Nutritional and Health Values of Tunisian Edible Oils from Less-Used Plant Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Materials and Reagents
2.3. Elemental Analysis
2.3.1. ICP-MS
2.3.2. Determination of Hg Content
2.4. Total Polyphenol Analysis
2.5. Fatty Acids Profiling
2.6. Determination of Squalene
2.7. Determination of Phytosterols
2.8. α-Tocopherol Measurement
2.9. Statistical Analysis
3. Results and Discussion
3.1. Multiement Measurement
3.2. Total Polyphenol Determination
3.3. Determination of Fatty Acid Profile
3.4. Measurement of Squalene
3.5. Phytosterols Profiling
3.6. α-Tocopherol Levels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Albergamo, A.; Costa, R.; Bartolomeo, G.; Rando, R.; Vadalà, R.; Nava, V.; Gervasi, T.; Toscano, G.; Germanò, M.P.; D’Angelo, V.; et al. Grape water: Reclaim and valorization of a by-product from the industrial cryoconcentration of grape (Vitis Vinifera) must. J. Sci. Food Agric. 2020, 100, 2971–2981. [Google Scholar] [CrossRef]
- Galanakis, C.M. Functionality of Food Components and Emerging Technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef]
- Guneser, B.A.; Yilmaz, E. Bioactives, Aromatics and Sensory Properties of Cold-Pressed and Hexane-Extracted Lemon (Citrus Limon L.) Seed Oils. J. Am. Oil Chem. Soc. 2017, 94, 723–731. [Google Scholar] [CrossRef]
- Costa, R.; Albergamo, A.; Arrigo, S.; Gentile, F.; Dugo, G. Solid-phase microextraction-gas chromatography and ultra-high performance liquid chromatography applied to the characterization of lemon wax, a by-product product from citrus industry. J. Chromatogr. A 2019, 1603, 262–268. [Google Scholar] [CrossRef]
- Salvo, A.; La Torre, G.L.; Di Stefano, V.; Capocchiano, V.; Mangano, V.; Saija, E.; Pellizzeri, V.; Casale, K.E.; Dugo, G. Fast UPLC/PDA determination of squalene in Sicilian PFast UPLC/PDA determination of squalene in Sicilian P.D.O. pistachio from Bronte: Optimization of oil extraction method and analytical characterization. Food Chem. 2017, 221, 1631–1636. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and By-product to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food By-products: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef]
- Gervasi, T.; Pellizzeri, V.; Benameur, Q.; Gervasi, C.; Santini, A.; Cicero, N.; Dugo, G. Valorization of raw materials from agricultural industry for astaxanthin and β-carotene production by Xanthophyllomyces dendrorhous. Nat. Prod. Res. 2018, 32, 1554–1561. [Google Scholar] [CrossRef]
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of Vegetable and Fruit By-products as Functional Ingredient and Food. Front. Nutr. 2021, 8, 661693. [Google Scholar] [CrossRef]
- Alesci, A.; Salvo, A.; Lauriano, E.R.; Gervasi, T.; Palombieri, D.; Bruno, M.; Pergolizzi, S.; Cicero, N. Production and extraction of astaxanthin from Phaffia rhodozyma and its biological effect on alcohol-induced renal hypoxia in Carassius auratus. Nat. Prod. Res. 2015, 29, 1122–1126. [Google Scholar] [CrossRef]
- Di Stefano, V.; Bongiorno, D.; Buzzanca, C.; Indelicato, S.; Santini, A.; Lucarini, M.; Fabbrizio, A.; Mauro, M.; Vazzana, M.; Arizza, V.; et al. Fatty Acids and Triacylglycerols Profiles from Sicilian (Cold Pressed vs. Soxhlet) Grape Seed Oils. Sustainability 2021, 13, 13038. [Google Scholar] [CrossRef]
- Research and Market. Fruit and Vegetable Seeds Market—Forecast (2020–2025). 2020. Available online: https://www.researchandmarkets.com/reports/3786704/fruit-and-vegetable-seeds-market-forecast-2020 (accessed on 28 January 2023).
