Molecular Evidence for the Presence of Wisteria Vein Mosaic Virus in Italy: Shedding Light on Genetic Diversity and Evolutionary Dynamics of Virus Geographic Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Total RNA Extraction, RT-PCR, Cloning and Sequencing
2.3. Sequence Comparison and Phylogenetic Analysis
2.3.1. Nuclear Inclusion Protein b (Nib) Gene
2.3.2. Coat Protein (CP) Gene
2.4. Recombination Analysis
2.5. Analyses of Genetic Diversity and Population Dynamics
3. Results
3.1. Sequence Comparison and Phylogenetic Analysis
3.1.1. Nuclear Inclusion Protein b (NIb) Gene
3.1.2. Coat Protein (CP) Gene
3.2. Analyses of Genetic Diversity and Population Dynamics
3.2.1. Genetic Diversity and Amino Acid Changes
3.2.2. Analysis of Selection Pressure and Tests of Neutrality
3.2.3. Genetic Differentiation and Gene Flow
3.3. Recombination Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clover, G.; Tang, Z.; Smales, T.; Pearson, M. Taxonomy of Wisteria vein mosaic virus and extensions to its host range and geographical distribution. Plant Pathol. 2003, 52, 92–96. [Google Scholar] [CrossRef]
- Al-Jaberi, M.S.; Moradi, Z.; Mehrvar, M.; Al-Inizi, H.R.; Zakiaghl, M. Whole genome characterization of Wisteria vein mosaic virus from Iran and its relationship to other members of bean common mosaic virus group. 3 Biotech 2021, 11, 407. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Song, L.; Tian, G.; Li, H.; Fan, Z. The genomic sequence of Wisteria vein mosaic virus and its similarities with other potyviruses. Arch. Virol. 2006, 151, 2311–2319. [Google Scholar] [CrossRef]
- Clover, G.; Denton, J.; Denton, G. First report of Wisteria vein mosaic virus on Wisteria spp. in the United Kingdom. New Dis. Rep. 2015, 31, 1. [Google Scholar] [CrossRef]
- Brierley, P.; Lorentz, P. Wisteria mosaic and peony leaf curl, two diseases of ornamental plants caused by viruses transmissible by grafting but not by sap inoculation. Plant Dis. Reptr. 1957, 41, 691–693. [Google Scholar]
- Bos, L. The identification of three new viruses isolated from Wisteria and Pisum in the Netherlands, and the problem of variation within the potato virus Y group. Neth. J. Plant Pathol. 1970, 76, 8–46. [Google Scholar] [CrossRef]
- Al-Jaberi, M.; Mehrvar, M.; Zakiahgl, M. Molecular identification of an isolate of Wisteria vein mosaic virus in Khorasan Razavi province. J. Plant Prot. Mashad 2019, 33, 23–26. [Google Scholar]
- Liang, W.; Song, L.; Li, Y.; Tian, G.; Li, H.; Fan, Z. First report of Wisteria vein mosaic virus in China. Plant Pathol. 2004, 53, 516. [Google Scholar] [CrossRef]
- Zhu, F.; Zhu, P.-X.; Xu, F.; Ji, Z.-L. First report of Wisteria vein mosaic virus infecting Chinese wisteria in Jiangsu Province in China. J. Plant Dis. Prot. 2019, 126, 373–377. [Google Scholar] [CrossRef]
- Ji, Z.-L.; Zhu, P.-X.; Ji, Y.-H.; Xu, F.; Zhu, F. First report of Wisteria vein mosaic virus in Chinese wisteria in Jiangxi Province in China. J. Plant Pathol. 2019, 101, 1259–1260. [Google Scholar] [CrossRef]
- Kamińska, M.; Malinowski, T.; Rudzińska-Langwald, A.; Diaz, L. The occurrence of Wisteria vein mosaic virus in Wisteria floribunda DC plants in Poland. J. Phytopathol. 2006, 154, 414–417. [Google Scholar] [CrossRef]
- Naidu, R.A.; Karthikeyan, G. First report of Wisteria vein mosaic virus in Wisteria sinensis in the United States of America. Plant Health Prog. 2008, 9, 42. [Google Scholar] [CrossRef]
- Ward, L.; Tang, J.; Clover, G. First report of Wisteria vein mosaic virus on Wisteria sinensis in New Zealand. Plant Dis. 2008, 92, 1134. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Lovisolo, O. Observations on a virus isolated from Wisteria floribunda DC in Italy. Riv. Patol. Veg. 1969, 5, 115–132. [Google Scholar]
