Oat Hull as a Source of Lignin-Cellulose Complex in Diets Containing Wheat or Barley and Its Effect on Performance and Morphometric Measurements of Gastrointestinal Tract in Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Diets and Nutrition
2.2. Performance of Broiler Chickens
2.3. Dissection of Organs from the Upper Part of GIT
2.4. Chemical Analysis of the Content of Nutrients and Structural Components in Feed
2.5. Microbial Analysis
2.6. Statistical Analysis
3. Results
3.1. Performance of Broiler Chickens
3.2. The Development of Gastrointestinal Tract
3.3. Relation between Development of Gastrointestinal Tract and Microorganisms
3.4. Relation between Development of Gastrointestinal Tract and Dietary Fiber Fractions
4. Discussion
4.1. Performance of Broiler Chickens
4.2. Morphometric Measurements of the Gastrointestinal Tract
4.3. Correlation between Development of Gastrointestinal Tract and Microorganisms
5. Conclusions
- Barley grain and oat hull in the amount of 3% increased the metabolic weight of the gizzard.
- The use of 1% of oat hull in the diet shortened the total length of the intestines and the highest body weight of the birds was recorded in this group.
- SDF contained in barley and wheat grain resulted in a higher metabolic weight of the proventriculus of broiler chickens compared to birds receiving corn grain in their diet (p ≤ 0.05).
- The increase in the weight of the glandular stomach (r = 0.392), muscle (r = 0.486) and duodenum (r = 0.657) was positively correlated with the count of E. coli bacteria in the crop indicating a barrier effect, especially of the gizzard.
- The increase in the content of the crude fiber, IDF and ADF contained in diets was positively correlated in broiler chickens with an increase in the weight of the proventriculus, gizzard and duodenal length.
- The increase in the weight of the proventriculus (r = 0.392), gizzard (r = 0.486) and duodenum (r = 0.657) was positively correlated with the growth of E. coli bacteria in the crop. The opposite effect in the case of negative correlation was determined in the case of the duodenum and E. coli count (r = −0.593).
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tejeda, O.J.; Kim, W.K. Role of dietary fiber in poultry nutrition. Animals 2021, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Chassé, E.; Guey, F.; Bach Knudsen, K.E.; Zijlstra, R.T.; Letourney-Montminy, M.-P. Toward precise nutrient value of feed in growing pigs: Effect of meal, size, frequency and dietary fibre on nutrient utilisation. Animals 2021, 11, 2598. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Bedford, M.R.; Wu, S.-B.; Morgan, N.K. Dietary soluble non-starch polysaccharide level influences performance, nutrient utilization and disappearance of non-starch polysaccharides in broiler chickens. Animals 2022, 12, 547. [Google Scholar] [CrossRef]
- Smulikowska, S.; Rutkowski, A. Polish Requirements of Poultry Nutrition, 4th ed.; Instytut Fizjologi i Zywienia Zwierzat, PAN: Jablonna, Poland, 2005. (In Polish) [Google Scholar]
