori, R.; Torii, S.; Funaba, M.; Matsui, T. Determination of True Absorption and Fecal Endogenous Loss of Zinc in Goats. Anim. Sci. J. 2010, 81, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Pecka-Kiełb, E.; Pastuszak, J.; Asghar, M.U.; Mól, L. Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production. Agriculture 2022, 12, 1943. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, R.; Zhu, X.; Kleemann, D.O.; Yue, C.; Jia, Z. Effects of Dietary Copper on Ruminal Fermentation, Nutrient Digestibility and Fibre Characteristics in Cashmere Goats. Asian-Australas. J. Anim. Sci. 2007, 20, 1843–1848. [Google Scholar] [CrossRef]
- Engle, T.E.; Spears, J.W. Dietary Copper Effects on Lipid Metabolism, Performance, and Ruminal Fermentation in Finishing Steers. J. Anim. Sci. 2000, 78, 2452–2458. [Google Scholar] [CrossRef]
- Jr, K.; Lenártová, V.; Holovská, K.; Sobeková, A.; Javorský, P. Heavy Metals and the Oxidative Stress in Some Rumen Bacteria. Biol.-Sect. Cell. Mol. Biol. 2005, 60, 649–653. [Google Scholar]
- Clarkson, A.H.; Paine, S.W.; Kendall, N.R. Evaluation of the Solubility of a Range of Copper Sources and the Effects of Iron & Sulphur on Copper Solubility under Rumen Simulated Conditions. J. Trace Elem. Med. Biol. 2021, 68, 126815. [Google Scholar] [CrossRef]
- Spears, J.W.; Brandao, V.L.N.; Heldt, J. Invited Review: Assessing Trace Mineral Status in Ruminants, and Factors That Affect Measurements of Trace Mineral Status. Appl. Anim. Sci. 2022, 38, 252–267. [Google Scholar] [CrossRef]
Item | Maize Silage | Hay |
---|---|---|
DM (%) | 37.50 | 88.90 |
Total ashes (%DM) | 2.90 | 4.20 |
Ca (g/kg DM) | 2.60 | 1.95 |
P (g/kg DM) | 1.94 | 1.70 |
S (g/kg) | 1.22 | 0.25 |
Cu 1 (mg/kg DM) | <5.00 | <5.00 |
Mn (mg/kg DM) | 15.00 | 224.00 |
Zn (mg/kg DM) | 20.0 | 13.00 |
Diet Composition | Intake (Kg DM/Head/Day) |
---|---|
Corn silage | 3.54 |
Hay | 2.00 |
Complete feed 1 | 3.00 |
Diet nutritional values | Concentration |
CP (%DM) | 14.20 |
Starch (%DM) | 19.80 |
Total fiber (%DM) | 22.50 |
Mn (mg/kg DM) | 57.00 |
Zn (mg/kg DM) | 33.90 |
Cu (mg/kg DM) | 7.20 |
Item | CON | MnO_0 h | MnO_24 h | MnO_48 h | MnS_0 h | MnS_24 h | MnS_48 h | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|
TGP 1 at 24 h (mL/gDM) | 143 | 149 | - | - | 141 | - | - | 5.2 | 0.49 |
TGP at 48 h (mL/gDM) | 218 | 211 | 213 | - | 204 | 219 | - | 5.2 | 0.18 |
TGP at 70 h (mL/gDM) | 235 | 226 | 224 | 244 | 222 | 235 | 237 | 5.4 | 0.10 |
dDM 2 (%) | 88.6 | 88.0 | 86.5 | 87.3 | 87.1 | 87.4 | 86.6 | 0.56 | 0.09 |
Total VFA 3 (mM) | 89.8 | 85.3 | 88.6 | 87.6 | 88.8 | 85.4 | 86.4 | 3.40 | 0.94 |
Acetate (%) | 58.0 | 58.0 | 58.1 | 58.8 | 58.0 | 58.7 | 58.0 | 0.40 | 0.64 |
Propionate (%) | 21.8 | 22.3 | 21.4 | 21.1 | 22.6 | 21.6 | 22.0 | 0.45 | 0.30 |
Butyrate (%) | 14.7 | 14.4 | 14.9 | 14.6 | 13.9 | 14.4 | 14.7 | 0.21 | 0.06 |