- Brčák, J. A Prague isolate of Wisteria vein mosaic virus. Biol. Plant. 1980, 22, 465–469. [Google Scholar] [CrossRef]
- Valouzi, H.; Hashemi, S.-S.; Wylie, S.J.; Ahadiyat, A.; Golnaraghi, A. Wisteria vein mosaic virus detected for the first time in Iran from an unknown host by analysis of aphid vectors. Plant Pathol. J. 2020, 36, 87–97. [Google Scholar] [CrossRef]
- Bos, L. Wisteria vein mosaic potyvirus. In Viruses of Plants: Descriptions and Lists from the VIDE Database; Brunt, A.A., Ed.; CAB International: Wallingford, UK, 1996; pp. 1407–1409. [Google Scholar]
- Yao, M.-C.; Zhu, P.-X.; Zhang, Q.-Q.; Zhang, Q.-P.; Ji, Z.-L.; Zhu, F. Development of a reverse transcription-loop mediated isothermal amplification assay for detection of Wisteria vein mosaic virus. Eur. J. Plant Pathol. 2022, 163, 113–123. [Google Scholar] [CrossRef]
- Valder, P. Wisterias. A Comprehensive Guide; Florilegium: Balmain, Australia, 1995. [Google Scholar]
- Keskin, S.; Sirin, Y.; Cakir, H.E.; Keskin, M. Phenolic composition and antioxidant properties of Wisteria sinensis. Int. J. Sci. Technol. Res. 2019, 5, 98–103. [Google Scholar]
- Li, Y.; Deng, C.; Qiao, Y.; Zhao, X.; Zhou, Q. Characterization of a new badnavirus from Wisteria sinensis. Arch. Virol. 2017, 162, 2125–2129. [Google Scholar] [CrossRef]
- Mehrvar, M.; Moradi, Z.; Al-Jaberi, M. First report of Wisteria badnavirus 1 infecting Wisteria sinensis in Iran. New Dis. Rep. 2022, 46, 2. [Google Scholar] [CrossRef]
- Dabiri, S.; Moradi, Z.; Mehrvar, M.; Zakiaghl, M. Analysis of the complete genome sequence of cucumber mosaic virus from Vinca minor and Wisteria sinensis in Iran. J. Plant Pathol. 2020, 102, 1263–1268. [Google Scholar] [CrossRef]
- Milojević, K.; Radović, N.; Stanković, I.; Vučurović, A.; Nikolić, D.; Bulajić, A.; Krstić, B. First report of cucumber mosaic virus infecting Wisteria sinensis in Serbia. Plant Dis. 2016, 100, 1799. [Google Scholar] [CrossRef]
- Moradi, Z.; Mehrvar, M. Whole-genome characterization of alfalfa mosaic virus obtained from metagenomic analysis of Vinca minor and Wisteria sinensis in Iran with implications for the genetic structure of the virus. Plant Pathol. J. 2021, 37, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Yoon, Y.N.; Jang, Y.-W.; Choi, H.; Lee, Y.-H.; Kim, S.-M.; Choi, S.Y.; Lee, B.C.; Cho, W.K. Soybean viromes in the Republic of Korea revealed by RT-PCR and next-generation sequencing. Microorganisms 2020, 8, 1777. [Google Scholar] [CrossRef] [PubMed]
- Jerzak, G.; Bernard, K.A.; Kramer, L.D.; Ebel, G.D. Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J. Gen. Virol. 2005, 86, 2175. [Google Scholar] [CrossRef] [PubMed]
- Randa-Zelyüt, F.; Fox, A.; Karanfil, A. Population genetic dynamics of southern tomato virus from Turkey. J. Plant Pathol. 2022, 105, 211–224. [Google Scholar] [CrossRef]
- Rodríguez-Nevado, C.; Montes, N.; Pagán, I. Ecological factors affecting infection risk and population genetic diversity of a novel potyvirus in its native wild ecosystem. Front. Plant Sci. 2017, 8, 1958. [Google Scholar] [CrossRef]
- Morelli, M.; Giampetruzzi, A.; Laghezza, L.; Catalano, L.; Savino, V.N.; Saldarelli, P. Identification and characterization of an isolate of apple green crinkle associated virus involved in a severe disease of quince (Cydonia oblonga, Mill.). Arch. Virol. 2017, 162, 299–306. [Google Scholar] [CrossRef]
- Zheng, L.; Rodoni, B.; Gibbs, M.; Gibbs, A.J. A novel pair of universal primers for the detection of potyviruses. Plant Pathol. 2010, 59, 211–220. [Google Scholar] [CrossRef]
- NCBI Virus. Available online: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/ (accessed on 31 January 2023).
