Dynamic Cutting Performance Test and Parameter Optimization of Longicorn Bionic Blade for Industrial Hemp Harvester
Abstract
:1. Introduction
2. Overall Structure and Working Principle of Industrial Hemp Harvester
3. Stalk Cutting Theoretical Analysis and Bionic Blade Design
3.1. Analysis of Cutting Force on Reciprocating Double-Acting Blade
3.2. Cutting Motion Analysis
3.3. Bionic Blade Design
4. Numerical Simulation and Analysis of Cutting Tests with Blade–Stalk Coupled Display of Dynamic Kinetics
4.1. Cutting Simulation Process and Determination of Material Parameters
4.2. Experimental Design
4.3. Test Index
4.4. Experimental Results and Analysis
4.4.1. Regression Models and Analysis of Variance
4.4.2. Analysis of the Influence of Factor Interaction on Index
4.5. Parameter Optimization and Experimental Verification
5. Conclusions
- (1)
- An analysis was carried out on the critical force condition for effective clamping of the stalk of the reciprocating double-acting cutting blade, and the analysis showed that the designed reciprocating bio-inspired cutting blade satisfies the conditions of effective clamping and non-slip. The motion analysis of the reciprocating double-acting cutting blade was carried out, and the analysis showed that compared with the single-acting cutting tool, the cutting stroke of the double-acting cutting blade can be reduced by half to complete a single cut. The elliptic equation relationship between the motion speed and displacement of the blade was also determined.
- (2)
- In order to investigate the effects of different structural and motion parameters and their interactions on cutting energy consumption of bionic blades, a combination of bionic blades with different tooth pitch and tooth angle was designed. Numerical simulation experiments were conducted using numerical simulation techniques to cut industrial hemp stalk with the blades. Based on the experimental results, a regression optimization model for cutting energy consumption was established, and the optimal parameter combination was determined through optimization as follows: blade tooth pitch of 6.61 mm, tooth angle of 30°, and speed ratio of 1.62. The cutting energy consumption under these conditions was 3948.99 mJ. The accuracy of the numerical simulation model was verified through validation experiments. This study can provide reference for the development of an industrial hemp harvester cutter and the matching of motion parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuk-Golaszewska, K.; Golaszewski, J. Cannabis sativa L.–cultivation and quality of raw material. J. Elem. 2018, 23, 971–984. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Cao, K.; Jiang, Y.; Hang, C.; Zhao, Y.; Han, X.; Wang, X. Status and Prospect of Industrial Hemp Breeding in Heilongjiang Province. Crops 2019, 35, 15–19. [Google Scholar] [CrossRef]
- Guo, L.; Wang, M.; Wang, D.; Li, Z.; Che, Y.; Zhang, H. Research progress and prospect of comprehensive utilization of industrial hemp. Heilongjiang Agric. Sci. 2014, 8, 132–134. [Google Scholar]
- Kymäläinen, H.; Sjöberg, A. Flax and hemp fibres as raw materials for thermal insulations. Build. Environ. 2008, 43, 1261–1269. [Google Scholar] [CrossRef]
- Lü, J.; Long, C.; Ma, L.; Liu, J.; He, H. Design and experiment on decorticator of hemp fresh stem. Trans. CSAE 2014, 30, 298–307. [Google Scholar] [CrossRef]
- Sepe, R.; Bollino, F.; Boccarusso, L.; Caputo, F. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210–217. [Google Scholar] [CrossRef]
- Cao, K.; Wang, X.; Sun, Y.; Han, C.; Zhang, X.; Zhao, Y.; Jiang, Y.; Han, X.; Guo, Y. The research progress on the breeding of industrial hemp varieties in china. Plant Fiber Sci. China 2019, 41, 187–192. [Google Scholar]
- Guo, R.; Chen, X.; Guo, H. Review on pharmacological effects of tetrahydrocannabinol and cannabidiol. Nat. Prod. Res. Dev. 2017, 29, 1449–1453. [Google Scholar] [CrossRef]
- Pisanti, S.; Malfitano, A.; Ciaglia, E.; Lamberti, A.; Ranieri, R.; Cuomo, G.; Abate, M.; Faggiana, G.; Bifulco, M. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol. Ther. 2017, 175, 133–150. [Google Scholar] [CrossRef]
- Available online: https://www.cn-healthcare.com/articlewm/20190430/content-1053495.html (accessed on 5 April 2022).
