Carboxymethyl Cellulose from Banana Rachis: A Potential Edible Coating to Extend the Shelf Life of Strawberry Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Cellulose
2.2. Carboxymethyl Cellulose (CMC) Synthesis
2.3. Characterization of CMC
2.4. Identification of Functional Groups of the CMC Using FTIR Spectroscopy
2.5. Coating Preparation and Storage Experiment
2.5.1. Preparation of Carboxymethyl Cellulose and Thyme Essential Oil (CMC/TEO) Composite Edible Coatings
2.5.2. Coating Application
- -
- Weight Loss
- -
- Decay Percentage
- -
- Fruit pH
- -
- Total Soluble Solid (TSS)
- -
- Anthocyanins Content
- -
- Ascorbic Acid Content
- -
- Fruit Firmness
- -
- Sensory Evaluation of Stored Strawberry
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of CMC Produced from Banana Rachis
Formula | (C6H7O2(OH)2COONa)n |
---|---|
Yield | 156.25% |
Color | Light brown or off-white |
Moisture | 8.44% |
Ash | 19.50% |
Water holding capacity | 11.24 |
Oil holding capacity | 1.60 |
Degree of substitution | 0.78 |
pH | 6.8 |
Solubility in water | Soluble in water |
Film formability | Able to form film |
Form | Powder |
Organoleptic | Odorless, tasteless, white and with free-flowing powder |
Foam | Shaking a 0.1% solution produces no layer of foam |
Starch and dextrins | With iodine solution, there is no blue or reddish-brown color |
Organic impurities | With acidified phloroglucinol, there is no red color |
3.2. Identification of Functional Groups of CMC Using FTIR
3.3. Chemical and Physical Characteristics of Stored Strawberries
3.3.1. Weight Loss
3.3.2. Decay Percentage
3.3.3. Fruit pH
3.3.4. Total Soluble Solid
3.3.5. Anthocyanin Content
3.3.6. Ascorbic Acid
3.3.7. Fruit Firmness
3.4. Sensory Evaluation of Stored Strawberries
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. Banana Market Review. 2020. Available online: https://www.fao.org/3/cb6639en/cb6639en.pdf (accessed on 19 April 2023).
- García, E.G.J.; Mora, K.R.; Bernal, C. Cellulose nanofiber production from banana rachis. Int. J. Eng. Sci. Comput. 2020, 10, 24683–24689. [Google Scholar]
- Florian, T.D.M.; Villani, N.; Aguedo, M.; Jacquet, N.; Thomas, H.G.; Gerin, P.; Magali, D.; Richel, A. Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods. Ind. Crops Prod. 2019, 132, 269–274. [Google Scholar] [CrossRef]
- Deepa, B.; Abraham, E.; Cordeiro, N.; Mozetic, M.; Mathew, A.P.; Oksman, K.; Faria, M.; Thomas, S.; Pothan, L.A. Utilization of various lignocellulosic biomass for the production of nanocellulose: A comparative study. Cellulose 2015, 22, 1075–1090. [Google Scholar] [CrossRef]
- Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735–764. [Google Scholar] [CrossRef]
- Biswal, D.R.; Singh, R.P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym. 2004, 57, 379–387. [Google Scholar] [CrossRef]
- Ahmed, Z.F.R.; Kaur, N.; Maqsood, S.; Schmeda-Hirschmann, G. Preharvest applications of chitosan, salicylic acid, and calcium chloride have a synergistic effect on quality and storability of date palm fruit (Phoenix dactylifera L.). HortScience 2022, 57, 422–430. [Google Scholar] [CrossRef]