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 2004, 32, W327–W331. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT; Nucleic Acids Symposium Series; Information Retrieval Ltd.: London, UK, 1999; pp. 95–98. [Google Scholar]
- Wernersson, R.; Pedersen, A.G. RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic acids res. 2003, 31, 3537–3539. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.G.; Hickey, D.A. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J. Mol. Evol. 1999, 48, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.i.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Muhire, B.M.; Varsani, A.; Martin, D.P. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 2014, 9, e108277. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-Azeroual, O.; Mareuil, F.; Cohen-Boulakia, S.; Gascuel, O. NGPhylogeny. fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019, 47, W260–W265. [Google Scholar] [CrossRef] [PubMed]
- Desper, R.; Gascuel, O. Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. In Proceedings of the Algorithms in Bioinformatics: Second International Workshop, WABI 2002, Rome, Italy, 17–21 September 2002; pp. 357–374. [Google Scholar]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef]
- Criscuolo, A.; Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010, 10, 210. [Google Scholar] [CrossRef]
- Junier, T.; Zdobnov, E.M. The Newick utilities: High-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 2010, 26, 1669–1670. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Goh, C.J.; Hahn, Y. Analysis of proteolytic processing sites in potyvirus polyproteins revealed differential amino acid preferences of NIa-Pro protease in each of seven cleavage sites. PLoS ONE 2021, 16, e0245853. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.E.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Springer Humana Press: Totowa, NJ, USA, 2005. [Google Scholar]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, USA, 1969; Volume 3, pp. 21–132. [Google Scholar]
- Nei, M.; Miller, J.C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 1990, 125, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; Team, U. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef]
- Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 1965, 19, 395–420. [Google Scholar] [CrossRef]
- Garg, S.; Alam, M.T.; Das, M.K.; Dev, V.; Kumar, A.; Dash, A.P.; Sharma, Y.D. Sequence diversity and natural selection at domain I of the apical membrane antigen 1 among Indian Plasmodium falciparum populations. Malar. J. 2007, 6, 154. [Google Scholar] [CrossRef]
- Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 1993, 47, 264–279. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.-X.; Li, W.-H. Statistical tests of neutrality of mutations. Genetics 1993, 133, 693–709. [Google Scholar] [CrossRef]
- Shen, W.; Shi, Y.; Dai, Z.; Wang, A. The RNA-dependent RNA polymerase NIb of potyviruses plays multifunctional, contrasting roles during viral infection. Viruses 2020, 12, 77. [Google Scholar] [CrossRef]
- Ferrer-Orta, C.; Ferrero, D.; Verdaguer, N. RNA-dependent RNA polymerases of picornaviruses: From the structure to regulatory mechanisms. Viruses 2015, 7, 4438–4460. [Google Scholar] [CrossRef] [PubMed]
- Revers, F.; Le Gall, O.; Candresse, T.; Maule, A.J. New advances in understanding the molecular biology of plant/potyvirus interactions. Mol. Plant-Microbe Interact. 1999, 12, 367–376. [Google Scholar] [CrossRef]