- Huang, J.; Shen, C.; Li, X.; Tian, K.; Chen, Q.; Zhang, B. Design and tests of hemp harvester. Int. Agric. Eng. J. 2017, 26, 117–127. [Google Scholar]
- Tian, K.; Li, X.; Shen, C.; Zhang, B.; Huang, J.; Wang, J.; Zhou, Y. Design and test of cutting blade of cannabis harvester based on longicorn bionic principle. Trans. Chin. Soc. Agric. Eng. 2017, 33, 56–61. [Google Scholar] [CrossRef]
- Ahmadi, E.; Barikloo, H.; Kashfi, M. Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard to its different layers. Comput. Electron. Agric. 2016, 121, 1–11. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Y.; Tang, Y.; Zhao, F.; Kong, X. Finite element simulation of sugarcane cutting. Trans. CSAE 2011, 27, 161–166. [Google Scholar]
- Qiu, M.; Meng, Y.; Li, Y.; Shen, X. Sugarcane stem cut quality investigated by finite element simulation and experiment. Biosyst. Eng. 2021, 206, 135–149. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, W.; Liu, Y.; Chen, Y.; Yang, J. Simulation of forces acting on the cutter blade surfaces and root system of sugarcane using FEM and SPH coupled method. Comput. Electron. Agric. 2021, 180, 105893. [Google Scholar] [CrossRef]
- Xue, Z. Cutting Mechanical Characteristics and Simulation Analysis of Cassava Stalk. Ph.D. Dissertation, Huazhong Agriculture University, Wuhan, China, 2018. [Google Scholar]
- Meng, Y.; Wei, J.; Wei, J.; Chen, H.; Cui, Y. An ANSYS/LS-Dyna simulation and experimental study of circular saw blade cutting system of mulberry cutting machine. Comput. Electron. Agric. 2019, 157, 38–48. [Google Scholar] [CrossRef]
- Xie, L.; Wang, J.; Cheng, S.; Zeng, B.; Yang, Z. Optimization and finite element simulation of the chopping process for chopper sugarcane harvesting. Biosyst. Eng. 2018, 175, 16–26. [Google Scholar] [CrossRef]
- Dun, G.; Yang, Y.; Li, H.; Yu, C.; Du, J.; Zhang, J.; Gao, Z. Working parameters optimization of soybean serration rotary cutter by ANSYS/LS—DYNA. J. Henan Agric. Univ. 2019, 53, 739–744. [Google Scholar]
- Guo, Q.; Zhang, X.; Xu, Y.; Li, P.; Chen, C. Mechanism and simulation analysis of efficient cutting for tomato straw. J. Agric. Mech. Res. 2017, 39, 11–24. [Google Scholar] [CrossRef]
- Zheng, C.; Zhao, J.; Zhang, J.; Zhang, R.; Li, F. Construction of finite element model of cotton pole and calibration of cutting parameters. J. Agric. Mech. Res. 2021, 43, 198–203. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Z.; Yan, X.; Mi, G.; Liu, S.; Chen, K.; Zhang, S.; Wang, X.; Zhang, S.; Wu, X. Finite Element Model Construction and Cutting Parameter Calibration of Wild Chrysanthemum Stem. Agriculture 2022, 12, 894. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, T.; Liu, S.; Yan, X.; Zhao, H.; Wu, X.; Zhang, S. Design and experimental study of a bionic blade for harvesting the wild chrysanthemum stem. Agriculture 2023, 13, 190. [Google Scholar] [CrossRef]
- Xia, Z.; Yao, L.; Kan, J. The numerical simulation of rotating tool cutting soil and wood based on ANSYS/LS-DYNA. For. Eng. 2016, 32, 43–47. [Google Scholar] [CrossRef]
- Chinese Academy of Agricultural Mechanization Science. Agricultural Machinery Design Manual, 1st ed.; China Agricultural Science and Technology Press: Beijing, China, 2007. [Google Scholar]
- Shen, C.; Chen, Q.; Li, X.; Zhang, B.; Tian, K.; Huang, J. Design, analysis and test on cutting test bench of ramie stalk. Int. Agric. Eng. J. 2017, 26, 86–95. [Google Scholar]
- Zhou, Y.; Li, X.; Shen, C.; Tian, K.; Zhang, B.; Huang, J. Experimental analysis on mechanical model of industrial hemp stalk. Trans. CSAE 2016, 32, 22–29. [Google Scholar] [CrossRef]
- Available online: http://dec3.jlu.edu.cn/webcourse/T000185/T000199/files/bjjx/z8_2.html (accessed on 7 February 2023).