- Niu, X.; Ma, Q.; Li, S.; Wang, W.; Ma, Y.; Zhao, H.; Sun, J.; Wang, J. Preparation and characterization of biodegradable composited films based on potato starch/glycerol/gelatin. J. Food Qual. 2021, 2021, 6633711. [Google Scholar] [CrossRef]
- Ahmed, Z.F.R.; Taha, E.M.A.; Abdelkareem, N.A.A.; Mohamed, W.M. Postharvest Properties of Unripe Bananas and the Potential of Producing Economic Nutritious Products. Int. J. Fruit Sci. 2020, 20, S995–S1014. [Google Scholar] [CrossRef]
- Deumaga, M.F.T.; Emaga, T.H.; Tchokouassom, R.; Vanderghem, C.; Aguedo, M.; Gillet, S.; Jacquet, N.; Danthine, S.; Magali, D.; Richel, A. Genotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion. Biomass Convers. Biorefin. 2015, 5, 409–416. [Google Scholar] [CrossRef]
- Vásquez-Castillo, W.; Racines-Oliva, M.; Moncayo, P.; Viera, W.; Seraquive, M. Fruit Quality and Post-Harvest Losses of Organic Bananas Musa acuminata in Ecuador. Enfoque UTE 2019, 10, 57–66. [Google Scholar] [CrossRef]
- Abdalla, A.K.; Ahmed, Z.F. Physicochemical and sensory properties of yoghurt supplemented with green banana flour. Egypt. J. Dairy Sci. 2019, 47, 1–9. [Google Scholar]
- Sayanjali, S.; Ghanbarzadeh, B.; Ghiassifar, S. Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus species in fresh pistachios. LWT-Food Sci. Technol. 2011, 44, 1133–1138. [Google Scholar] [CrossRef]
- Ramli, S.; Ismail, N.; Alkarkhi, A.F.M.; Easa, A.M. The use of principal component and cluster analysis to differentiate banana peel flours based on their starch and dietary fibre components. Trop. Life Sci. Res 2010, 21, 91. [Google Scholar]
- Siddiqui, M.W.; Rahman, S.; Wani, A.A. Innovative Packaging of Fruits and Vegetables: Strategies for Safety and Quality Maintenance; Taylor & Francis Group: New York, NY, USA, 2009; Volume 38, pp. 2434–2446. [Google Scholar]
- Maan, A.A.; Ahmed, Z.F.R.; Khan, M.K.I.; Riaz, A.; Nazir, A. Aloe vera gel, an excellent base material for edible films and coatings. Trends Food Sci. Technol. 2021, 116, 329–341. [Google Scholar] [CrossRef]
- Singh, B.; Singh, S. Advances in Postharvest Technologies of Vegetable Crops; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Al Shaibani, F.Y.Y.; Kaur, N.; Ahmed, Z.F.R. Reducing postharvest loss by improving fruit quality, shelf life, bioactive compounds of Rutab date (Phoenix dactylifera L. ‘Barhi’) using natural elicitors. Acta Hortic. 2022, 1340, 119–124. [Google Scholar] [CrossRef]
- Ahmed, Z.F.R.; Alblooshi, S.S.N.A.; Kaur, N.; Maqsood, S.; Schmeda-Hirschmann, G. Synergistic Effect of Preharvest Spray Application of Natural Elicitors on Storage Life and Bioactive Compounds of Date Palm (Phoenix dactylifera L., cv. Khesab). Horticulturae 2021, 7, 145. [Google Scholar] [CrossRef]
- Kaur, N.; Ahmed, Z.F.R. Synergistic effect of preharvest treatments on storability of date palm fruit (Phoenix dactylifera L. ‘Khenizi’). Acta Hortic. 2022, 1336, 173–180. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H.S. Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT-Food Sci. Technol. 2005, 38, 617–624. [Google Scholar] [CrossRef]
