Fertilization Strategies on Fennel Crop in the Mediterranean Environment: Agronomic Performance, Costs and Sustainability Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Treatment, and Measurements
2.2. Weather Information and Agronomic Determinations
2.3. Sustainability Assessment
Inputs | Unit | EC | References |
---|---|---|---|
Fuels | |||
Diesel emission fuel production | kg CO2 eq. | 0.55 | [31] |
Diesel emission fuel combustion | kg CO2 eq. | 3.16 | [31] |
Fertilizers | |||
UREA (N) | kg CO2 eq. | 1.9 | [32] |
Phosphate (P2O5) | kg CO2 eq. | 1.4 | [32] |
Industrial organic waste compost | kg CO2 eq. | 0.046–0.94 (0.078) | [32,33,34] |
Plastic pipes | 2.2 | [35] | |
Emission factor (EF) | kg N2O-N kg−1 N | 0.005 | [28] |
Leaching factor of N (FRACLeach) | % | 0.24 | [28] |
Volatilization of NH3 and NOx (FRACgas) | % | 0.21 | [28] |
Leaching emission factor (EFLeach) | kg N2O-N kg−1 N | 0.011 | [28] |
Volatilization emission factor (EFvolat) | kg N2O-N kg−1 N | 0.005 | [28] |
2.4. Statistical Analysis
2.5. Fertilization Cost Analysis
3. Results
3.1. Weather Conditions and Agronomic Performances
3.2. Sustainability Assessment
3.3. Cost Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Mondal, S. Impact of Climate Change on Soil Fertility. In Climate Change and the Microbiome: Sustenance of the Ecosphere; Springer: Berlin/Heidelberg, Germany, 2021; pp. 551–569. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- FAO. Strategy on Climate Change 2022–2031; FAO: Rome, Italy, 2022.
- Persiani, A.; Diacono, M.; Montemurro, F. Agroecological practices in organic fennel cultivation to improve environmental sustainability. Agroecol. Sustain. Food Syst. 2023, 47, 668–686. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- González-Ubierna, S.; Jorge-Mardomingo, I.; Carrero-González, B.; de la Cruz, M.T.; Casermeiro, M.Á. Soil organic matter evolution after the application of high doses of organic amendments in a Mediterranean calcareous soil. J. Soils Sediments 2012, 12, 1257–1268. [Google Scholar] [CrossRef]
- Diacono, M.; Fiore, A.; Farina, R.; Canali, S.; Di Bene, C.; Testani, E.; Montemurro, F. Combined agro-ecological strategies for adaptation of organic horticultural systems to climate change in Mediterranean environment. Ital. J. Agron. 2016, 11, 85–91. [Google Scholar] [CrossRef]
- Scialabba, N.E.H.; Mller-Lindenlauf, M. Organic agriculture and climate change. Renew. Agric. Food Syst. 2010, 25, 158–169. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F.; Ciaccia, C. Recycling Agricultural Wastes and By-products in Organic Farming: Biofertilizer Production, Yield Performance and Carbon Footprint Analysis. Sustainability 2019, 11, 3824. [Google Scholar] [CrossRef]
- Misslin, R.; Clivot, H.; Levavasseur, F.; Villerd, J.; Soulié, J.C.; Houot, S.; Therond, O. Integrated assessment and modeling of regional recycling of organic waste. J. Clean. Prod. 2022, 379, 134725. [Google Scholar] [CrossRef]
- Bulluck, L.R.; Brosius, M.; Evanylo, G.K.; Ristaino, J.B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 2002, 19, 147–160. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Navarro, A.S.; Romero, J.A.S.; Sanjuan, M.d.C.S.; Bernardeau, M.A.B.; Delgado Iniesta, M.J. Medium-term influence of organic fertilization on the quality and yield of a celery crop. Agronomy 2020, 10, 1418. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef]
- Persiani, A.; Diacono, M.; Monteforte, A.; Montemurro, F. Agronomic performance, energy analysis, and carbon balance comparing different fertilization strategies in horticulture under Mediterranean conditions. Environ. Sci. Pollut. Res. 2019, 26, 19250–19260. [Google Scholar] [CrossRef]
- Pratibha, G.; Srinivas, I.; Rao, K.V.; Raju, B.M.K.; Thyagaraj, C.R.; Korwar, G.R.; Venkateswarlu, B.; Shanker, A.K.; Choudhary, D.K.; Rao, K.S.; et al. Impact of conservation agriculture practices on energy use efficiency and global warming potential in rainfed pigeonpea–castor systems. Eur. J. Agron. 2015, 66, 30–40. [Google Scholar] [CrossRef]
- Yousefi, M.; Khoramivafa, M.; Damghani, A.M. Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems. Environ. Sci. Pollut. Res. 2017, 24, 19827–19834. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.; Alonso, A. Greenhouse gas emissions from conventional and organic cropping systems in Spain. I. Herbaceous crops. Agron. Sustain. Dev. 2015, 35, 713–724. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- UNESCO-FAO. Bioclimatic Map of the Mediterranean Zone; NS162/III, 22A; UNESCO: Paris, France; FAO: Rome, Italy, 1963; p. 60.