Blade Code | Tooth Pitch A/mm | Tooth Angle B/° |
---|---|---|
a | 5.0 | 0 |
b | 5.0 | 15 |
c | 5.0 | 30 |
d | 7.5 | 0 |
e | 7.5 | 15 |
f | 7.5 | 30 |
g | 10 | 0 |
h | 10 | 15 |
i | 10 | 30 |
Mechanical parameter | EX /MPa | EY /MPa | EZ /MPa | GXY /MPa | GXZ /MPa | GYZ /MPa | UXY | UXZ | UYZ |
Value | 88 | 88 | 1743.50 | 33.85 | 31.99 | 31.99 | 0.3 | 0.02 | 0.02 |
Mechanical parameter | XT /MPa | XC /MPa | YT /MPa | YC /MPa | ZT /MPa | ZC /MPa | SXY /MPa | SYZ /MPa | SXZ /MPa |
Value | 25 | 10 | 1 | 2 | 1 | 2 | 5 | 2 | 2 |
Levels | Factors | ||
---|---|---|---|
Tooth Pitch A/mm | Tooth Angle B/° | Speed Ratio C | |
−1 | 5.0 | 0 | 0.75 |
0 | 7.5 | 15 | 1.38 |
1 | 10.0 | 30 | 2.00 |
Test No. | Tooth Pitch A/mm | Tooth Angle B/° | Speed Ratio C | Cutting Energy W/mJ |
---|---|---|---|---|
1 | −1 | −1 | 0 | 6014.07 |
2 | 0 | −1 | 1 | 4948.56 |
3 | −1 | 0 | 1 | 4278.28 |
4 | 0 | 0 | 0 | 5531.58 |
5 | 1 | 1 | 0 | 5190.95 |
6 | 0 | 0 | 0 | 5531.58 |
7 | 0 | 0 | 0 | 5531.58 |
8 | −1 | 0 | −1 | 12,397.10 |
9 | 0 | 1 | 1 | 3972.02 |
10 | 1 | 0 | 1 | 3999.39 |
11 | 0 | 0 | 0 | 5531.58 |
12 | −1 | 1 | 0 | 5424.18 |
13 | 1 | −1 | 0 | 7201.73 |
14 | 0 | −1 | −1 | 16,033.50 |
15 | 0 | 0 | 0 | 5531.58 |
16 | 1 | 0 | −1 | 11,869.80 |
17 | 0 | 1 | −1 | 7343.06 |
Souces | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 1.75 × 108 | 9 | 1.94 × 107 | 19.61 | 0.0004 ** |
A | 2746.89 | 1 | 2746.89 | 0.0028 | 0.9594 |
B | 1.88 × 107 | 1 | 1.88 × 107 | 19.02 | 0.0033 ** |
C | 1.16 × 108 | 1 | 1.16 × 108 | 117.14 | <0.0001 ** |
AB | 5.05 × 105 | 1 | 5.05 × 105 | 0.5103 | 0.4981 |
AC | 15,426.88 | 1 | 15,426.88 | 0.0156 | 0.9041 |
BC | 1.49 × 107 | 1 | 1.49 × 107 | 15.04 | 0.0061 ** |
A2 | 2.51 × 105 | 1 | 2.51 × 105 | 0.2537 | 0.6300 |
B2 | 1.40 × 105 | 1 | 1.40 × 105 | 0.141 | 0.7184 |
C2 | 2.35 × 107 | 1 | 2.35 × 107 | 23.72 | 0.0018 ** |
Residual | 6.92 × 106 | 7 | 9.89 × 105 | ||
Lack of Fit | 6.92 × 106 | 3 | 2.31 × 106 | ||
Cor Total | 1.82 × 108 | 16 | |||
R2 | 0.9618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, K.; Zhang, B.; Shen, C.; Liu, H.; Huang, J.; Ji, A. Dynamic Cutting Performance Test and Parameter Optimization of Longicorn Bionic Blade for Industrial Hemp Harvester. Agriculture 2023, 13, 1074. https://doi.org/10.3390/agriculture13051074
Tian K, Zhang B, Shen C, Liu H, Huang J, Ji A. Dynamic Cutting Performance Test and Parameter Optimization of Longicorn Bionic Blade for Industrial Hemp Harvester. Agriculture. 2023; 13(5):1074. https://doi.org/10.3390/agriculture13051074
Chicago/Turabian StyleTian, Kunpeng, Bin Zhang, Cheng Shen, Haolu Liu, Jicheng Huang, and Aimin Ji. 2023. "Dynamic Cutting Performance Test and Parameter Optimization of Longicorn Bionic Blade for Industrial Hemp Harvester" Agriculture 13, no. 5: 1074. https://doi.org/10.3390/agriculture13051074
APA StyleTian, K., Zhang, B., Shen, C., Liu, H., Huang, J., & Ji, A. (2023). Dynamic Cutting Performance Test and Parameter Optimization of Longicorn Bionic Blade for Industrial Hemp Harvester. Agriculture, 13(5), 1074. https://doi.org/10.3390/agriculture13051074