- Lopez-Moya, J.; Wang, R.; Pirone, T. Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. J. Gen. Virol. 1999, 80, 3281–3288. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Hu, J.; Zhang, L.; Dong, X.; Ji, P.; Dong, J. Complete genome sequence analysis of a new potyvirus isolated from Paris polyphylla var. yunnanensis. Arch. Virol. 2023, 168, 43. [Google Scholar] [CrossRef] [PubMed]
- Atreya, P.L.; Atreya, C.D.; Pirone, T.P. Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc. Natl. Acad. Sci. USA 1991, 88, 7887–7891. [Google Scholar] [CrossRef]
- Adams, M.; Antoniw, J.; Fauquet, C. Molecular criteria for genus and species discrimination within the family Potyviridae. Arch. Virol. 2005, 150, 459–479. [Google Scholar] [CrossRef]
- ISO. ISO 3166-1: Codes for the Representation of Names of Countries and Their Subdivisions–Part 1: Country Codes; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- De Jong, M.A.; Wahlberg, N.; Van Eijk, M.; Brakefield, P.M.; Zwaan, B.J. Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PLoS ONE 2011, 6, e21385. [Google Scholar] [CrossRef]
- Zheng, L.; Wayper, P.J.; Gibbs, A.J.; Fourment, M.; Rodoni, B.C.; Gibbs, M.J. Accumulating variation at conserved sites in potyvirus genomes is driven by species discovery and affects degenerate primer design. PLoS ONE 2008, 3, e1586. [Google Scholar] [CrossRef]
- Joshi, V. New/unusual or noteworthy plant disease diagnoses—1997. In Crop Protection Newsletter 20; Canadian Ministry of Agriculture, Food and Fisheries: Kelowna, British Columbia, Canada, 1998. [Google Scholar]
- Nakasato, K.; Fujioka, S.; Sugawara, Y.; Ono, T.; Nishio, T.; Tsuda, S. First detection of two potyviruses, Uraria mosaic virus and Passiflora mosaic virus Y, from passionfruit in Japan. J. Gen. Plant Pathol. 2020, 86, 401–404. [Google Scholar] [CrossRef]
- Chen, C.; Chang, C.; Tsai, H.; Hsu, H. Identification of a potyvirus causing latent infection in calla lilies. Plant Dis. 2004, 88, 1046. [Google Scholar] [CrossRef]
- Criscuolo, A.; Gascuel, O. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinform. 2008, 9, 166. [Google Scholar] [CrossRef]
- Gibbs, A.; Ohshima, K. Potyviruses and the digital revolution. Annu. Rev. Phytopathol. 2010, 48, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, A.J.; Hajizadeh, M.; Ohshima, K.; Jones, R.A. The potyviruses: An evolutionary synthesis is emerging. Viruses 2020, 12, 132. [Google Scholar] [CrossRef] [PubMed]
- Herath, V.; Romay, G.; Urrutia, C.D.; Verchot, J. Family level phylogenies reveal relationships of plant viruses within the Order Bunyavirales. Viruses 2020, 12, 1010. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, A.J.; Ohshima, K.; Phillips, M.J.; Gibbs, M.J. The prehistory of potyviruses: Their initial radiation was during the dawn of agriculture. PLoS ONE 2008, 3, e2523. [Google Scholar] [CrossRef]
- Gibbs, A.J.; Trueman, J.; Gibbs, M.J. The bean common mosaic virus lineage of potyviruses: Where did it arise and when? Arch. Virol. 2008, 153, 2177–2187. [Google Scholar] [CrossRef]
- Worrall, E.A.; Wamonje, F.O.; Mukeshimana, G.; Harvey, J.J.; Carr, J.P.; Mitter, N. Bean common mosaic virus and bean common mosaic necrosis virus: Relationships, biology, and prospects for control. Adv. Virus Res. 2015, 93, 1–46. [Google Scholar]
- Yasaka, R.; Fukagawa, H.; Ikematsu, M.; Soda, H.; Korkmaz, S.; Golnaraghi, A.; Katis, N.; Ho, S.Y.; Gibbs, A.J.; Ohshima, K. The timescale of emergence and spread of turnip mosaic potyvirus. Sci. Rep. 2017, 7, 4240. [Google Scholar] [CrossRef]