- Mateos, G.G.; Jimenez-Moreno, E.; Serrano, M.P.; Lázaro, R.P. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J. Appl. Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Berrocoso, J.D.; García-Ruiz, A.; Page, G.; Jaworski, N.W. The effect of added oat hulls or sugar beet pulp to diets containing rapidly or slowly digestible protein sources on broiler growth performance from 0 to 36 days of age. Poult. Sci. 2020, 99, 6859–6866. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.T.; Wiseman, J.; Bedford, M.R. Effects of age and diet on the viscosity of intestinal contents in broiler chickens. Brit. Poult. Sci. 1999, 40, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Abbas Hilmi, H.T.; Surakka, A.; Apajalahti, J.; Saris, P.E.J. Identification of the most abundant Lactobacillus species in the crop of 1-and 5-week-old broiler chickens. Appl. Environ. Microbiol. 2007, 73, 7867–7873. [Google Scholar] [CrossRef] [PubMed]
- Hetland, H.; Svihus, B.; Krogdahl, A. Effects of oat hulls and wood shavings on digestion in broilers and layers fed diets based on whole or ground wheat. Brit. Poult. Sci. 2003, 44, 275–282. [Google Scholar] [CrossRef]
- Jamroz, D.; Jakobsen, K.; Bach Knudsen, K.E.; Wiliczkiewicz, A.; Orda, J. Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp. Biochem. Physiol. Part A 2002, 131, 657–668. [Google Scholar] [CrossRef]
- Shakouri, M.D.; Kermenshahi, H.; Mohsenzadeh, M. Effect of different non starch polysaccharides in semi purified diets on performance and intestinal microflora of young broiler chickens. Int. J. Poult. Sci. 2006, 5, 557–561. [Google Scholar]
- van Soest, P.J.; Wine, R.H. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell wall constituents. J. Assoc. Off. Anal. Chem. 1967, 50, 50–55. [Google Scholar] [CrossRef]
- Asp, N.G. Dietary fibre-definition, chemistry and analytical determination. Mol. Asp. Med. 1987, 9, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Krás, R.V.; Kessler, A.d.M.; Ribeiro, A.M.L.; Henn, J.D.; Bockor, L.; Sbrissia, A.F. Effect of dietary fiber, genetic strain and age on the digestive metabolism of broiler chickens. Braz. J. Poult. Sci. 2013, 15, 83–90. [Google Scholar] [CrossRef]
- Menkovska, M.; Levkov, V.; Damjanovski, D.; Gjorgovska, N.; Knezevic, D.; Nikolova, N.; Andreevska, D. Content of TDF, SDF and IDF in cereals grown by organic and conventional farming–a short report. Pol. J. Food Nutr. Sci. 2017, 67, 241–244. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef] [PubMed]
- van der Hoeven-Hangoor, E.; Rademaker, C.J.; Paton, N.J.; Verstegen, M.W.A.; Hendriks, W.H. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples. Poult. Sci. 2014, 93, 1782–1792. [Google Scholar] [CrossRef]
- Tejeda, O.J.; Kim, W.K. The effects of cellulose and soybean hulls as sources of dietary fiber on the growth performance, organ growth, gut histomorphology and nutrient digestibility of broiler chickens. Poult. Sci. 2020, 99, 6828–6836. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Hanigan, M.; Zaefarian, F.; Cowieson, A.J.; Nielsen, M.O.; Storm, A.C. The influence of feed ingredients on CP and starch disappearance rate in complex diets for broiler chickens. Poult. Sci. 2021, 100, 101068. [Google Scholar] [CrossRef]