- Taxonomy, S. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Agric. Handb. 1999, 436, 96–105. [Google Scholar]
- Istituto Superiore di Sanità. Metodi di analisi utilizzati per il controllo chimico degli alimenti. Raccolta a cura di Massimo Baldini, Fabio Fabietti, Stefania Giammarioli, Roberta Onori, Leucio Orefice e Angelo Stacchini. Rapp. ISTISAN 1996, 96, 341996. (In Italian) [Google Scholar]
- Kjeldahl, J. New Method for the Determination of Nitrogen in Organic Matter. Z. Für Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Springer, U.; Klee, J. Prüfung der Leistungsfähigkeit von einigen wichtigen verfahren zur bestimmung des kohlenstoffs mittels chrom-schwefelsaure sowie vorschlag einer neuen schnellmethode. J. Plant Nutr. Soil Sci. 1954, 64, 1–26. [Google Scholar]
- Intergovernmental Panel on Climate Change. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019.
- Persiani, A.; Diacono, M.; Montemurro, F. Soil hydraulic arrangement and agro-ecological practices in organic rotations: Effects on crop performance, soil properties and carbon balance. Agroecol. Sustain. Food Syst. 2022, 46, 1173–1197. [Google Scholar] [CrossRef]
- Guardia, G.; Aguilera, E.; Vallejo, A.; Sanz-Cobena, A.; Alonso-Ayuso, M.; Quemada, M. Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. J. Clean. Prod. 2019, 241, 118307. [Google Scholar] [CrossRef]
- Ecoinvent Version 3. 2013. Available online: http://www.ecoinvent.org/database/database.html (accessed on 31 January 2015).
- Walling, E.; Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef]
- Cadena, E.; Colón, J.; Artola, A.; Sánchez, A.; Font, X. Environmental impact of two aerobic composting technologies using life cycle assessment. Int. J. Life Cycle Assess. 2009, 14, 401–410. [Google Scholar] [CrossRef]
- Breitenbeck, G.A.; Schellinger, D. Calculating the reduction in material mass and volume during composting. Compost. Sci. Util. 2013, 12, 365–371. [Google Scholar] [CrossRef]
- Martinez-Mate, M.A.; Martin-Gorriz, B.; Martínez-Alvarez, V.; Soto-García, M.; Maestre-Valero, J.F. Hydroponic system and desalinated seawater as an alternative farm-productive proposal in water scarcity areas: Energy and greenhouse gas emissions analysis of lettuce production in southeast Spain. J. Clean. Prod. 2018, 172, 1298–1310. [Google Scholar] [CrossRef]
- Assirelli, A.; Pignedoli, S. Costo di esercizio delle macchine agricole. Cent. Rice Prod. Anim. 2005, 5, 1–10. (In Italian) [Google Scholar]
- American Society of Agricultural Engineers. Agricultural Machinery Management; ASAE: St. Joseph, MI, USA, 2000; pp. 344–349. [Google Scholar]
- Reimer, M.; Kopp, C.; Hartmann, T.; Zimmermann, H.; Ruser, R.; Schulz, R.; Müller, T.; Möller, K. Assessing long term effects of compost fertilization on soil fertility and nitrogen mineralization rate. J. Plant Nutr. Soil Sci. 2023, 186, 217–233. [Google Scholar] [CrossRef]
