Effects of Ventilation Fans and Type of Partitions on the Airflow Speeds of Animal Occupied Zone and Physiological Parameters of Dairy Pre-Weaned Calves Housed Individually in a Barn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calf Barn
2.2. CFD Simulation
2.2.1. Geometry
2.2.2. Governing Equations, Computational Scheme, and Convergence Criteria
2.2.3. Calculating Domain and Boundary Conditions
2.2.4. Computational Grid and Grid Sensitivity analysis
2.3. Validation of CFD Results
2.4. Experimental Design
2.5. Statistical Analysis
3. Results
3.1. CFD Simulation and Field-Measurement Comparison
3.2. Comparison of Airflow Speed Distribution Results in Models 1–4
3.3. Environmental Conditions Inside The Barn and the Rectal Temperatures, Respiratory Rates, ADWG, and Health Status of Calves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bickert, W.G. Dairy Freestall Housing and Equipment, 7th ed.; MidWest Plan Service: Ames, IA, USA, 2000. [Google Scholar]
- Gulliksen, S.M.; Lie, K.I.; Loken, T.; Osteras, O. Calf mortality in Norwegian dairy herds. J. Dairy Sci. 2009, 92, 2782–2795. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.; McGuirk, S.M.; Bennett, T.B.; Cook, N.B.; Nordlund, K.V. Calf Respiratory Disease and Pen Microenvironments in Naturally Ventilated Calf Barns in Winter. J. Dairy Sci. 2006, 89, 4014–4025. [Google Scholar] [CrossRef] [PubMed]
- Neuwirth, J.G.; Norton, J.K.; Rawlings, C.A.; Thompson, F.N.; Ware, G.O. Physiologic responses of dairy calves to environmental heat stress. Int. J. Biometeorol. 1979, 23, 43–254. [Google Scholar] [CrossRef] [PubMed]
- Spain, J.N.; Spires, D.E. Effects of supplemental shade on thermoregulatory response of calves to heat challenge in a hutch environment. J. Dairy Sci. 1996, 79, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Piccione, G.; Caola, G.; Refinetti, R. Daily and estrous rhythmicity of body temperature in domestic cattle. BMC Physiol. 2003, 3, 7. [Google Scholar] [CrossRef]
- Spiers, D.E.; Spain, J.N.; Ellersieck, M.R.; Lucy, M.C. Strategic application of convective cooling to maximize the thermal gradient and reduce heat stress response in dairy cows. J. Dairy Sci. 2018, 101, 8269–8283. [Google Scholar] [CrossRef]
- Shearer, J.K.; Beede, D.K.; Bucklin, R.A.; Bray, D.R. Environmental modifications to reduce heat stress in dairy cattle. III. Agric. Pract. 1991, 12, 7–18. [Google Scholar]
- Nordlund, K.V.; Halbach, C.E. Calf Barn Design to Optimize Health and Ease of Management. Vet. Clin. N. Am-Food A. 2019, 35, 29–45. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Choi, C.; Li, D.P.; Yan, G.Q.; Li, H.; Shi, Z.X. Effects of Airspeed on the Respiratory Rate, Rectal Temperature, and Immunity Parameters of Dairy Calves Housed Individually in an Axial-Fan-Ventilated Barn. Animals 2021, 11, 354. [Google Scholar] [CrossRef]
- Tomasello, N.; Valenti, F.; Cascone, G.; Porto, S.M.C. Development of a CFD Model to Simulate Natural Ventilation in a Semi-Open Free-Stall Barn for Dairy Cows. Buildings 2019, 9, 183. [Google Scholar] [CrossRef]
- Pakari, A.; Ghani, S. Comparison of different mechanical ventilation systems for dairy cow barns: CFD simulations and field measurements. Comput. Electron. Agric. 2021, 186, 106207. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, X.S.; Mondaca, M.R.; Rong, L.; Choi, C.Y. Assessment of optimal airflow baffle locations and angles in mechanically-ventilated dairy houses using computational fluid dynamics. Comput. Electron. Agric. 2019, 165, 104930. [Google Scholar] [CrossRef]
- Norton, T.; Grant, J.; Fallon, R.; Sun, D.W. Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosyst. Eng. 2009, 103, 78–99. [Google Scholar] [CrossRef]