- Han, H.Y.; Zhang, K.Y.; Ding, X.M.; Bai, S.P.; Luo, Y.H.; Wang, J.P.; Zeng, Q.F. Effect of dietary fiber levels on performance, gizzard development, intestinal morphology, and nutrient utilization in meat ducks from 1 to 21 days of age. Poult. Sci. 2017, 96, 4333–4341. [Google Scholar] [CrossRef]
- Svihus, B. Function of the digestive system. J. Appl. Poult. Res. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Rawash, M.A.; Farkas, V.; Such, N.; Mezolaki, A.; Menyhart, L.; Pal, L.; Csitari, G.; Dublecz, K. Effects of barley- and oat-based diets on some gut parameters and microbiota composition of small intestine and ceca of broiler chicken. Agriculture 2023, 13, 169. [Google Scholar] [CrossRef]
- Sacranie, A.; Svihus, B.; Denstadli, V.; Moen, B.; Iji, P.A.; Choct, M. The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poult. Sci. 2012, 91, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Zuidhof, M.J.; Holm, D.E.; Renema, R.A.; Jalal, M.A.; Robinson, F.E. Effects of broiler breeder management of pullet body weight and carcass uniformity. Poult. Sci. 2015, 94, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Svihus, B.; Hetland, H. Illeal starch digestibility in growing broiler chickens fed on a wheat-based diet is improved by mash feeding, dilution with cellulose of whole wheat inclusion. Brit. Poult. Sci. 2001, 42, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Kimiaeitalab, M.V.; Cámara, L.; Mirzaie Goudarzi, S.; Jiménez-Moreno, E.; Mateos, G.G. Effects of the inclusion of sunflower hulls in the diet on growth performance and digestive tract traits of broilers and pullets fed a broiler diet from zero to 21 d of age. Poult. Sci. 2017, 96, 581–592. [Google Scholar] [CrossRef]
- Rezaei, M.; Hajati, H. Effect of dilution at early age on performance, carcass characteristics and blood parameters of broilers chickens. Ital. J. Anim. Sci. 2010, 9, 93–100. [Google Scholar] [CrossRef]
- Adibmoradi, M.; Navidshad, B.; Jahrome, M.F. The effect of moderate levels of finely ground insoluble fibre on small intestine morphology, nutrient digestibility and performance of broiler chickens. Ital. J. Anim. Sci. 2016, 15, 310–317. [Google Scholar] [CrossRef]
- Liebl, M.; Gierus, M.; Potthast, C.; Schedle, K. Influence of insoluble dietary fibre on expression or pro-inflammatory marker genes in caecum, illeal morphology, and foot pad dermatitis in broiler. Animals 2022, 12, 2069. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B. Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Brit. Poult. Sci. 2001, 42, 354–361. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; de Coca-Sinova, A.; Lázaro, R.P.; Cámara, L.; Mateos, G.G. Insoluble fiber sources in mash or pellets diets for young broilers. 2. Effects on gastrointestinal tract development and nutrient digestibility. Poult. Sci. 2019, 98, 2531–2547. [Google Scholar] [CrossRef]