- Persiani, A.; Montemurro, F.; Fiore, A.; Scazzarriello, R.; Diacono, M. On-farm fertilizing materials in organic horticulture: Agronomic performance, energy use and GHG emission evaluation. Arch. Agron. Soil Sci. 2021, 67, 1944–1960. [Google Scholar] [CrossRef]
- Erhart, E.; Hartl, W.; Putz, B. Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. Eur. J. Agron. 2005, 23, 305–314. [Google Scholar] [CrossRef]
- Montemurro, F.; Diacono, M. Towards a Better Understanding of Agronomic Efficiency of Nitrogen: Assessment and Improvement Strategies. Agronomy 2016, 6, 31. [Google Scholar] [CrossRef]
- Altieri, R.; Esposito, A. Evaluation of the fertilizing effect of olive mill waste compost in short-term crops. Int. Biodeterior. Biodegrad. 2010, 64, 124–128. [Google Scholar] [CrossRef]
- Baldi, E.; Toselli, M.; Marcolini, G.; Quartieri, M.; Cirillo, E.; Innocenti, A.; Marangoni, B. Compost can successfully replace mineral fertilizers in the nutrient management of commercial peach orchard. Soil Use Manag. 2010, 26, 346–353. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Cook, H.; Thomas, B. The lignin and cellulose contents of certain grassland species at different stages of growth. J. Agric. Sci. 1950, 40, 93–99. [Google Scholar] [CrossRef]
- Patton, A.R.; Gieseker, L. Seasonal Changes in the Lignin and Cellulose Content of Some Montana Grasses. J. Anim. Sci. 1942, 1, 22–26. [Google Scholar] [CrossRef]
- Gebremikael, M.T.; Ranasinghe, A.; Hosseini, P.S.; Laboan, B.; Sonneveld, E.; Pipan, M.; Oni, F.E.; Montemurro, F.; Höfte, M.; Sleutel, S.; et al. How do novel and conventional agri-food wastes, co-products and by-products improve soil functions and soil quality? Waste Manag. 2020, 113, 132–144. [Google Scholar] [CrossRef]
- Serafini, L.F.; Feliciano, M.; Rodrigues, M.A.; Gonçalves, A. Systematic Review and Meta-Analysis on the Use of LCA to Assess the Environmental Impacts of the Composting Process. Sustainability 2023, 15, 1394. [Google Scholar] [CrossRef]
- Beauchamp, E.G. I confirm. Can. J. Soil Sci. 2011, 77, 113–123. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, M.L.; Aguilera, E.; Sanz-Cobena, A.; Adams, D.C.; Abalos, D.; Barton, L.; Ryals, R.; Silver, W.L.; Alfaro, M.A.; Pappa, V.A.; et al. Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agric. Ecosyst. Environ. 2017, 238, 25–35. [Google Scholar] [CrossRef]
- Wolf, P.; Groen, E.A.; Berg, W.; Prochnow, A.; Bokkers, E.A.M.; Heijungs, R.; de Boer, I.J. Assessing greenhouse gas emissions of milk production: Which parameters are essential? Int. J. Life Cycle Assess. 2017, 22, 441–455. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Palese, A.M.; Di Meo, V.; Pastore, V.; D’Adamo, C.; Celano, G. Composting: The way for a sustainable agriculture. Appl. Soil Ecol. 2018, 123, 744–750. [Google Scholar] [CrossRef]
