Bioactive Compounds Extraction Using a Hybrid Ultrasound and High-Pressure Technology for Sustainable Farming Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Approach and Expected Output
2.2. Description of the New Pilot Equipment Designed for the Extraction of Bioactive Elements from Plants, Using Percolation and Sonication
2.3. Biofertilizer Production Technology Using Three Distinct Extraction Methods
2.3.1. Operation Mode No. 1: Extraction by High Pressure
2.3.2. Operation Mode No. 2: Extraction Using the Ultrasound Process
2.3.3. Operation Mode No. 3: Extraction Using Hybrid Process
2.3.4. Testing the Bioactive Compounds for Vegetable Crops Established Outdoor
3. Results
Bioactive Solutions Testing on Vegetable Crops Established in the Field
4. Discussion
4.1. Overview and Limitations of the Current Research
4.2. The Stimulation Rate Evaluation after 10 Days from the Application of the Extracts
4.3. Evaluation of the Attack Frequency of Diseases and Pests after 10 Days from the Treatment with Plant Extracts
4.4. The Influence of the Obtained Solutions to the Chlorophyll Content in the Leaves
4.5. Discussions Regarding the Hybrid Extraction Technology Compared to the Ultrasonication and High-Pressure Functioning
4.6. Comparative Evaluation of the Results with Other Similar Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lengai, G.; Muthomi, J. Biopesticides and Their Role in Sustainable Agricultural Production. J. Biosci. Med. 2018, 6, 7–41. [Google Scholar] [CrossRef]
- Dini, I. Bio Discarded from Waste to Resource. Foods 2021, 10, 2652. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Luo, X. Advances in ultra-sound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Nenciu, F.; Oprescu, M.R.; Biris, S.-S. Improve the Constructive Design of a Furrow Diking Rotor Aimed at Increasing Water Consumption Efficiency in Sunflower Farming Systems. Agriculture 2022, 12, 846. [Google Scholar] [CrossRef]
- Nenciu, F.; Voicea, I.; Cocarta, D.M.; Vladut, V.N.; Matache, M.G.; Arsenoaia, V.-N. “Zero-Waste” Food Production System Supporting the Synergic Interaction between Aquaculture and Horticulture. Sustainability 2022, 14, 13396. [Google Scholar] [CrossRef]
- Pai, S.; Hebbar, A.; Selvaraj, S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environ. Sci. Pollut. Res. 2022, 29, 35518–35541. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrason. Sonochem. 2021, 74, 105584. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.Q.; Li, D.C.; Lv, Y.X.; Jiang, J.G. Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid. J. Food Sci. 2010, 75, C363–C368. [Google Scholar] [CrossRef]
- Dias, A.L.B.; Arroio Sergio, C.S.; Santos, P.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum). Ultrason. Sonochem. 2016, 31, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.A.C.; Aguiar, G.F.; Barbero, C.A.; Rezende, J. Martínez, Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound. Ultrason. Sonochem. 2015, 22, 78–88. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Wei, M.-C. Ethanol solution-modified supercritical carbon dioxide extraction of triterpenic acids from Hedyotis corymbosa with ultrasound assistance and determination of their solubilities. Sep. Purif. Technol. 2015, 150, 204–214. [Google Scholar] [CrossRef]
- Sumere, B.R.; de Souza, M.C.; dos Santos, M.P.; Bezerra, R.M.N.; da Cunha, D.T.; Martinez, J.; Rostagno, M.A. Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrason. Sonochem. 2018, 48, 151–162. [Google Scholar] [CrossRef]
- Santos, M.P.; Souza, M.C.; Sumere, B.R.; da Silva, L.C.; Cunha, D.T.; Bezerra, R.M.N.; Rostagno, M.A. Extraction of bioactive compounds from pomegranate peel (Punica granatum L.) with pressurized liquids assisted by ultrasound combined with an expansion gas. Ultrason. Sonochem. 2019, 54, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Vigano, J.; Assis, B.F.d.P.; athia-Neves, G.N.; dos Santos, P.; Meireles, M.A.A.; Veggi, P.C.; Martínez, J. Extraction of bioactive compounds from defatted passion fruit bagasse (Passiflora edulis sp.) applying pressurized liquids assisted by ultrasound. Ultrason. Sonochem. 2020, 64, 104999. [Google Scholar] [CrossRef]
- Makkar, R.; Behl, T.; Kumar, A.; Nijhawan, P.; Arora, S. Emerging therapeutic effects of herbal plants in rheumatoid arthritis. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 617–625. [Google Scholar] [CrossRef]