- Jiménez-Moreno, N.; Esparza, I.; Bimbela, F.; Gandía, L.M.; Ancín-Azpilicueta, C. Valorization of selected fruit and vegetable by-products as bioactive compounds: Opportunities and challenges. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2061–2108. [Google Scholar] [CrossRef]
- INC (International Nut&Dried Fruits Congress) 2021 Nut&Dried Fruit Statistical Yearbook 2020/2021. Available online: https://www.nutfruit.org/industry/technical-resources?category=statistical-yearbooks (accessed on 7 January 2023).
- Zielińska, A.; Wójcicki, K.; Klensporf-Pawlik, D.; Marzec, M.; Lucarini, M.; Durazzo, A.; Fonseca, J.; Santini, A.; Nowak, I.; Souto, E.B. Cold-Pressed Pomegranate Seed Oil: Study of Punicic Acid Properties by Coupling of GC/FID and FTIR. Molecules 2022, 27, 5863. [Google Scholar] [CrossRef]
- Augustin, M.A.; Sanguansri, L.; Fox, E.M.; Cobiac, L.; Cole, M.B. Recovery of by-productd fruit and vegetables for improving sustainable diets. Trends Food Sci. Technol. 2020, 95, 75–85. [Google Scholar] [CrossRef]
- Pachuau, L.; Devi, C.M.; Goswami, A.; Sahu, S.; Dutta, R.S. Seed Oils as a Source of Natural Bio-active Compounds. In Natural Bio-Active Compounds; Akhtar, M.S., Swamy, M.K., Sinniah, U.R., Eds.; Springer: Singapore, 2019; pp. 209–235. [Google Scholar] [CrossRef]
- Gómez-Coca, R.B.; Moreda, W.; Pérez-Camino, M.C. Fatty Acid Alkyl Esters Presence in Olive Oil vs. Organoleptic Assessment. Food Chem. 2012, 135, 1205–1209. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations Rome) (2021) Strategic Framework 2022–2031, Rome, October 2021. Available online: https://www.fao.org/3/cb7099en/cb7099en.pdf (accessed on 12 December 2022).
- 2000 Eurachem/CITAC. Guide: Quantifying Uncertainty in Analytical Measurement, 2nd ed.; Ellison, S.L.R., Roesslein, M., Williams, A., Eds.; Laboratory of the Government Chemist: London, UK, 2000. [Google Scholar]
- European Commission Implementing Regulation (EU) No 1348/2013 of 16 December 2013 Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Available online: https://eur-lex.europa.eu/eli/reg_impl/2013/1348/oj/ita (accessed on 22 December 2022).
- Dugo, L.; Russo, M.; Cacciola, F.; Mandolfino, F.; Salafia, F.; Vilmercati, A.; Fanali, C.; Casale, M.; De Gara, L.; Dugo, P.; et al. Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. Food Anal. Methods 2020, 13, 1027–1041. [Google Scholar] [CrossRef]
- Crupi, R.; Lo Turco, V.; Gugliandolo, E.; Nava, V.; Potortì, A.G.; Cuzzocrea, S.; Di Bella, G.; Licata, P. Mineral Composition in Delactosed Dairy Products: Quality and Safety Status. Foods 2022, 11, 139. [Google Scholar] [CrossRef]
- Di Bella, G.; Potortì, A.G.; Beltifa, A.; Ben Mansour, H.; Nava, V.; Lo Turco, V. Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling. Foods 2021, 10, 724. [Google Scholar] [CrossRef]