- Diacono, M.; Trinchera, A.; Montemurro, F. An Overview on Agroecology and Organic Agriculture Strategies for Sustainable Crop Production. Agronomy 2021, 11, 223. [Google Scholar] [CrossRef]
- Morra, L.; Bilotto, M.; Baldantoni, D.; Alfani, A.; Baiano, S. A seven-year experiment in a vegetable crops sequence: Effects of replacing mineral fertilizers with Biowaste compost on crop productivity, soil organic carbon and nitrates concentrations. Sci. Hortic. Amst. 2021, 290, 110534. [Google Scholar] [CrossRef]
- Loncaric, R.; Kanisek, J.; Loncaric, Z. Mineral or organic fertilization: Financial aspects. Eur. Sci. J. ESJ 2013, 1, 1857–7881. [Google Scholar]
- Zhai, L.; Wang, Z.; Zhai, Y.; Zhang, L.; Zheng, M.; Yao, H.; Lv, L.; Shen, H.; Zhang, J.; Yao, Y.; et al. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res. 2022, 217, 105287. [Google Scholar] [CrossRef]
Unit | Tractor New Holland TN F 80 DT | Fertilizer Spreader Faza sp 400 | ||
---|---|---|---|---|
Financial cost | Investment | [€] | 42,000 | 1500 |
Service life | [y] | 10 | 10 | |
Service life | [h] | 10,000 | 2000 | |
Resale | [%] | 38 | 18 | |
Resale | [€] | 15,931 | 265.26 | |
Depreciation | [€] | 26,069 | 1235 | |
Annual usage | [h y−1] | 150 | 10 | |
Interest rate | [%] | 3 | 3 | |
Workers | [n] | 1 | ||
Fixed costs | Ownership costs | [€ y−1] | 2606.94 | 123.47 |
Interests | [€ y−1] | 868.96 | 26.48 | |
Machine shelter | [m2] | 9.12 | 3.00 | |
Value of shelter | [€ m−2] | 100.00 | 100.00 | |
Value of shelter | [€ y−1] | 27.36 | 9.00 | |
Insurance (0.25%) | [€ y−1] | 105.00 | 0.00 | |
Variable costs | Repairs and maintenance | [€ h−1] | 0.63 | 0.03 |
Fuel cost | [€ l−1] | 1.20 | ||
Lubricant cost | [€ l−1] | 3.03 | ||
Worker salary | [€ h−1] | 13.00 |
Treatment | Fuel Consumption | Working Capacity | ||
---|---|---|---|---|
Basal [l h−1] | Topdressing [l h−1] | Basal [ha h−1] | Topdressing [ha h−1] | |
T1 | 6.0 | 0.3 | ||
T2 | 4.5 | 6.2 | 0.8 | 1.0 |
T3 | 4.5 | 0.8 | ||
T4 | 4.1 | 6.2 | 1.0 | 4.0 |
T5 | 6.2 | 4.0 | 4.0 |
Year | Treatment | Aboveground Biomass (Mg ha−1) | Roots Biomass (Mg ha−1) | Marketable Yield (Mg ha−1) | Fennel Head Weight (g) | ||||
---|---|---|---|---|---|---|---|---|---|
2020 | T1 | 39.31 | ab | 2.11 | b | 18.33 | ab | 229.64 | bc |
2020 | T2 | 35.97 | b | 2.72 | a | 16.11 | b | 197.40 | c |
2020 | T3 | 53.47 | a | 3.16 | a | 21.81 | ab | 327.93 | a |
2020 | T4 | 51.39 | a | 3.13 | a | 23.89 | a | 356.67 | a |
2020 | T5 | 42.08 | ab | 3.04 | a | 20.00 | ab | 300.00 | ab |
2020 | T6 | 43.33 | ab | 3.17 | a | 19.62 | ab | 220.77 | c |
2021 | T1 | 32.36 | bc | 2.02 | d | 18.75 | b | 138.59 | cd |
2021 | T2 | 45.14 | a | 3.07 | bc | 21.88 | ab | 190.51 | bc |
2021 | T3 | 47.92 | a | 3.40 | b | 27.36 | a | 256.77 | a |
2021 | T4 | 39.86 | abc | 3.35 | b | 26.67 | a | 189.07 | bc |
2021 | T5 | 42.36 | ab | 4.24 | a | 21.81 | ab | 225.57 | ab |
2021 | T6 | 28.33 | c | 2.52 | cd | 20.97 | ab | 117.23 | d |
Year | * | n.s | * | *** | |||||