- Jørgensen, H.; Zhao, X.Q.; Eggum, B.O. The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. Brit. J. Nutr. 1996, 75, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Toghyani, M.; Gheisari, A. Effect of various fiber types and choice feeding of fiber on performance, humoral immunity, and fiber preference in broiler chicks. Poult. Sci. 2015, 94, 2734–2743. [Google Scholar] [CrossRef]
- Adewole, D.; Maclsaac, J.; Fraser, G.; Rathgeber, B. Effect of oat hulls incorporated in the diet or fed as free choice on growth performance, carcass yield, gut morphology and digesta short chain fatty acids of broiler chickens. Sustainability 2020, 12, 3744. [Google Scholar] [CrossRef]
- World’s Poultry Science Association, Nutrition of the European Federation of Branches Subcommittee Energy of the Working Group (Beekbergen). European Tables of Energy Values of Feeds for Poultry, 3rd ed.; WPSA: Wageningen, The Netherlands, 1989; pp. 11–28. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Wróblewska, P.; Hikawczuk, T.; Sierżant, K.; Wiliczkiewicz, A.; Szuba-Trznadel, A. Effect of oat hull as a source of insoluble dietary fibre on changes in the microbial status of gastrointestinal tract in broiler chickens. Animals 2022, 12, 2721. [Google Scholar] [CrossRef]
- Tibco Software Inc. Statistica (Data Analysis Software System) 2017, Ver. 13; Tibco Software Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Bach Knudsen, K.E. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 1997, 67, 319–338. [Google Scholar] [CrossRef]
- González-Alvarado, J.M.; Jiménez-Moreno, E.; González-Sánchez, D.; Lázaro, R.; Mateos, G.G. Effect of inclusion of oat hulls and sugar beet pulp in the diet on productive performance and digestive traits of broilers from 1 to 42 days of age. Anim. Feed Sci. Technol. 2010, 162, 37–46. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; de Coca-Sinova, A.; González-Alvarado, J.M.; Mateos, G.G. Inclusion of insoluble fiber sources in mash or pellet diets for young broilers. 1. Effects on growth performance and water intake. Poult. Sci. 2016, 95, 41–52. [Google Scholar] [CrossRef]
- Mulla, N.A.; Desai, D.N.; Avari, P.E.; Ranade, A.S. Use of natural insoluble-fiber in oat hulls (Avena sativa) as non-antibiotic growth promoter in broilers. Int. J. Livest. Res. 2020, 10, 156–164. [Google Scholar] [CrossRef]
- Adewole, D. Effect of dietary supplementation with coarse or extruded oat hulls on growth performance, blood biochemical parameters, cecal microbiota and short chain fatty acids in broiler chickens. Animals 2020, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; González-Sánchez, D.; Lázaro, R.; Mateos, G.G. Effects of type and particle size of dietary fiber on growth performance and digestive traits of broilers from 1 to 21 days of age. Poult. Sci. 2010, 89, 2197–2212. [Google Scholar] [CrossRef]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.B. Coarse particle inclusion and lignocellulose-rich fiber addition in feed benefit performance and health of broiler chickens. Poult. Sci. 2017, 96, 3272–3281. [Google Scholar] [CrossRef] [PubMed]