- Toğrul, H.; Arslan, N. Extending shelf-life of peach and pear by using CMC from sugar beet pulp cellulose as a hydrophilic polymer in emulsions. Food Hydrocoll. 2004, 18, 215–226. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Thanakkasaranee, S.; Soonthornampai, S. Application of carboxymethylcellulose from papaya peel for mango (Mangifera Indica L.)‘Namdokmai’coating. Agric. Sci. J. 2008, 39, 74–82. [Google Scholar]
- Oluwaseun, A.C.; Arowora, K.A.; Bolajoko, F.O.; Bunmi, A.J.; Olagbaju, A.R. Effect of edible coating of carboxy methyl cellulose and corn starch on cucumber stored at ambient temperature. Asian J. Agric. Biol. 2013, 1, 133–140. [Google Scholar]
- Ahmed, Z.F.R.; Askri, A.; Alnuaimi, A.K.H.; Altamimi, A.; Alnaqbi, M.M.A. Liquid fertilizer as a potential alternative nutrient solution for strawberry production under greenhouse conditions. Acta Hortic. 2021, 1321, 165–172. [Google Scholar] [CrossRef]
- Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, D.; Yang, D.; Aghdam, M.S.; Li, L. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biol. Technol. 2019, 147, 29–38. [Google Scholar] [CrossRef]
- Flores-Velázquez, V.; Córdova-Pérez, G.E.; Silahua-Pavón, A.A.; Torres-Torres, J.G.; Sierra, U.; Fernández, S.; Godavarthi, S.; Ortiz-Chi, F.; Espinosa-González, C.G. Cellulose obtained from banana plant waste for catalytic production of 5-HMF: Effect of grinding on the cellulose properties. Fuel 2020, 265, 116857. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Yeasmin, M.S.; Rahman, M.S. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. Int. J. Biol. Macromol. 2015, 79, 144–150. [Google Scholar] [CrossRef]
- Rajashree, R.; Sushma, P.; Divya, G.; Kanchan, I. The ash and iron content in apple juice concentrate powder. Res. J. Recent Sci. 2012, 1, 59–62. [Google Scholar]
- Larrauri, J.A.; Rupérez, P.; Borroto, B.; Saura-Calixto, F. Mango peels as a new tropical fibre: Preparation and characterization. LWT-Food Sci. Technol. 1996, 29, 729–733. [Google Scholar] [CrossRef]
- Tame, A.; Ndikontar, M.K.; Ngamveng, J.N.; Ntede, H.N.; Mpon, R.; Njungab, E. Graft copolymerisation of acrylamide on carboxymethyl cellulose (CMC). Rasavan J. Chem. 2011, 4, 1–7. [Google Scholar]
- Dong, F.; Wang, X. Effects of carboxymethyl cellulose incorporated with garlic essential oil composite coatings for improving quality of strawberries. Int. J. Biol. Macromol. 2017, 104, 821–826. [Google Scholar] [CrossRef]
- Helrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Dong, F.; Li, S.; Liu, Z.; Zhu, K.; Wang, X.; Jin, C. Improvement of quality and shelf life of strawberry with nanocellulose/chitosan composite coatings. Bangladesh J. Bot. 2015, 44, 709–717. [Google Scholar]
- Silva, D.A.; De Paula, R.C.; Feitosa, J.P.A.; De Brito, A.C.; Maciel, J.S.; Paula, H.C.B. Carboxymethylation of cashew tree exudate polysaccharide. Carbohydr. Polym. 2004, 58, 163–171. [Google Scholar] [CrossRef]
- Saputra, A.H.; Qadhayna, L.; Pitaloka, A.B. Synthesis and characterization of carboxymethyl cellulose (CMC) from water hyacinth using ethanol-isobutyl alcohol mixture as the solvents. Int. J. Chem. Eng. Appl. 2014, 5, 36. [Google Scholar] [CrossRef]