- Gao, F.; Zou, W.; Xie, L.; Zhan, J. Adaptive evolution and demographic history contribute to the divergent population genetic structure of potato virus Y between China and Japan. Evol. Appl. 2017, 10, 379–390. [Google Scholar] [CrossRef]
- Nigam, D.; LaTourrette, K.; Souza, P.F.; Garcia-Ruiz, H. Genome-wide variation in potyviruses. Front. Plant Sci. 2019, 10, 1439. [Google Scholar] [CrossRef]
- Hughes, A.L. Small effective population sizes and rare nonsynonymous variants in potyviruses. Virology 2009, 393, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Hughes, A.L. Adaptive Evolution of Genes and Genomes; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Moradi, Z.; Mehrvar, M. Metagenomic Analysis of Malva sylvestris from Iran displays a Malva vein clearing virus genome. J. Agric. Sci. Technol. 2023, 25, 213–223. [Google Scholar] [CrossRef]
- García-Arenal, F.; Fraile, A.; Malpica, J.M. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 2001, 39, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Valouzi, H.; Shahmohammadi, N.; Golnaraghi, A.; Moosavi, M.R.; Ohshima, K. Genetic diversity and evolutionary analyses of potyviruses infecting narcissus in Iran. J. Plant Pathol. 2022, 104, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Sokhandan-Bashir, N.; Melcher, U. Population genetic analysis of grapevine fanleaf virus. Arch. Virol. 2012, 157, 1919–1929. [Google Scholar] [CrossRef]
- Jones, D.R. Plant viruses transmitted by thrips. Eur. J. Plant Pathol. 2005, 113, 119–157. [Google Scholar] [CrossRef]
- Bashalkhanov, S.; Pandey, M.; Rajora, O.P. A simple method for estimating genetic diversity in large populations from finite sample sizes. BMC Genet. 2009, 10, 84. [Google Scholar] [CrossRef]
- Carbonell, A.; Maliogka, V.I.; Pérez, J.d.J.; Salvador, B.; León, D.S.; García, J.A.; Simón-Mateo, C. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts. Mol. Plant-Microbe Interact. 2013, 26, 1211–1224. [Google Scholar] [CrossRef]
- Decroocq, V.; Salvador, B.; Sicard, O.; Glasa, M.; Cosson, P.; Svanella-Dumas, L.; Revers, F.; García, J.; Candresse, T. The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol. Plant-Microbe Interact. 2009, 22, 1302–1311. [Google Scholar] [CrossRef]
- Moury, B.; Simon, V. dN/dS-based methods detect positive selection linked to trade-offs between different fitness traits in the coat protein of potato virus Y. Mol. Biol. Evol. 2011, 28, 2707–2717. [Google Scholar] [CrossRef]
- Ivanov, K.; Eskelin, K.; Lohmus, A.; Mäkinen, K. Molecular and cellular mechanisms underlying potyvirus infection. J. Gen. Virol. 2014, 95, 1415–1429. [Google Scholar] [CrossRef]
- Nyakaana, S.; Tumusiime, C.; Oguge, N.; Siegismund, H.R.; Arctander, P.; Muwanika, V. Mitochondrial DNA diversity and population structure of a forest-dependent rodent, Praomys taitae (Rodentia: Muridae) Heller 1911, in the fragmented forest patches of Taita Hills, Kenya. S. Afr. J. Sci. 2008, 104, 499–504. [Google Scholar] [CrossRef]
- Li, Y.; Haseneyer, G.; Schön, C.-C.; Ankerst, D.; Korzun, V.; Wilde, P.; Bauer, E. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol. 2011, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M.; Barton, N.H. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 1989, 43, 1349–1368. [Google Scholar] [CrossRef] [PubMed]