- Di Donato, F.; Foschi, M.; Vlad, N.; Biancolillo, A.; Rossi, L.; D’Archivio, A.A. Multi-Elemental Composition Data Handled by Chemometrics for the Discrimination of High-Value Italian Pecorino Cheeses. Molecules 2021, 26, 6875. [Google Scholar] [CrossRef]
- Esposito, M.; Roma, A.D.; Cavallo, S.; Miedico, O.; Chiaravalle, E.; Soprano, V.; Baldi, L.; Gallo, P. Trace Elements in Vegetables and Fruits Cultivated in Southern Italy. J. Food Compos. Anal. 2019, 84, 103302. [Google Scholar] [CrossRef]
- Erba, D.; Casiraghi, M.C.; Ribas-Agustí, A.; Cáceres, R.; Marfà, O.; Castellari, M. Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J. Food Compos. Anal. 2013, 31, 245–251. [Google Scholar] [CrossRef]
- Hembrom, S.; Singh, B.; Gupta, S.K.; Nema, A.K. A Comprehensive Evaluation of Heavy Metal Contamination in Foodstuff and Associated Human Health Risk: A Global Perspective. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Singh, P., Singh, R.P., Srivastava, V., Eds.; Springer: Singapore, 2020; pp. 33–63. [Google Scholar] [CrossRef]
- Chitturi, R.; Baddam, V.R.; Prasad, L.; Prashanth, L.; Kattapagari, K. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Health Sci. 2015, 4, 75. [Google Scholar] [CrossRef]
- World Health Organization, International Atomic Energy Agency & Food and Agriculture Organization of the United Nations. Trace Elements in Human Nutrition and Health. World Health Organization. 2006. Available online: https://apps.who.int/iris/handle/10665/37931 (accessed on 14 May 2023).
- NIH (National Institute on Health) (2022)—Nutrient Recommendations: Dietary Reference Intakes (DRI). Available online: https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx (accessed on 14 December 2022).
- FAOSTAT 2019. Food Balances 2010–2019. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 20 January 2022).
- Von Haehling, S.; Jankowska, E.A.; Van Veldhuisen, D.J.; Ponikowski, P.; Anker, S.D. Iron deficiency and cardiovascular disease. Nat. Rev. Cardiol. 2015, 12, 659–669. [Google Scholar] [CrossRef]
- European Commission Regulation (EU) No. 1881/2006. Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2006. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1881 (accessed on 2 February 2023).
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Scientific opinion on the risks to public health related to the presence of arsenic in food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) Scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [CrossRef]
- JEFCA. Evaluation of Certain Food Additives: Cadmium. World Health Organization. 2013. Available online: http://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=1376 (accessed on 2 February 2023).
- JEFCA. Evaluation of Certain Food Additives: Mercury. World Health Organization. 2011. Available online: http://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=1806 (accessed on 2 February 2023).