- Gatot, S.H.; Djagal, W.M.; Sri, A. Synthesis and characterization of sodium carboxymethylcellulose from pod husk of Cacao (Theobroma cacao L.). Afr. J. Food Sci. 2012, 6, 180–185. [Google Scholar]
- Adinugraha, M.P.; Marseno, D.W. Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydr. Polym. 2005, 62, 164–169. [Google Scholar] [CrossRef]
- Karataş, M.; Arslan, N. Flow behaviours of cellulose and carboxymethyl cellulose from grapefruit peel. Food Hydrocoll. 2016, 58, 235–245. [Google Scholar] [CrossRef]
- Varshney, V.K.; Gupta, P.K.; Naithani, S.; Khullar, R.; Bhatt, A.; Soni, P.L. Carboxymethylation of α-cellulose isolated from Lantana camara with respect to degree of substitution and rheological behavior. Carbohydr. Polym. 2006, 63, 40–45. [Google Scholar] [CrossRef]
- Fakrul Alam, A.B.M.; Mondal, M.I.H. Utilization of cellulosic wastes in textile and garment industries. I. Synthesis and grafting characterization of carboxymethyl cellulose from knitted rag. J. Appl. Polym. Sci. 2013, 128, 1206–1212. [Google Scholar] [CrossRef]
- Latif, A.; Anwar, T.; Noor, S. Two step synthesis and characterization of carboxymethylcellulose from rayon grade wood pulp and cotton linter. J. -Chem. Soc. Pakistan. 2007, 29, 143. [Google Scholar]
- Yeasmin, M.S.; Haque, M.O.; Ahmed, F.; Jalil, M.A.; Akter, N.; Mondal, M.I.H. Assessing the effects of different cellulose particle sizes on yield and quality of carboxymethyl cellulose. In Carboxymethyl Cellulose, Synthesis and Characterization; Mondal, I.H., Ed.; Nova Science: New York, NY, USA, 2019; Volume 39, pp. 53–58. [Google Scholar]
- Rozali, M.; Ahmad, N.; Mohamad Isa, M.I.N. Effect of Adipic Acid Composition on Structural and Conductivity Solid Biopolymer Electrolytes Based on Carboxy Methylcellulose Studies. Am. J. Sustain. Agric. 2015, 9, 39–45. [Google Scholar]
- Khodaei, D.; Hamidi-Esfahani, Z.; Rahmati, E. Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS J. 2021, 23, 17–23. [Google Scholar] [CrossRef]
- Gol, N.B.; Patel, P.R.; Rao, T.V.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT Food Sci. Technol. 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Li, L.; Aghdam, M.S.; Wei, X.; Liu, J.; Xu, Y.; Luo, Z. Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit. Food Chem. 2019, 285, 163–170. [Google Scholar] [CrossRef]
- Ali, S.; Anjum, M.A.; Khan, A.S.; Nawaz, A.; Ejaz, S.; Khaliq, G.; Iqbal, S.; Ullah, S.; Rehman, R.N.U.; Ali, M.M.; et al. Carboxymethyl cellulose coating delays ripening of harvested mango fruits by regulating softening enzymes activities. Food Chem. 2022, 380, 131804. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Baswal, A.K.; Ramezanian, A.; Gill, K.S.; Mirza, A.A. Impact of carboxymethyl cellulose based edible coating on storage life and quality of guava fruit cv. “Allahabad Safeda” under ambient storage conditions. J. Food Meas. Charact. 2021, 15, 4805–4812. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Shahwar, D.; Ahmed, Z.F.R.; Tzortzakis, N. Application of Rosemary and Eucalyptus Essential Oils on the Preservation of Cucumber Fruit. Horticulturae 2022, 8, 774. [Google Scholar] [CrossRef]