- Nagy, P.D. Recombination in plant RNA viruses. In Plant Virus Evolution; Roossinck, M.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 133–156. [Google Scholar]
- van der Walt, E.; Rybicki, E.P.; Varsani, A.; Polston, J.; Billharz, R.; Donaldson, L.; Monjane, A.L.; Martin, D.P. Rapid host adaptation by extensive recombination. J. Gen. Virol. 2009, 90, 734. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, K.; Herath, V.; Ahmed, K.; Tahir, M.; Verchot, J. Genetic diversity and molecular evolution of sugarcane mosaic virus, comparing whole genome and coat protein sequence phylogenies. Arch. Virol. 2022, 167, 2239–2247. [Google Scholar] [CrossRef]
Geographic Group | n | H | Hd | S | SVs | PIs | Pcd | η | K | π |
---|---|---|---|---|---|---|---|---|---|---|
Europe | 13 | 13 | 1.000 | 92 | 27 | 65 | 9 | 100 | 28.051 | 0.062 |
Asia | 5 | 4 | 0.900 | 65 | 8 | 57 | 6 | 67 | 37.900 | 0.084 |
Oceania | 2 | 2 | 1.000 | 55 | 55 | 0 | 1 | 55 | 55.000 | 0.121 |
Total | 20 | 16 | 0.974 | 93 | 25 | 68 | 13 | 102 | 24.116 | 0.053 |
Geographic Group | n | dN | dS | ω | Tajima’s D | Fu-Li’s F |
---|---|---|---|---|---|---|
Europe | 13 | 0.014 | 0.295 | 0.049 | −0.598 ns | −0.186 ns |
Asia | 5 | 0.019 | 0.442 | 0.042 | 1.417 ns | 1.528 ns |
Oceania | 2 | 0.032 | 0.728 | 0.044 | n.a. | n.a. |
Total | 20 | 0.012 | 0.245 | −0.051 | −0.674 ns | −0.413 ns |
Population A | Population B | FST | Nm | Kxy | Dxy | Da |
---|---|---|---|---|---|---|
Europe (n = 13) | Asia (n = 5) | 0.126 | 1.732 | 37.615 | 0.083 | 0.010 |
Europe (n = 13) | Oceania (n = 2) | −0.237 | −1.306 | 33.577 | 0.074 | −0.018 |
Asia (n = 5) | Oceania (n = 2) | −0.498 | −0.752 | 31.000 | 0.068 | −0.034 |
Gene | Breakpoint Position (nt) | Recombinant Isolate (Accession) | Parental Isolates (Accession) | ||||
---|---|---|---|---|---|---|---|
Beginning | End | Major | Minor | ||||
NIb | 34 | 321 | Bari (OP381183) | Unknown | Ir (MN514947) | ||
CP | 492 | 540 | JEBUp (MT603851) | CeJH (LC729727) | Beijing (NC_007216) | ||
Gene | Detection Algorithm (p-Value) | ||||||
RDP | GENECONV | Chimaera | MaxChi | BootScan | SiScan | 3Seq | |
NIb | ns | ns | ns | 8.39 × 10−3 | ns | ns | 3.44 × 10−6 |
CP | 1.07 × 10−2 | 3.86 × 10−2 | ns | 3.38 × 10−2 | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Attoma, G.; Minafra, A.; Saldarelli, P.; Morelli, M. Molecular Evidence for the Presence of Wisteria Vein Mosaic Virus in Italy: Shedding Light on Genetic Diversity and Evolutionary Dynamics of Virus Geographic Populations. Agriculture 2023, 13, 1090. https://doi.org/10.3390/agriculture13051090
D’Attoma G, Minafra A, Saldarelli P, Morelli M. Molecular Evidence for the Presence of Wisteria Vein Mosaic Virus in Italy: Shedding Light on Genetic Diversity and Evolutionary Dynamics of Virus Geographic Populations. Agriculture. 2023; 13(5):1090. https://doi.org/10.3390/agriculture13051090
Chicago/Turabian StyleD’Attoma, Giusy, Angelantonio Minafra, Pasquale Saldarelli, and Massimiliano Morelli. 2023. "Molecular Evidence for the Presence of Wisteria Vein Mosaic Virus in Italy: Shedding Light on Genetic Diversity and Evolutionary Dynamics of Virus Geographic Populations" Agriculture 13, no. 5: 1090. https://doi.org/10.3390/agriculture13051090
APA StyleD’Attoma, G., Minafra, A., Saldarelli, P., & Morelli, M. (2023). Molecular Evidence for the Presence of Wisteria Vein Mosaic Virus in Italy: Shedding Light on Genetic Diversity and Evolutionary Dynamics of Virus Geographic Populations. Agriculture, 13(5), 1090. https://doi.org/10.3390/agriculture13051090