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 2007, 101, 673–681. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. on behalf of the Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, 2272–2276. [Google Scholar] [CrossRef]
- Cicero, N.; Albergamo, A.; Salvo, A.; Bua, G.D.; Bartolomeo, G.; Mangano, V.; Rotondo, A.; Di Stefano, V.; Di Bella, G.; Dugo, G. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Res. Int. 2018, 109, 517–525. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Burdge, G.C.; Calder, P.C. Conversion of Alpha–Linolenic Acid to Longer-Chain Polyunsaturated Fatty Acids in Human Adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef]
- Kostik, V.; Memeti, S.; Bauer, B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des. 2013, 4, 112–116. [Google Scholar]
- Xu, W.; Ma, X.; Wang, Y. Production of squalene by microbes: An update. World J. Microbiol. Biotechnol. 2016, 32, 195. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Yao, Z.; Peng, Q.; Ni, F.; Sun, Y.; Zhang, C.X.; Zhong, Z.X. Extraction of squalene from camellia oil by silver ion complexation. Sep. Purif. Technol. 2016, 169, 196–201. [Google Scholar] [CrossRef]
- Ramak, P.; Mahboubi, M. The beneficial effects of Pumpkin (Cucurbita pepo L.) seed oil for health condition of men. Food Rev. Int. 2019, 35, 166–176. [Google Scholar] [CrossRef]
- Xie, Y.; Su, S.J.; Liang, Y.C. Content determination of squalene in camellia oil by gas chromatography. J. Henan Univ. Technol. 2012, 33, 46–48. [Google Scholar] [CrossRef]
- Xiao, J.; Khan, M.Z.; Ma, Y.; Alugongo, G.M.; Ma, J.; Chen, T.; Khan, A.; Cao, Z. The Antioxidant Properties of Selenium and Vitamin E; Their Role in Periparturient Dairy Cattle Health Regulation. Antioxidants 2021, 10, 1555. [Google Scholar] [CrossRef]
- García-Llatas, G.; Rodríguez-Estrada, M.T. Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem. Phys. Lipids 2011, 164, 607–624. [Google Scholar] [CrossRef]
- Han, J.-H.; Yang, Y.X.; Feng, M.Y. Contents of Phytosterols in Vegetables and Fruits Commonly consumed in China. Biomed. Environ. Sci. 2020, 21, 449–453. [Google Scholar] [CrossRef]
- Babu, S.; Krishnan, M.; Rajagopal, P.; Periyasamy, V.; Veeraraghavan, V.; Govindan, R.; Jayaraman, S. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur. J. Pharmacol. 2020, 873, 173004. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the substantiation of a health claim related to 3 g/day plant sterols/stanols and lowering blood LDL-cholesterol and reduced risk of (coronary) heart disease pursuant to Article 19 of Regulation (EC) No 1924/2006. EFSA J. 2012, 10, 2963. [Google Scholar] [CrossRef]
- Kegley, E.B.; Ball, J.J.; Beck, P. Impact of mineral and vitamin status on beef cattle immune function and health. J. Anim. Sci. 2016, 94, 59. [Google Scholar] [CrossRef]
- Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; Beserra, A.F.d.L.; Almeida, F.N.d.S.; Dimenstein, R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci. Technol. 2014, 34, 379–385. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Pos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Wen, X.; Zhu, M.; Hu, R.; Zhao, J.; Chen, Z.; Li, J.; Ni, Y. Characterization of seed oils from different grape cultivars grown in China. J. Food Sci. Technol. 2016, 53, 3129–3136. [Google Scholar] [CrossRef]
Elements | Oil Samples | |||||
---|---|---|---|---|---|---|
Apricot Kernel | Bitter Almond | Nigella | Pumpkin Seed | Souchet | Wheat Germ | |
Major elements | ||||||
Na | 29.50 ± 4.54 a | 12.51 ± 2.26 b | 21.81 ± 3.33 a | 9.76 ± 1.29 b | 14.55 ± 2.52 b | 40.75 ± 5.53 c |
Mg | 20.55 ± 3.32 a | 11.80 ± 2.64 b | 12.14 ± 1.98 b | 7.48 ± 1.32 b | 16.62 ± 1.55 b | 52.36 ± 8.64 c |
K | 71.92 ± 9.83 a | 3.17 ± 0.18 b | 23.74 ± 3.36 c | 2.93 ± 7.62 b | 3.88 ± 7.62 b | 5.64 ± 7.62 b |
Trace elements | ||||||
Fe | 3.680 ± 0.12 a | 0.261 ± 0.003 b | 0.542 ± 0.001 b | 0.164 ± 0.07 b | 0.247 ± 0.003 b | 0.805 ± 0.002 b |
Zn | 0.358 ± 0.003 a | 0.38 ± 0.005 a | 0.178 ± 7.62 a | 0.210 ± 0.01 a | 0.183 ± 0.02 a | 1.27 ± 0.090 a |
Cr | 0.031 ± 0.001 a | 0.020 ± 0.001 a | 0.029 ± 0.002 a | 0.005 ± 0.001 b | 0.013 ± 0.002 a | 0.011 ± 0.003 a |
Cu | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Mo | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Ni | 0.037 ± 0.002 a | 0.007 ± 0.001 b | 0.010 ± 0.003 a | <LOD | 0.002 ± 0.001 b | 0.011 ± 0.001 a |
Se | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Mn | 0.326 ± 0.02 a | 0.021 ± 0.040 b | 0.067 ± 0.030 b | 0.010 ± 0.001 b | 0.012 ± 0.001 b | 2.390 ± 0.0830 c |
Co | 0.005 ± 0.000 a | 0.003 ± 0.000 a | 0.002 ± 0.000 a | 0.001 ± 0.000 a | 0.002 ± 0.000 a | 0.003 ± 0.000 a |
Ba | 0.116 ± 0.001 a | 0.038 ± 0.002 b | 0.093 ± 0.013 b | 0.032 ± 0.009 b | 0.049 ± 0.007 b | 0.386 ± 0.110 c |
Li | 0.005 ± 0.000 a | <LOD | <LOD | <LOD | <LOD | 0.001 ± 0.000 a |
V | 0.010 ± 0.001 a | 0.004 ± 0.001 b | 0.007 ± 0.002 b | 0.002 ± 0.001 b | 0.005 ± 0.001 b | 0.004 ± 7.62 b |
B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Al | 3.540 ± 0.172 a | 0.256 ± 0.020 b | 0.608 ± 0.018 b | 0.183 ± 0.090 b | 0.336 ± 0.012 b | 0.417 ± 0.015 b |
Ti | 0.003 ± 0.000 a | 0.003 ± 0.000 a | 0.003 ± 0.000 a | 0.003 ± 0.000 a | 0.003 ± 0.000 a | 0.003 ± 0.000 a |
Hg | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
As | 0.010 ± 0.003 a | 0.001 ± 0.000 b | 0.001 ± 0.000 b | 0.001 ± 0.000 b | <LOD | 0.001 ± 0.000 b |
Cd | 0.002 ± 0.00 a | 0.002 ± 0.00 a | 0.001 ± 0.00 b | 0.001 ± 0.00 b | 0.001 ± 0.00 b | 0.001 ± 0.00 b |
Pb | 0.036 ± 0.001 a | 0.056 ± 7.62 a | 0.045 ± 7.62 a | 0.042 ± 7.62 a | 0.067 ± 0.004 a | 0.065 ± 7.62 a |