- Câmara, J.S.; Albuquerque, B.R.; Aguiar, J.; Corrêa, R.; Gonçalves, J.L.; Granato, D.; Pereira, J.; Barros, L.; Ferreira, I. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Shirahigue, L.; Antonini, S. Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Ciênc. Rural 2020, 50, 1–17. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- Voicea, I.; Fatu, V.; Nenciu, F.; Persu, C.; Oprescu, R. Experimental research on bioinsecticide activity obtained by using an oleic extract from dwarf silver fir on some vegetable crops. Sci. Pap.-Ser. B-Hortic. 2022, 66, 575–580. [Google Scholar]
- Azmir, J.; Sarker, M.Z.; Rahman, M.; Khan, M.S.; Awang, M.; Ferdosh, S.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Li, J.; Niu, D.; Zhang, Y.; Zeng, X.A. Physicochemical properties, antioxidant and antiproliferative activities of polysaccharides from Morinda citrifolia L. (Noni) based on different extraction methods. Int. J. Biol. Macromol. 2020, 150, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Ciriminna, R.; Carnaroglio, D.; Delisi, R.; Arvati, S.; Tamburino, A.; Pagliaro, M. Industrial feasibility of natural products extraction with microwave technology. Chem. Sel. Rev. 2016, 1, 549–555. [Google Scholar] [CrossRef]
- Ciobotaru, I.E.; Nenciu, F.; Vaireanu, D.I. The Electrochemical Generation of Ozone using an Autonomous Photovoltaic System. Rev. Chim. 2013, 64, 1339–1342. [Google Scholar]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes—A Review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Gonzalez, M.; Barrios, S.; Budelli, E.; Pérez, N.; Lema, P.; Heinzen, H. Ultrasound assisted extraction of bioactive compounds in fresh and freeze-dried Vitis vinifera cv Tannat grape pomace. Food Bioprod. Process 2020, 124, 378–386. [Google Scholar] [CrossRef]
- Rosello-Soto, E.; Koubaa, M.; Moubarik, A.; Lopes, R.P.; Saraiva, J.A.; Boussetta, N. Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends Food Sci. Technol. 2015, 45, 296–310. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushanb, B.; Rosalesa, A.; Rodriguez Turienzoa, L.; Cortinaca, J.L. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Anticona, M.; Blesa, J.; Frigola, A.; Esteve, M.J. High biological value compounds extraction from citrus waste with non-conventional methods. Foods 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Roig, P.; Picó, Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. Trends Anal. Chem. 2015, 71, 55–64. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Mateus, N.; Cardoso, S.M. Optimization of phlorotannins extraction from Fucus vesiculosus and evaluation of their potential to prevent metabolic disorders. Mar. Drugs 2019, 17, 162. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Nenciu, F.; Mircea, C.; Vladut, V.-N.; Belc, N.; Berca, M.L. Evaluation of wheat seed separation performances for new design of rotating cylindrical sieve, equipped with customizable homogenization coil. Eng. Rural. Dev. 2021, 26, 1478–1483. [Google Scholar] [CrossRef]
- Fu, Y.; Luo, J.; Qin, J.; Yang, M. Screening techniques for the identification of bioactive compounds in natural products. J. Pharm. Biomed. Anal. 2019, 168, 189–200. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Oprescu, M.R.; Biris, S.-S.; Nenciu, F. Novel Furrow Diking Equipment-Design Aimed at Increasing Water Consumption Efficiency in Vineyards. Sustainability 2023, 15, 2861. [Google Scholar] [CrossRef]
- Nenciu, F.; Voicea, I.; Stefan, V.; Nae, G.; Matache, M.; Milian, G.; Arsenoaia, V.N. Experimental research on a feed pelletizing equipment designed for small and medium-sized fish farms. INMATEH-Agric. Eng. 2022, 67, 374–383. [Google Scholar] [CrossRef]
- Zhao, X.X.; Lin, F.J.; Li, H.; Li, H.B.; Wu, D.T.; Geng, F.; Ma, W.; Wang, Y.; Miao, B.H.; Gan, R.Y. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium cepa L.). Front. Nutr. 2021, 22, 669805. [Google Scholar] [CrossRef]
- Godlewska, K.; Ronga, D.; Michalak, I. Plant extracts—importance in sustainable agriculture. Ital. J. Agron. 2021, 16, 1851. [Google Scholar] [CrossRef]
- Lin, Y.H.; Huang, H.W.; Wang, C.Y. Effects of High Pressure-Assisted Extraction on Yield, Antioxidant, Antimicrobial, and Anti-diabetic Properties of Chlorogenic Acid and Caffeine Extracted from Green Coffee Beans. Food Bioprocess. Technol. 2022, 15, 1529–1538. [Google Scholar] [CrossRef]
- Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT-Food Sci. Technol. 2004, 37, 263–268. [Google Scholar] [CrossRef]
- Shrestha, D.K.; Sapkota, H.; Baidya, P.; Basnet, S. Antioxidant and antibacterial activities of Allium sativum and Allium cepa. Bull. Pharm. Res. 2016, 6, 50–55. [Google Scholar]
- Jouvensal, L.; Quillien, L.; Ferrasson, E.; Rahbé, Y.; Guéguen, J.; Vovelle, F. PA1b, an insecticidal protein extracted from pea seeds (Pisum sativum): 1H-2-D NMR study and molecular modeling. Biochemistry 2003, 42, 11915–11923. [Google Scholar] [CrossRef] [PubMed]
- Hadrich, F.; El Arbi, M.; Boukhris, M.; Sayadi, S.; Cherif, S. Valorization of the peel of pea: Pisum sativum by evaluation of its antioxidant and antimicrobial activities. J. Oleo Sci. 2014, 63, 1177–1183. [Google Scholar] [CrossRef]
- Oliveira, H.D.; Sousa, D.O.; Oliveira, J.T.; Carlini, C.R.; Oliveira, H.P.; Pereira, M.L.; Rocha, R.O.; Morais, K.S.J.; Gomez-Filho, E.; Vasconcelos, I.M. Gm-TX, a new toxic protein from soybean (Glycine max) seeds with potential for controlling insect pests. Process Biochem. 2010, 45, 634–640. [Google Scholar] [CrossRef]
- Artacho Martín-Lagos, R.; Olea Serrano, M.F.; Ruiz-López, M.D. Comparative study by gas chromatography-mass spectrometry of methods for the extraction of sulfur compounds in Allium cepa L. Food Chem. 1992, 44, 305–308. [Google Scholar] [CrossRef]
- Loredana, L.; Giuseppina, A.; Filomena, N. Biochemical, antioxidant properties and antimicrobial activity of different onion varieties in the Mediterranean area. Food Meas. 2019, 13, 1232–1241. [Google Scholar] [CrossRef]
- Crévieu, I.; Bérot, S.; Guéguen, J. Large scale procedure for fractionation of albumins and globulins from pea seeds. Mol. Nutr. Food Res. 1996, 40, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Anshu, A.K.; Kumar, V.; Rani, A.; Tayalkar, T.; Parmar, H.S. Phosphatidylcholine content in soybean: Genetic variability and the effect of growing year. Not. Sci. Biol. 2022, 14, 10994. [Google Scholar] [CrossRef]
- Debra, K.R.; Misheck, D. Onion (Allium cepa) and garlic (Allium sativum) as pest control intercrops in cabbage-based intercrop systems in Zimbabwe. J. Agric. Vet. Sci. IOSR-JAVS 2014, 7, 13–17. [Google Scholar] [CrossRef]
No. | Plant Species | Biological Activity | Compounds | Bibliographical References |
---|---|---|---|---|
1 | Allium cepa | Antioxidant | Superoxide dismutase, catalase, glutathione peroxidase, peroxidase, glutathione reductase, glutathione S-transferase, glutathione, α-tocopherol, ascorbic acid, β-carotene | [41,42] |
2 | Allium cepa | Antimicrobial activity | Dipropyl disulphide, allicin | |
3 | Allium cepa | Insecticidal activity | Dimethyl disulphide | |
4 | Pisum sativum | Insecticidal activity | Protein PA1b | [43] |
5 | Glycine max | Insecticidal activity | Gm-TX | [44] |
6 | Glycine max | Extract stabilization | Lecithin | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nenciu, F.; Fatu, V.; Arsenoaia, V.; Persu, C.; Voicea, I.; Vladut, N.-V.; Matache, M.G.; Gageanu, I.; Marin, E.; Biris, S.-S.; et al. Bioactive Compounds Extraction Using a Hybrid Ultrasound and High-Pressure Technology for Sustainable Farming Systems. Agriculture 2023, 13, 899. https://doi.org/10.3390/agriculture13040899
Nenciu F, Fatu V, Arsenoaia V, Persu C, Voicea I, Vladut N-V, Matache MG, Gageanu I, Marin E, Biris S-S, et al. Bioactive Compounds Extraction Using a Hybrid Ultrasound and High-Pressure Technology for Sustainable Farming Systems. Agriculture. 2023; 13(4):899. https://doi.org/10.3390/agriculture13040899
Chicago/Turabian StyleNenciu, Florin, Viorel Fatu, Vlad Arsenoaia, Catalin Persu, Iulian Voicea, Nicolae-Valentin Vladut, Mihai Gabriel Matache, Iuliana Gageanu, Eugen Marin, Sorin-Stefan Biris, and et al. 2023. "Bioactive Compounds Extraction Using a Hybrid Ultrasound and High-Pressure Technology for Sustainable Farming Systems" Agriculture 13, no. 4: 899. https://doi.org/10.3390/agriculture13040899
APA StyleNenciu, F., Fatu, V., Arsenoaia, V., Persu, C., Voicea, I., Vladut, N. -V., Matache, M. G., Gageanu, I., Marin, E., Biris, S. -S., & Ungureanu, N. (2023). Bioactive Compounds Extraction Using a Hybrid Ultrasound and High-Pressure Technology for Sustainable Farming Systems. Agriculture, 13(4), 899. https://doi.org/10.3390/agriculture13040899