- Kheravii, S.K.; Morgan, N.K.; Swick, R.A.; Choct, M.; Wu, S.-B. Roles of dietary fibre and ingredient particle size in broiler nutrition. World’s Poult. Sci. J. 2018, 74, 301–316. [Google Scholar] [CrossRef]
- Shirzadegan, K.; Taheri, H.R. Insoluble fibers affected the performance, carcass characteristics and serum lipid of broiler chickens broiler chickens fed wheat-based diet. Iran. J. Appl. Anim. Sci. 2017, 7, 109–117. [Google Scholar]
- Xu, Y.; Stark, C.R.; Ferhet, P.R.; Williams, C.M.; Auttawong, S.; Brake, J. Effects of dietary coarsely ground corn and litter type on broiler live performance, litter characteristics, gastrointestinal tract development, apparent illeal digestibility of energy and nitrogen and intestinal morphology. Poult. Sci. 2015, 94, 353–361. [Google Scholar] [CrossRef]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G. Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chicken. Brit. Poult. Sci. 2009, 50, 366–375. [Google Scholar] [CrossRef] [PubMed]
- González-Alvarado, J.M.; Jiménez-Moreno, E.; Lázaro, R.; Mateos, G.G. Effect of type of cereal, heat processing of the cereal and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poult. Sci. 2007, 86, 1705–1715. [Google Scholar] [CrossRef]
- Jones, G.P.D.; Taylor, R.D. The incorporation of whole grain into pelleted broiler chicken diets: Production and physiological responses. Brit. Poult. Sci. 2001, 42, 477–483. [Google Scholar] [CrossRef] [PubMed]
- González-Alvarado, J.M.; Jiménez-Moreno, E.; Valencia, D.G.; Mateos, G.G. Effects of fiber source and heat processing of cereal on the development and pH of the gastrointestinal tract of broilers fed diets based on corn and rice 1. Poult. Sci. 2008, 87, 1779–1795. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; González-Alvarado, J.M.; González-Serrano, A.; Lázaro, R.; Mateos, G.G. Effect of dietary fiber and fat on performance and digestive traits of broilers from one to twenty-one days of age. Poult. Sci. 2009, 88, 2562–2574. [Google Scholar] [CrossRef]
- Shang, Q.H.; Liu, S.J.; He, T.F.; Liu, H.S.; Mahfuz, S.; Ma, X.K.; Piao, X.S. Effects of wheat bran in comparison to antibiotics on growth performance, intestinal immunity, barrier function, and microbial composition in broiler chickens. Poult. Sci. 2020, 99, 4929–4938. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B.; Choct, M. Role of insoluble fiber in gizzard activity in layers. J. Appl. Poult. Res. 2005, 14, 38–46. [Google Scholar] [CrossRef]
- Kim, E.; Morgan, N.K.; Moss, A.F.; Li, L.; Ader, P.; Choct, M. The flow of non-starch polysaccharides along the gastrointestinal tract of broiler chickens fed either a wheat- or maize-based diet. Anim. Nutr. 2021, 9, 138–142. [Google Scholar] [CrossRef]
- Sabour, S.; Tabeidian, S.A.; Sadeghi, G. Dietary organic acid and fiber sources affect performance, intestinal morphology, immune responses and gut microflora in broilers. Anim. Nutr. 2019, 5, 156–162. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Maize OH ** 0% | Maize OH 1% | Maize OH 3% | Wheat OH 0% | Wheat OH 1% | Wheat OH 3% | Barley OH 0% | Barley OH 1% | Barley OH 3% |
---|---|---|---|---|---|---|---|---|---|