Oil Samples | Total Polyphenols |
---|---|
Apricot kernel | 50.04 ± 2.31 a |
Bitter almond | 44.11 ± 1.97 a |
Nigella | 109.01 ± 7.62 b |
Pumpkin seed | 48.03 ± 1.44 a |
Souchet | 46.06 ± 1.24 a |
Wheat germ | 47.03 ± 1.58 a |
Fatty Acids | Oil Samples | |||||
---|---|---|---|---|---|---|
Apricot Kernel | Bitter Almond | Nigella | Pumpkin Seed | Souchet | Wheat Germ | |
C14:0 | 0.01 ± 0.003 a | 0.04 ± 0.001 a | 0.15 ± 0.007 b | 0.13 ± 0.27 b | 0.12 ± 0.27 b | 0.09 ± 0.27 c |
C16:0 | 5.93 ± 0.21 a | 7.03 ± 0.74 a | 12.01 ± 1.11 b | 11.7 ± 1.04 b | 13.53 ± 0.90 b | 15.39 ± 1.29 b |
C16:1n-7 | 0.87 ± 0.002 a | 0.57 ± 0.001 b | 0.21 ± 0.007 c | 0.17 ± 0.002 c | 0.27 ± 0.09 c | 0.27 ± 0.001 c |
C17:1n-7 | 0.04 ± 0.001 a | 0.06 ± 0.017 a | 0.07 ± 0.005 a | 0.12 ± 0.02 b | 0.07 ± 0.014 a | 0.05 ± 0.005 a |
C17:1n-9 | 0.12 ± 0.027 a | 0.09 ± 0.007 a | 0.05 ± 0.003 b | 0.06 ± 0.001 b | 0.03 ± 0.002 b | 0.05 ± 0.015 b |
C18:0 | 1.46 ± 0.27 a | 2.81 ± 0.27 b | 3.44 ± 0.27 b | 5.18 ± 0.27 c | 8.15 ± 0.27 d | 0.95 ± 0.27 a |
C18:1n-9 | 56.93 ± 3.23 a | 64.55 ± 2.47 b | 25.24 ± 2.36 c | 34.28 ± 1.21 c | 64.23 ± 2.15 b | 19.15 ± 1.55 d |
C18:2n-6 | 32.19 ± 2.32 a | 23.92 ± 1.97 b | 54.1 ± 3.17 c | 46.49 ± 2.22 d | 11.36 ± 1.36 e | 55.65 ± 2.98 c |
C18:3n-3 | 0.13 ± 0.004 a | 0.06 ± 0.001 b | 0.54 ± 0.002 c | 0.32 ± 0.008 d | 0.17 ± 0.009 e | 5.24 ± 0.15 f |
C20:0 | 0.14 ± 0.05 a | 0.16 ± 0.02 a | 0.24 ± 0.003 b | 0.36 ± 0.007 b | 0.87 ± 0.002 c | 0.15 ± 0.001 a |
C20:1n-9 | 0.08 ± 0.001 a | 0.07 ± 0.001 a | 0.32 ± 0.09 b | 0.12 ± 0.01 c | 0.19 ± 0.007 c | 1.33 ± 0.07 d |
C20:2n-6 | 0.01 ± 0.001 a | 0.02 ± 0.001 a | 2.48 ± 0.07 b | 0.01 ± 0.002 a | 0.01 ± 0.001 a | 0.12 ± 0.008 c |
C22:0 | 0.06 ± 0.002 a | 0.02 ± 0.001 b | 0.03 ± 0.001 b | 0.03 ± 0.001 b | 0.03 ± 0.002 b | 0.08 ± 0.002 c |
C24:0 | 0.05 ± 0.004 a | 0.02 ± 0.001 b | 0.02 ± 0.001 b | 0.03 ± 0.002 b | 0.03 ± 0.001 b | 0.09 ± 0.003 c |
SFA | 7.69 ± 1.46 a | 10.14 ± 2.39 b | 15.96 ± 1.98 c | 17.55 ± 2.44 c | 22.80 ± 3.49 d | 16.82 ± 1.91 c |
MUFA | 58.00 ± 2.57 a | 65.28 ± 2.81 b | 25.82 ± 1.25 c | 34.63 ± 1.88 d | 64.72 ± 1.39 b | 20.80 ± 1.57 c |
PUFA | 32.32 ± 0.27 a | 23.98 ± 0.27 b | 57.12 ± 0.27 c | 46.81 ± 0.27 d | 11.53 ± 0.27 e | 61.01 ± 0.27 f |
Oil Samples | Squalene |
---|---|
Apricot kernel | 151.01 ± 7.77 a |
Bitter almond | 200.10 ± 9.48 b |
Nigella | 49.90 ± 4.64 c |
Pumpkin seed | 1160.01 ± 22.44 d |
Souchet | 46.06 ± 1.24 c |
Wheat germ | 133.04 ± 9.63 a |
Sterols | Oil Samples | |||||
---|---|---|---|---|---|---|
Apricot Kernel | Bitter Almond | Nigella | Pumpkin Seed | Souchet | Wheat Germ | |
Colesterol | 0.24 ± 0.04 a | 0.26 ± 0.01 a | 1.08 ± 0.07 b | 0.24 ± 0.02 a | 0.37 ± 0.05 a | 0.10 ± 0.04 b |
Brassicasterol | 0.48 ± 0.26 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.15 ± 0.05 c | 0.00 ± 0.00 b |