- Norton, T.; Grant, J.; Fallon, R.; Sun, D.W. Assessing the ventilation performance of a naturally ventilated livestock building with different eave opening conditions. Comput. Electron. Agric. 2010, 71, 7–21. [Google Scholar] [CrossRef]
- Norton, T.; Grant, J.; Fallon, R.; Sun, D.W. Improving the representation of thermal boundary conditions of livestock during CFD modelling of the indoor environment. Comput. Electron. Agric. 2010, 73, 17–36. [Google Scholar] [CrossRef]
- Callen, R.J.; Garry, F.B. Biosecurity and bovine respiratory disease. Vet. Clin. Food Anim. 2002, 18, 57–77. [Google Scholar] [CrossRef]
- Razzaque, M.A.; Abbas, S.; Al-Mutawa, T.; Bedair, M. Performance of pre-weaned female calves confined in housing and open environment hutches in Kuwait. Pak. Vet. J. 2009, 29, 1–4. [Google Scholar]
- Svensson, C.; Lundborg, K.; Emanuelson, U.; Olsson, S.O. Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases. Prev. Vet. Med. 2003, 58, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Bučková, K.; Šárová, R.; Moravcsíková, Á.; Špinka, M. The effect of pair housing on dairy calf health, performance, and behavior. J. Dairy Sci. 2021, 104, 10282–10290. [Google Scholar] [CrossRef]
- Jensen, M.B.; Larsen, L.E. Effects of level of social contact on dairy calf behavior and health. J. Dairy Sci. 2014, 97, 5035–5044. [Google Scholar] [CrossRef]
- Bolt, S.L.; Boyland, N.K.; Mlynski, D.T.; James, R.; Croft, D.P. Pair housing of dairy calves and age at pairing: Effects on weaning stress, health, production and social networks. PLoS ONE 2017, 12, e0166926. [Google Scholar] [CrossRef]
- Li, H.; Rong, L.; Zhang, G.Q. Study on convective heat transfer from pig models by CFD in a virtual wind tunnel. Comput. Electron. Agric. 2016, 123, 203–210. [Google Scholar] [CrossRef]
- Li, H.; Rong, L.; Zhang, G.Q. Reliability of turbulence models and mesh types for CFD simulations of a mechanically ventilated pig house containing animals. Biosyst. Eng. 2017, 161, 37–52. [Google Scholar] [CrossRef]
- Kondjoyan, A. A review on surface heat and mass transfer coefficients during air chilling and storage of food products. Int. J. Refrig. 2006, 29, 863–875. [Google Scholar] [CrossRef]
- Doumbia, E.M.; Janke, D.; Yi, Q.Y.; Amon, T.; Kriegel, M.; Hempel, S. CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters. Comput. Electron. Agric. 2021, 181, 105950. [Google Scholar] [CrossRef]
- Yin, S.; van ’t Ooster, B.; Ogink, N.; Groot Koerkamp, P. Assessment of porous media instead of slatted floor for modelling the airflow and ammonia emission in the pit headspace. Comput. Electron. Agric. 2016, 123, 163–175. [Google Scholar] [CrossRef]
- Rong, L.; Elhadidi, B.; Khalifa, H.; Nielsen, P. Cfd modeling of airflow in a livestock building. In Proceedings of the Clima 2010: 10th Rehva World Congress, Antalya, Turkey, 9–12 May 2010; p. 457. [Google Scholar]
- NRC. A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971. [Google Scholar]
- Bustamante, E.; Calvet, S.; Estellés, F.; Torres, A.G.; Hospitaler, A. Measurement and numerical simulation of single-sided mechanical ventilation in broiler houses. Biosyst. Eng. 2017, 160, 55–68. [Google Scholar] [CrossRef]
- Wathes, C.M.; Jones, C.D.R.; Webster, A.J.F. Ventilation, air hygiene and animal health. Vet. Rec. 1983, 113, 554–559. [Google Scholar]
- Hill, T.M.; Bateman, H.G., II; Aldrich, J.M.; Schlotterbeck, R.L. Comparisons of housing, bedding, and cooling options for dairy calves. J. Dairy Sci. 2011, 94, 2138–2146. [Google Scholar] [CrossRef]
- Hoet, A.E.; Nielsen, P.R.; Hasoksuz, M.; Thomas, C.; Wittum, T.E.; Saif, L.J. Detection of Bovine Torovirus and other Enteric Pathogens in Feces from Diarrhea Cases in Cattle. J. Vet. Diagn. Investig. 2003, 15, 205–212. [Google Scholar] [CrossRef]