Maize | 55.9 | 54.7 | 52.0 | 8.1 | 6.8 | 4.1 | 0.7 | - | - |
Wheat | - | - | - | 50.0 | 50.0 | 50.0 | - | - | - |
Barley | - | - | - | - | - | - | 50.0 | 50.0 | 50.0 |
Soybean meal | 36.9 | 37.0 | 37.4 | 33.4 | 33.6 | 33.9 | 38.2 | 37.8 | 35.8 |
Soybean oil | 2.8 | 3.0 | 3.3 | 4.1 | 4.3 | 4.7 | 6.9 | 7.0 | 7.0 |
Oat hull | - | 1.0 | 3.0 | - | 1.0 | 3.0 | - | 1.0 | 3.0 |
Dicalcium phosphate | 2.11 | 2.00 | 2.03 | 1.93 | 1.85 | 1.85 | 1.72 | 1.72 | 1.72 |
NaCl | 0.34 | 0.35 | 0.34 | 0.37 | 0.35 | 0.35 | 0.36 | 0.37 | 0.36 |
Limestone | 0.24 | 0.24 | 0.21 | 0.31 | 0.31 | 0.31 | 0.40 | 0.40 | 0.40 |
DL- Methionine 98% | 0.21 | 0.21 | 0.22 | 0.23 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
L-Lysine HCl 78% | - | - | - | 0.07 | 0.07 | 0.07 | - | - | - |
Cr2O3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Premix DKA-s * | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Specification | Maize OH ** 0% | Maize OH 1% | Maize OH 3% | Wheat OH 0% | Wheat OH 1% | Wheat OH 3% | Barley OH 0% | Barley OH 1% | Barley OH 3% |
---|---|---|---|---|---|---|---|---|---|
Metabolic energy (MJ∙kg−1) | 12.2 | 12.3 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 |
Nutrients (%) | |||||||||
Dry mater | 92.7 | 92.2 | 91.9 | 91.6 | 90.0 | 90.1 | 90.1 | 92.0 | 90.1 |
Crude protein | 22.5 | 22.5 | 21.8 | 21.2 | 21.1 | 21.3 | 22.6 | 23.1 | 21.8 |
Ether extract | 4.93 | 5.28 | 5.49 | 5.32 | 5.71 | 5.84 | 8.38 | 8.42 | 7.80 |
Crude ash | 4.11 | 4.08 | 4.10 | 3.87 | 3.93 | 4.02 | 5.07 | 5.12 | 5.09 |
Structural components (%) | |||||||||
Crude fiber | 2.94 | 3.12 | 3.67 | 3.20 | 3.51 | 4.07 | 4.81 | 5.04 | 5.45 |
TDF * | 20.3 | 21.2 | 22.0 | 19.2 | 19.9 | 20.9 | 24.8 | 25.3 | 26.3 |
SDF * | 1.21 | 1.21 | 1.22 | 2.58 | 2.61 | 2.63 | 1.70 | 1.74 | 1.69 |
IDF * | 19.1 | 20.0 | 20.8 | 16.6 | 17.3 | 18.3 | 23.1 | 23.6 | 24.7 |
NDF * | 11.0 | 11.5 | 12.6 | 15.9 | 16.1 | 17.6 | 15.1 | 15.6 | 16.1 |
ADF * | 3.84 | 4.24 | 4.71 | 4.12 | 4.43 | 5.01 | 5.15 | 5.55 | 6.15 |
Hemicelluloses | 7.15 | 7.21 | 7.86 | 11.8 | 11.7 | 12.6 | 9.96 | 10.1 | 10.7 |
Count of microorganisms in feed (log CFU·g−1) | |||||||||
TAMC * | 1.45 | 1.44 | 1.40 | 0.34 | 0.33 | 0.29 | 1.29 | 1.28 | 1.30 |
Lactobacillus spp. | 2.13 | 2.12 | 2.11 | 0.89 | 0.89 | 0.87 | 1.26 | 1.26 | 1.28 |
TYMC * | 1.91 | 1.90 | 1.86 | 1.82 | 1.80 | 1.76 | 1.46 | 1.44 | 1.43 |
E. coli | - | - | - | - | - | - | - | - | - |
Salmonella sp. | - | - | - | - | - | - | - | - | - |
Specification | Body Weight (g) | ||||||
---|---|---|---|---|---|---|---|
Day 7 | Day 11 | Day 14 | Day 18 | Day 21 | Day 25 | Day 28 | |
Cereal | |||||||
Corn | 135.2 A | 252.2 Aa | 361.8 A | 550.9 | 728.8 | 1004.3 | 1216.3 a |
Wheat | 131.5 a | 241.1 b | 354.5 A | 540.7 | 707.2 | 991.2 | 1172.4 Bb |
Barley | 126.9 Bb | 234.9 B | 339.4 B | 535.6 | 712.8 | 1011.0 | 1237.5 Aa |
Oat hull | |||||||
0% | 133.6 a | 244.3 | 353.9 a | 549.5 | 718.6 | 985.4 | 1201.9 ab |
1% | 129.8 b | 239.2 | 343.2 Bb | 530.8 | 713.4 | 1022.8 | 1240.1 a |
3% | 130.2 b | 244.7 | 358.5 A | 547.0 | 716.7 | 998.4 | 1184.1 b |
SEM | 1.043 | 1.896 | 2.600 | 3.749 | 4.735 | 8.611 | 11.586 |