Treatment | ** | *** | ** | *** | |||||
Interaction (Year × Treatment) | n.s. | ** | n.s. | * |
Year | Treatment | Residues | Heads | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N (%) | C (%) | N (%) | C (%) | |||||||
Y × T | 2020 | T1 | 2.12 | b | 28.49 | b | 1.66 | b | 47.59 | ab |
Y × T | 2020 | T2 | 1.99 | b | 30.36 | b | 2.25 | ab | 49.35 | a |
Y × T | 2020 | T3 | 3.67 | a | 45.18 | a | 2.27 | ab | 44.48 | c |
Y × T | 2020 | T4 | 3.61 | a | 47.89 | a | 2.63 | ab | 46.08 | bc |
Y × T | 2020 | T5 | 3.06 | a | 46.02 | a | 3.16 | a | 46.79 | b |
Y × T | 2020 | T6 | 2.03 | b | 23.55 | b | 2.01 | ab | 46.90 | b |
Y × T | 2021 | T1 | 1.99 | a | 48.22 | bc | 0.24 | b | 50.53 | ab |
Y × T | 2021 | T2 | 2.19 | a | 48.13 | bc | 0.40 | a | 50.04 | bc |
Y × T | 2021 | T3 | 2.50 | a | 48.75 | bc | 0.25 | b | 48.97 | d |
Y × T | 2021 | T4 | 2.49 | a | 50.78 | b | 0.29 | ab | 49.68 | c |
Y × T | 2021 | T5 | 2.33 | a | 54.61 | a | 0.27 | b | 51.09 | a |
Y × T | 2021 | T6 | 2.11 | a | 47.07 | c | 0.26 | b | 49.92 | bc |
Y | ** | *** | *** | *** | ||||||
T | *** | *** | n.s. | *** | ||||||
Interaction (Y × T) | *** | *** | n.s. | * |
T1 | T2 | T3 | T4 | T5 | T6 | |
---|---|---|---|---|---|---|
N2O-Based CO2 eq. Emissions | kg CO2 eq. ha−1 year−1 | kg CO2 eq. ha−1 year−1 | kg CO2 eq. ha−1 year−1 | kg CO2 eq. ha−1 year−1 | kg CO2 eq. ha−1 year−1 | kg CO2 eq. ha−1 year−1 |
Direct emissions | 410 | 435 | 512 | 478 | 477 | 112 |
Indirect emissions | 280 | 294 | 334 | 316 | 316 | 59 |
Leaching emission | 216 | 230 | 270 | 253 | 252 | 59 |
Volatilization emission | 64 | 64 | 64 | 64 | 64 | 0 |
Total GWP | 690 | 729 | 846 | 795 | 792 | 171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diacono, M.; Persiani, A.; Alfano, V.; Monteforte, A.; Montemurro, F. Fertilization Strategies on Fennel Crop in the Mediterranean Environment: Agronomic Performance, Costs and Sustainability Assessment. Agriculture 2023, 13, 1048. https://doi.org/10.3390/agriculture13051048
Diacono M, Persiani A, Alfano V, Monteforte A, Montemurro F. Fertilization Strategies on Fennel Crop in the Mediterranean Environment: Agronomic Performance, Costs and Sustainability Assessment. Agriculture. 2023; 13(5):1048. https://doi.org/10.3390/agriculture13051048
Chicago/Turabian StyleDiacono, Mariangela, Alessandro Persiani, Vincenzo Alfano, Antonio Monteforte, and Francesco Montemurro. 2023. "Fertilization Strategies on Fennel Crop in the Mediterranean Environment: Agronomic Performance, Costs and Sustainability Assessment" Agriculture 13, no. 5: 1048. https://doi.org/10.3390/agriculture13051048
APA StyleDiacono, M., Persiani, A., Alfano, V., Monteforte, A., & Montemurro, F. (2023). Fertilization Strategies on Fennel Crop in the Mediterranean Environment: Agronomic Performance, Costs and Sustainability Assessment. Agriculture, 13(5), 1048. https://doi.org/10.3390/agriculture13051048