Storage Period | 2 Days | 4 Days | 6 Days | 8 Days | 10 Days | 12 Days | 14 Days | 16 Days |
---|---|---|---|---|---|---|---|---|
Temperature | 4 °C | |||||||
Control | 3.51 ± 0.25 a* | 2.96 ± 0.39 a | 2.69 ± 0.53 a | 2.76 ± 1.18 a | 2.46 ± 0.76 a | 2.23 ± 0.66 a | 2.21 ± 0.62 a | 1.87 ± 0.58 a |
CMC | 3.85 ± 0.34 a | 3.53 ± 0.66 a | 3.4 ± 0.69 a | 3.37 ± 1.88 a | 3.358 ± 1.02 a | 3.29 ± 0.93 a | 3.02 ± 0.73 a | 2.73 ± 0.68 a |
Sample | 1 day | 2 days | 3 days | 4 days | 5 days | 6 days | ||
Temperature | 22 °C | |||||||
Control | 3.74 ± 1.32 a | 3.56 ± 1.76 a | 2.96 ± 0.94 a | 2.92 ± 1.17 a | 2.42 ± 0.56 a | 1.92 ± 1.11 a | ||
CMC | 3.94 ± 1.38 a | 3.78 ± 1.01 a | 3.6 ± 1.46 a | 3.24 ± 0.99 a | 2.93 ± 0.37 a | 2.7 ± 0.57 a |
Temperature | Storage Period | Texture | Taste | Flavor | Color | Overall Acceptability |
---|---|---|---|---|---|---|
control | ||||||
5 days | 6.55 ± 0.52 b | 5 ± 0.63 b | 5.27 ± 0.65 b | 7.09 ± 0.83 b | 6 ± 0.77 b | |
10 days | 5.82 ± 0.75 b | 3.73 ± 0.79 b | 4 ± 0.63 b | 5.18 ± 0.4 b | 4.27 ± 0.47 b | |
4 °C | 15 days | 3.64 ± 0.5 b | 2.64 ± 0.5 b | |||
CMC | ||||||
5 days | 7.9 ± 0.3 a | 6.36 ± 0.5 a | 6 ± 0.45 a | 8.73 ± 0.65 a | 7.45 ± 0.69 a | |
10 days | 6.73 ± 0.47 a | 5.73 ± 0.65 a | 5.64 ± 0.81 a | 7.27 ± 0.47 a | 6.64 ± 0.5 a | |
15 days | 5.73 ± 0.79 a | 4.73 ± 0.79 a | 3.82 ± 0.75 a | 5.09 ± 0.7 a | 5.36 ± 0.5 a | |
22 °C | control | |||||
2 days | 7.45 ± 0.52 b | 7.45 ± 0.52 b | 7.45 ± 0.52 b | 7.45 ± 0.52 b | 7.45 ± 0.52 b | |
4 days | 5.36 ± 0.5 b | 5.36 ± 0.5 b | 5.36 ± 0.5 b | 5.36 ± 0.5 b | 5.36 ± 0.5 b | |
6 days | ||||||
CMC | ||||||
2 days | 8.36 ± 0.5 a | 8.36 ± 0.5 a | 8.36 ± 0.5 a | 8.36 ± 0.5 a | 8.36 ± 0.5 a | |
4 days | 6.55 ± 0.52 a | 6.55 ± 0.52 a | 6.55 ± 0.52 a | 6.55 ± 0.52 a | 6.55 ± 0.52 a | |
6 days | 5.36 ± 0.5 | 5.36 ± 0.5 | 5.36 ± 0.5 | 5.36 ± 0.5 | 5.36 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, A.H.; Awad-Allah, M.A.A.; Abd-Elkarim, N.A.A.; Ahmed, Z.F.R.; Taha, E.M.A. Carboxymethyl Cellulose from Banana Rachis: A Potential Edible Coating to Extend the Shelf Life of Strawberry Fruit. Agriculture 2023, 13, 1058. https://doi.org/10.3390/agriculture13051058
Abdullah AH, Awad-Allah MAA, Abd-Elkarim NAA, Ahmed ZFR, Taha EMA. Carboxymethyl Cellulose from Banana Rachis: A Potential Edible Coating to Extend the Shelf Life of Strawberry Fruit. Agriculture. 2023; 13(5):1058. https://doi.org/10.3390/agriculture13051058
Chicago/Turabian StyleAbdullah, Ahmed H., Mostafa A. A. Awad-Allah, Naglaa A. A. Abd-Elkarim, Zienab F. R. Ahmed, and Eman M. A. Taha. 2023. "Carboxymethyl Cellulose from Banana Rachis: A Potential Edible Coating to Extend the Shelf Life of Strawberry Fruit" Agriculture 13, no. 5: 1058. https://doi.org/10.3390/agriculture13051058
APA StyleAbdullah, A. H., Awad-Allah, M. A. A., Abd-Elkarim, N. A. A., Ahmed, Z. F. R., & Taha, E. M. A. (2023). Carboxymethyl Cellulose from Banana Rachis: A Potential Edible Coating to Extend the Shelf Life of Strawberry Fruit. Agriculture, 13(5), 1058. https://doi.org/10.3390/agriculture13051058