p-value | |||||||
Cereal | 0.000 | 0.000 | 0.000 | 0.224 | 0.109 | 0.536 | 0.011 |
Oat hull | 0.015 | 0.180 | 0.003 | 0.089 | 0.873 | 0.128 | 0.030 |
Cereal * Oat hull | 0.001 | 0.521 | 0.881 | 0.625 | 0.054 | 0.036 | 0.014 |
Specification | Feed Intake (g/head/day) | ||||||
---|---|---|---|---|---|---|---|
Day 7 | Day 11 | Day 14 | Day 18 | Day 21 | Day 25 | Day 28 | |
Cereal | |||||||
Corn | 21.4 | 30.3 A | 34.6 ab | 42.6 | 50.1 | 58.7 | 64.5 a |
Wheat | 22.2 | 30.1 A | 35.2 a | 43.1 | 49.2 | 58.9 | 63.8 A |
Barley | 21.6 | 28.6 B | 33.6 b | 42.4 | 49.7 | 60.7 | 67.3 Bb |
Oat hull | |||||||
0% | 22.1 A | 28.9 A | 34.1 | 42.4 | 49.1 | 57.9 B | 64.3 |
1% | 22.3 A | 29.6 AB | 34.3 | 42.3 | 50.3 | 61.1 A | 66.7 |
3% | 21.0 B | 30.5 B | 35.1 | 43.4 | 49.6 | 59.3 AB | 64.5 |
SEM | 0.273 | 0.363 | 0.316 | 0.229 | 0.248 | 0.552 | 0.599 |
p-value | |||||||
Cereal | 0.084 | 0.006 | 0.033 | 0.365 | 0.279 | 0.108 | 0.016 |
Oat hull | 0.003 | 0.013 | 0.182 | 0.097 | 0.111 | 0.016 | 0.099 |
Cereal * Oat hull | 0.000 | 0.000 | 0.007 | 0.245 | 0.185 | 0.018 | 0.165 |
Specification | Feed Conversion (kg feed∙kg ADG−1) | ||||||
---|---|---|---|---|---|---|---|
Day 7 | Day 11 | Day 14 | Day 18 | Day 21 | Day 25 | Day 28 | |
Cereal | |||||||
Corn | 1.11 A | 1.32 A | 1.34 | 1.39 | 1.44 | 1.46 | 1.49 |
Wheat | 1.18 B | 1.37 Bb | 1.39 | 1.44 | 1.46 | 1.49 | 1.52 |
Barley | 1.19 B | 1.34 a | 1.39 | 1.43 | 1.46 | 1.50 | 1.52 |
Oat hull | |||||||
0% | 1.16 Ab | 1.30 A | 1.35 | 1.39 a | 1.43 | 1.47 | 1.50 |
1% | 1.20 B | 1.36 B | 1.40 | 1.44 b | 1.48 | 1.49 | 1.51 |
3% | 1.13 Aa | 1.37 B | 1.37 | 1.43 b | 1.45 | 1.49 | 1.53 |
SEM | 0.013 | 0.015 | 0.013 | 0.009 | 0.008 | 0.011 | 0.012 |
p-value | |||||||
Cereal | 0.000 | 0.006 | 0.088 | 0.074 | 0.486 | 0.233 | 0.236 |
Oat hull | 0.000 | 0.000 | 0.153 | 0.046 | 0.056 | 0.534 | 0.581 |
Cereal * Oat hull | 0.000 | 0.000 | 0.024 | 0.076 | 0.299 | 0.016 | 0.023 |
Specification | Slaughter Weight (kg) * | Weight (g) | Length (cm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Crop without Digesta | Proventriculus | Gizzard | Duodenum | Jejunum | Ileum | Large Intestine | Ceca (sum) | ||
Cereal | |||||||||
Corn | 1.22 | 3.1 | 3.3 Bb | 8.7 B | 8.2 B | 15.8 | 15.8 | 3.2 | 9.5 |
Wheat | 1.25 | 3.3 | 3.4 a | 8.7 B | 8.4 B | 16.2 | 16.1 | 3.0 | 9.9 |
Barley | 1.31 | 3.5 | 3.6 A | 9.6 A | 8.8 A | 16.1 | 16.1 | 3.3 | 10.0 |
Oat hull | |||||||||
0% | 1.26 | 3.6 | 3.3 | 8.4 B | 8.5 | 16.3 | 16.3 A | 3.1 | 9.8 |
1% | 1.30 | 3.1 | 3.5 | 8.9 AB | 8.4 | 15.8 | 15.6 Bb | 3.2 | 9.6 |
3% | 1.25 | 3.2 | 3.4 | 9.6 A | 8.6 | 16.0 | 16.1 a | 3.2 | 10.0 |
SEM | 0.012 | 0.110 | 0.042 | 0.153 | 0.089 | 0.102 | 0.105 | 0.044 | 0.111 |
p-value | |||||||||
Cereal | - | 0.769 | 0.006 | 0.003 | 0.001 | 0.101 | 0.267 | 0.613 | 0.085 |
Oat hull | - | 0.179 | 0.180 | 0.000 | 0.781 | 0.204 | 0.019 | 0.114 | 0.489 |
Slaughter weight ** | - | 0.204 | 0.508 | 0.779 | 0.125 | 0.160 | 0.334 | 0.825 | 0.113 |
Specification | Slaughter Weight (kg) * | Total Length of Intestines (cm) | Percentage Share of Total Length of Intestines (%) | ||||