Campesterol | 3.61 ± 1.22 a | 2.92 ± 0.99 b | 11.14 ± 2.37 c | 3.28 ± 0.92 c | 15.23 ± 3.399 c | 22.83 ± 9.01 c |
Campestanol | 0.37 ± 0.02 a | 0.29 ± 0.01 a | 1.01 ± 0.08 a | 0.40 ± 0.04 a | 0.48 ± 0.04 a | 2.21 ± 2.25 b |
Stigmasterol | 10.15 ± 3.17 a | 3.95 ± 1.17 b | 13.91 ± 2.13 c | 5.36 ± 1.31 b | 16.27 ± 2.42 a | 1.38 ± 2.15 a |
∆7-campesterol | 0.30 ± 0.27 a | 0.66 ± 0.27 a | 1.08 ± 0.27 a | 0.71 ± 0.27 a | 0.74 ± 0.27 a | 1.88 ± 0.27 b |
Clerosterol | 0.72 ± 3.23 a | 0.97 ± 2.47 a | 0.84 ± 2.36 a | 1.87 ± 1.21 b | 0.77 ± 2.15 a | 0.59 ± 1.55 c |
β-Sitosterolo | 70.93 ± 2.32 a | 72.93 ± 3.97 b | 51.43 ± 4.27 c | 49.25 ± 4.22 b | 56.46 ± 3.36 b | 57.62 ± 7.98 d |
∆5-avenasterol | 8.85 ± 1.94 a | 13.04 ± 1.91 a | 14.93 ± 1.52 a | 3.78 ± 1.18 b | 2.71 ± 0.99 b | 5.78 ± 2.33 c |
∆5,24-stigmastanol | 1.04 ± 0.09 a | 1.36 ± 0.03 a | 1.51 ± 0.04 a | 14.17 ± 2.27 b | 0.71 ± 0.07 a | 1.44 ± 2.51 b |
∆7-stigmastenol | 2.30 ± 1.13 a | 2.51 ± 0.91 a | 1.95 ± 0.89 b | 9.31 ± 1.15 c | 4.54 ± 1.67 a | 2.22 ± 4.45 d |
∆7-avenasterolo | 100 ± 0.09 a | 1.12 ± 0.08 a | 1.93 ± 0.09 a | 11.63 ± 2.52 b | 1.56 ± 0.05 a | 3.95 ± 2.48 c |
Total Sterols | 285.3 ± 12.52 a | 212.8 ± 9.97 a | 131.0 ± 5.691 b | 218.2 ± 11.05 a | 215.3 ± 10.42 a | 1713.8 ± 24.62 c |
Oil Samples | α-Tocopherol |
Apricot kernel | 59.32 ± 3.39 a |
Bitter almond | 193.03 ± 8.89 b |
Nigella | 17.13 ± 2.24 c |
Pumpkin seed | 37.07 ± 6.64 a |
Souchet | 129.11 ± 9.63 b |
Wheat germ | 263.07 ± 11.11 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadalà, R.; Nava, V.; Turco, V.L.; Potortì, A.G.; Costa, R.; Rando, R.; Ben Mansour, H.; Ben Amor, N.; Beltifa, A.; Santini, A.; et al. Nutritional and Health Values of Tunisian Edible Oils from Less-Used Plant Sources. Agriculture 2023, 13, 1096. https://doi.org/10.3390/agriculture13051096
Vadalà R, Nava V, Turco VL, Potortì AG, Costa R, Rando R, Ben Mansour H, Ben Amor N, Beltifa A, Santini A, et al. Nutritional and Health Values of Tunisian Edible Oils from Less-Used Plant Sources. Agriculture. 2023; 13(5):1096. https://doi.org/10.3390/agriculture13051096
Chicago/Turabian StyleVadalà, Rossella, Vincenzo Nava, Vincenzo Lo Turco, Angela Giorgia Potortì, Rosaria Costa, Rossana Rando, Hedi Ben Mansour, Nawres Ben Amor, Asma Beltifa, Antonello Santini, and et al. 2023. "Nutritional and Health Values of Tunisian Edible Oils from Less-Used Plant Sources" Agriculture 13, no. 5: 1096. https://doi.org/10.3390/agriculture13051096
APA StyleVadalà, R., Nava, V., Turco, V. L., Potortì, A. G., Costa, R., Rando, R., Ben Mansour, H., Ben Amor, N., Beltifa, A., Santini, A., & Di Bella, G. (2023). Nutritional and Health Values of Tunisian Edible Oils from Less-Used Plant Sources. Agriculture, 13(5), 1096. https://doi.org/10.3390/agriculture13051096