Acetate:Propionate | 2.67 | 2.61 | 2.71 | 2.79 | 2.57 | 2.72 | 2.64 | 0.068 | 0.36 |
Final pH | 6.51 | 6.53 | 6.52 | 6.53 | 6.52 | 6.55 | 6.54 | 0.029 | 0.90 |
Total DAPA 4 (mg) | 1.93 | 1.56 | 1.76 | 1.98 | 1.52 | 1.79 | 1.63 | 0.163 | 0.35 |
UNSOL 5:BACT 6-DAPA ratio | 2.6 | 2.7 | 2.9 | 2.9 | 2.9 | 2.8 | 3.0 | 0.27 | 0.94 |
Item | CON | MnO_0 h | MnO_24 h | MnO_48 h | MnS_0 h | MnS_24 h | MnS_48 h | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|
UNSOL 1—Mn (mg/kg DM) | 110 a | 252 ab | 458 d | 457 d | 306 bc | 373 bcd | 406 cd | 30.2 | <0.01 |
BACT 2—Mn (mg/kg DM) | 76 a | 238 b | 330 c | 327 c | 291 bc | 326 c | 315 bc | 17.2 | <0.001 |
SOL 3—Mn (mg/kg) | 0.81 a | 3.13 b | 3.17 b | 3.02 b | 4.40 b | 3.67 b | 4.63 b | 0.370 | <0.05 |
Total 4 Mn (mg) | 1.02 a | 3.76 b | 4.00 b | 3.91 b | 4.73 b | 4.51 b | 5.60 b | 0.490 | <0.001 |
UNSOL—Mn (% of total Mn) | 7.6 ab | 3.8 a | 8.3 ab | 11.5 b | 3.9 a | 5.9 ab | 3.7 a | 1.49 | <0.001 |
BACT—Mn (% of total Mn) | 3.6 | 3.2 | 4.1 | 4.2 | 2.7 | 3.3 | 2.8 | 0.49 | 0.24 |
SOL—Mn (% of total Mn) | 88.8 ab | 93.0 b | 87.6 ab | 84.2 a | 93.4 b | 90.8 b | 93.6 b | 1.59 | <0.01 |
Item | CON | ZnO_0 h | ZnO_24 h | ZnO_48 h | ZnS_0 h | ZnS_24 h | ZnS_48 h | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|
TGP 1 at 24 h (mL/gDM) | 89 | 83 | - | - | 86 | - | - | 2.9 | 0.14 |
TGP at 48 h (mL/gDM) | 142 b | 126 a | 146 b | - | 139 ab | 139 ab | - | 3.6 | <0.01 |
TGP at 70 h (mL/gDM) | 168 ab | 147 a | 169 b | 159 ab | 159 ab | 158 ab | 167 ab | 4.4 | <0.05 |
dDM 2 (%) | 71.8 ab | 67.5 a | 72.5 b | 71.8 ab | 70.3 ab | 70.9 ab | 72.8 b | 1.10 | <0.05 |
Total VFA 3 (mM) | 70.9 | 65.0 | 75.8 | 70.7 | 72.3 | 74.6 | 71.6 | 4.06 | 0.64 |
Acetate (%) | 65.1 | 64.6 | 65.3 | 65.3 | 65.2 | 65.5 | 65.4 | 0.59 | 0.96 |
Propionate (%) | 20.7 | 20.8 | 20.7 | 20.7 | 20.2 | 20.4 | 20.5 | 0.37 | 0.93 |
Butyrate (%) | 9.0 | 9.2 | 9.0 | 8.7 | 9.5 | 9.2 | 8.9 | 0.24 | 0.65 |
Acetate:Propionate | 3.15 | 3.11 | 3.15 | 3.16 | 3.22 | 3.22 | 3.19 | 0.074 | 0.93 |
Final pH | 6.55 | 6.58 | 6.55 | 6.57 | 6.56 | 6.56 | 6.56 | 0.006 | 0.50 |
Total DAPA 4 (mg) | 2.71 b | 2.61 b | 2.57 b | 2.02 a | 2.46 b | 2.44 b | 2.05 a | 0.148 | <0.05 |
UNSOL 5:BACT 6-DAPA ratio | 1.8 | 2.0 | 2.0 | 1.9 | 2.1 | 2.0 | 1.9 | 0.10 | 0.58 |
Item | CON | ZnO_0 h | ZnO_24 h | ZnO_48 h | ZnS_0 h | ZnS_24 h | ZnS_48 h | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|
UNSOL 1—Zn (mg/kg DM) | 223 a | 357 a | 970 bcd | 857 bc | 611 ab | 1287 d | 1137 cd | 81.8 | <0.001 |
BACT 2—Zn (mg/kg DM) | 153 a | 249 a | 363 a | 348 a | 547 a | 1200 b | 1147 b | 98.1 | <0.001 |
SOL 3—Zn (mg/kg) | 0.085 a | 0.121 a | 0.082 a | 0.079 a | 0.271 b | 0.252 b | 0.276 b | 0.0226 | <0.001 |
Total 4 Zn (mg) | 0.31 a | 0.53 ab | 1.04 cd | 0.68 abc | 0.94 bcd | 1.72 e | 1.25 de | 0.102 | <0.001 |