- Cantor, M.C.; Neave, H.W.; Costa, J.H.C. Current perspectives on the short- and long-term effects of conventional dairy calf raising systems: A comparison with the natural environment. Transl. Anim. Sci. 2019, 3, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Lundborg, G.K.; Svensson, E.C.; Oltenacu, P.A. Herd-level risk factors for infectious diseases in Swedish dairy calves aged 0–90 days. Prev. Vet. Med. 2005, 68, 123–143. [Google Scholar] [CrossRef]
- Buczinski, S.; Borris, M.E.; Dubuc, J. Herd-level prevalence of the ultrasonographic lung lesions associated with bovine respiratory disease and related environmental risk factors. J. Dairy Sci. 2017, 101, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Hanekamp, W.J.A.; Smits, A.C.; Wierenga, H.K. Open versus closed barn and individual versus group housing for bull calves destined for beef production. Livest. Prod. Sci. 1994, 37, 261–270. [Google Scholar] [CrossRef]
- Kung, L.J.; Demarco, S.; Siebenson, L.N.; Joyner, E.; Haenlein, G.F.W.; Morris, R.M. An evaluation of two management systems for rearing calves fed milk replacer. J. Dairy Sci. 1997, 80, 2529–2533. [Google Scholar] [CrossRef]
- Wormsbecher, L.; Bergeron, R.; Haley, D.; de Passille, A.M.; Rushen, J.; Vasseur, E. A method of outdoor housing dairy calves in pairs using individual calf hutches. J. Dairy Sci. 2017, 100, 7493–7506. [Google Scholar] [CrossRef]
Air Velocity (m s−1) | 0.4 m Height | 1.0 m Height | ||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | |
ASp ≤ 0.5 | 31.04% | 9.04% | 30.63% | 11.28% | 34.09% | 0.85% | 34.12% | 5.56% |
0.5 < ASp ≤ 1 | 21.83% | 10.13% | 21.60% | 17.60% | 25.57% | 28.94% | 23.86% | 33.30% |
ASp > 1 | 47.13% | 80.84% | 47.77% | 71.13% | 40.34% | 70.21% | 42.02% | 61.14% |
Group | Airflow Speeds (m s−1) | Rectal Temperature (°C) | Respiratory Rate (Breaths min−1) | ADWG (kg d−1) | |
---|---|---|---|---|---|
0.4 m | 1.0 m | ||||
SP-LA | 0.13 ± 0.01 d | 0.14 ± 0.04 d | 39.16 ± 0.04 a | 59.89 ± 1.57 a | 0.77 ± 0.11 |
MP-LA | 0.65 ± 0.05 c | 0.61 ± 0.04 c | 39.13 ± 0.04 ab | 54.06 ± 1.76 b | 0.83 ± 0.07 |
SP-HA | 2.51 ± 0.50 b | 2.60 ± 0.11 b | 38.99 ± 0.04 b | 51.22 ± 1.62 b | 0.84 ± 0.67 |
MP-HA | 2.22 ± 0.10 a | 2.80 ± 0.06 a | 39.14 ± 0.04 ab | 53.64 ± 1.71 b | 0.98 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Choi, C.Y.; Du, X.; Guan, H.; Li, H.; Shi, Z. Effects of Ventilation Fans and Type of Partitions on the Airflow Speeds of Animal Occupied Zone and Physiological Parameters of Dairy Pre-Weaned Calves Housed Individually in a Barn. Agriculture 2023, 13, 1002. https://doi.org/10.3390/agriculture13051002
Zhao W, Choi CY, Du X, Guan H, Li H, Shi Z. Effects of Ventilation Fans and Type of Partitions on the Airflow Speeds of Animal Occupied Zone and Physiological Parameters of Dairy Pre-Weaned Calves Housed Individually in a Barn. Agriculture. 2023; 13(5):1002. https://doi.org/10.3390/agriculture13051002
Chicago/Turabian StyleZhao, Wanying, Christopher Y. Choi, Xinyi Du, Huiyuan Guan, Hao Li, and Zhengxiang Shi. 2023. "Effects of Ventilation Fans and Type of Partitions on the Airflow Speeds of Animal Occupied Zone and Physiological Parameters of Dairy Pre-Weaned Calves Housed Individually in a Barn" Agriculture 13, no. 5: 1002. https://doi.org/10.3390/agriculture13051002
APA StyleZhao, W., Choi, C. Y., Du, X., Guan, H., Li, H., & Shi, Z. (2023). Effects of Ventilation Fans and Type of Partitions on the Airflow Speeds of Animal Occupied Zone and Physiological Parameters of Dairy Pre-Weaned Calves Housed Individually in a Barn. Agriculture, 13(5), 1002. https://doi.org/10.3390/agriculture13051002