---|---|---|---|---|---|---|---|
Duodenum | Jejunum | Ileum | Large Intestine | Ceca | |||
Cereal | |||||||
Corn | 1.22 | 52.5 | 15.7 b | 30.1 | 30.1 A | 6.0 | 18.2 |
Wheat | 1.25 | 53.6 | 15.6 b | 30.2 | 30.0 a | 5.7 | 18.5 |
Barley | 1.31 | 54.3 | 16.2 a | 29.7 | 29.6 Bb | 6.0 | 18.4 |
Oat hull | |||||||
0% | 1.26 | 54.0 a | 15.7 | 30.2 | 30.1 A | 5.8 | 18.2 |
1% | 1.30 | 52.6 b | 16.0 | 30.1 | 29.6 Bb | 6.0 | 18.3 |
3% | 1.25 | 53.8 a | 15.9 | 29.7 | 29.9 a | 5.9 | 18.5 |
SEM | 0.012 | 0.327 | 0.109 | 0.107 | 0.084 | 0.073 | 0.144 |
p-value | |||||||
Cereal | - | 0.663 | 0.016 | 0.087 | 0.032 | 0.102 | 0.783 |
Oat hull | - | 0.034 | 0.326 | 0.161 | 0.008 | 0.480 | 0.603 |
Slaughter weight ** | - | 0.014 | 0.154 | 0.288 | 0.694 | 0.660 | 0.784 |
Specification | TAMC | E. coli | TYMC | Lactobacillus spp. |
---|---|---|---|---|
Crop | ||||
Crop without digesta | 0.052 | −0.040 | 0.129 | −0.078 |
Proventriculus | 0.187 | 0.392 * | −0.173 | 0.217 |
Gizzard | −0.057 | 0.486 * | −0.204 | −0.119 |
Duodenum | 0.043 | 0.657 * | −0.171 | 0.184 |
Jejunum | 0.203 | 0.160 | 0.215 | −0.266 |
Ileum | 0.133 | 0.169 | −0.034 | −0.035 |
Large intestine | −0.351 | 0.131 | −0.035 | −0.367 |
Ceca | 0.213 | 0.207 | −0.125 | 0.119 |
Ileum | ||||
Crop without digesta | 0.114 | 0.013 | −0.526 * | 0.167 |
Proventriculus | −0.079 | −0.236 | 0.041 | −0.393 * |
Gizzard | 0.346 | −0.017 | 0.123 | −0.247 |
Duodenum | −0.114 | −0.593 * | 0.191 | −0.465 * |
Jejunum | 0.407 * | 0.017 | −0.213 | −0.385 * |
Ileum | 0.177 | −0.275 | −0.212 | −0.330 |
Large intestine | 0.349 | −0.003 | 0.045 | 0.037 |
Ceca | 0.096 | −0.114 | −0.164 | −0.289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hikawczuk, T.; Szuba-Trznadel, A.; Wróblewska, P.; Wiliczkiewicz, A. Oat Hull as a Source of Lignin-Cellulose Complex in Diets Containing Wheat or Barley and Its Effect on Performance and Morphometric Measurements of Gastrointestinal Tract in Broiler Chickens. Agriculture 2023, 13, 896. https://doi.org/10.3390/agriculture13040896
Hikawczuk T, Szuba-Trznadel A, Wróblewska P, Wiliczkiewicz A. Oat Hull as a Source of Lignin-Cellulose Complex in Diets Containing Wheat or Barley and Its Effect on Performance and Morphometric Measurements of Gastrointestinal Tract in Broiler Chickens. Agriculture. 2023; 13(4):896. https://doi.org/10.3390/agriculture13040896
Chicago/Turabian StyleHikawczuk, Tomasz, Anna Szuba-Trznadel, Patrycja Wróblewska, and Andrzej Wiliczkiewicz. 2023. "Oat Hull as a Source of Lignin-Cellulose Complex in Diets Containing Wheat or Barley and Its Effect on Performance and Morphometric Measurements of Gastrointestinal Tract in Broiler Chickens" Agriculture 13, no. 4: 896. https://doi.org/10.3390/agriculture13040896
APA StyleHikawczuk, T., Szuba-Trznadel, A., Wróblewska, P., & Wiliczkiewicz, A. (2023). Oat Hull as a Source of Lignin-Cellulose Complex in Diets Containing Wheat or Barley and Its Effect on Performance and Morphometric Measurements of Gastrointestinal Tract in Broiler Chickens. Agriculture, 13(4), 896. https://doi.org/10.3390/agriculture13040896