UNSOL—Zn (% of total Zn) | 48.3 | 50.7 | 71.8 | 68.8 | 40.7 | 49.7 | 42.7 | 7.27 | 0.051 |
BACT—Zn (% of total Zn) | 20.8 | 23.9 | 19.2 | 21.0 | 27.0 | 33.8 | 38.3 | 7.06 | 0.43 |
SOL—Zn (% of total Zn) | 30.9 d | 25.4 cd | 9.0 a | 10.2 a | 32.4 d | 16.5 ab | 19.0 bc | 1.75 | <0.001 |
Item | CON | CuS_0.01_0 h | CuS_0.015_0 h | CuS_0.015_24 h | CuS_0.015_48 h | SEM | p Value |
---|---|---|---|---|---|---|---|
TGP 1 at 24 h (mL/gDM) | 85 | 88 | 80 | - | - | 3.1 | 0.26 |
TGP at 48 h (mL/gDM) | 130 | 138 | 129 | 135 | - | 4.1 | 0.32 |
TGP at 70 h (mL/gDM) | 159 | 162 | 161 | 164 | 156 | 3.2 | 0.44 |
dDM 2 (%) | 66.9 | 68.2 | 70.0 | 67.6 | 67.4 | 0.90 | 0.15 |
Total VFA 3 (mM) | 76.1 | 74.5 | 77.1 | 73.7 | 71.5 | 3.51 | 0.81 |
Acetate (%) | 66.0 | 66.0 | 66.4 | 66.8 | 64.5 | 1.34 | 0.79 |
Propionate (%) | 20.3 | 20.7 | 20.0 | 19.8 | 21.7 | 0.71 | 0.46 |
Butyrate (%) | 8.1 | 8.2 | 8.0 | 8.3 | 8.6 | 0.56 | 0.93 |
Acetate:Propionate | 3.26 | 3.19 | 3.32 | 3.39 | 2.98 | 0.178 | 0.58 |
Final pH | 6.60 | 6.59 | 6.60 | 6.59 | 6.61 | 0.007 | 0.58 |
Total DAPA 4 (mg) | 2.07 | 1.87 | 1.87 | 1.78 | 1.69 | 0.280 | 0.89 |
UNSOL 5:BACT 6-DAPA ratio | 2.3 | 2.4 | 2.8 | 2.4 | 2.5 | 0.15 | 0.37 |
Item | CON | CuS_0.01_0 h | CuS_0.015_0 h | CuS_0.015_24 h | CuS_0.015_48 h | SEM | p Value |
---|---|---|---|---|---|---|---|
UNSOL 1—Cu (mg/kg DM) | 32 a | 118 a | 485 b | 599 b | 697 b | 55.0 | <0.01 |
BACT 2—Cu (mg/kg DM) | 27 a | 95 | 418 b | 660 b | 656 b | 46.4 | <0.001 |
SOL 3—Cu (mg/kg) | 0.044 a | 0.114 a | 0.415 b | 0.438 b | 0.495 b | 0.0473 | <0.01 |
Total 4 Cu (mg) | 0.086 a | 0.242 a | 0.815 b | 1.290 c | 1.304 c | 0.0835 | <0.001 |
UNSOL—Cu (% of total Cu) | 30.9 | 29.3 | 31.3 | 39.6 | 38.9 | 4.46 | 0.45 |
BACT—Cu (% of total Cu) | 12.1 | 17.5 | 26.5 | 23.2 | 18.7 | 3.82 | 0.22 |
SOL—Cu (% of total Cu) | 57.0 | 53.2 | 57.8 | 37.2 | 42.4 | 5.39 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigh, A.; Criste, A.; Gragnic, K.; Moquet, L.; Gerard, C. Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro. Agriculture 2023, 13, 879. https://doi.org/10.3390/agriculture13040879
Vigh A, Criste A, Gragnic K, Moquet L, Gerard C. Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro. Agriculture. 2023; 13(4):879. https://doi.org/10.3390/agriculture13040879
Chicago/Turabian StyleVigh, Antal, Adriana Criste, Kévin Gragnic, Léa Moquet, and Christine Gerard. 2023. "Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro" Agriculture 13, no. 4: 879. https://doi.org/10.3390/agriculture13040879
APA StyleVigh, A., Criste, A., Gragnic, K., Moquet, L., & Gerard, C. (2023). Ruminal Solubility and Bioavailability of Inorganic Trace Mineral Sources and Effects on Fermentation Activity Measured in Vitro. Agriculture, 13(4), 879. https://doi.org/10.3390/agriculture13040879