Research on Provincial-Level Soil Moisture Prediction Based on Extreme Gradient Boosting Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Data Classification
2.4. Methodology Description
2.4.1. Selection of Predictive Factors
2.4.2. XGBoost Model
2.4.3. The Key Parameters of XGBoost Model
2.4.4. Shapley Additive Explanations (SHAPs)
2.4.5. Model Construction and Application
2.4.6. Model Prediction Effect Interpretation and Verification
3. Results
3.1. Correlation Analysis between Soil Moisture and Predictive Factors
3.2. Interpretability of Model
3.3. Model Prediction Evaluation
3.3.1. Analysis of Model Prediction Accuracy
3.3.2. Analysis of Typical Drought Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, N.; Malagoli, M.; Wirtz, M.; Hell, R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol. 2016, 16, 247. [Google Scholar] [CrossRef] [PubMed]
- Isabel Ferreira, M.; Valancogne, C. Experimental Study of a Stress Coefficient: Application on a Simple Model for Irrigation Scheduling and Daily Evapotranspiration Estimation. IFAC Proc. Vol. 1997, 30, 33–38. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef]
- Kunstmann, H.; Jung, G.; Wagner, S.; Clottey, H. Integration of atmospheric sciences and hydrology for the development of decision support systems in sustainable water management. Phys. Chem. Earth Parts A/B/C 2008, 33, 165–174. [Google Scholar] [CrossRef]
- Dan, B.; Zheng, X.; Wu, G. Assimilating Shallow Soil Moisture Observations into Land Models with a Water Budget Constraint. Hydrol. Earth Syst.Sci. 2020, 24, 5187–5201. [Google Scholar] [CrossRef]
- Robinson, J.M.; Hubbard, K.G. Soil Water Assessment Model for Several Crops in the High Plains. Agron. J. 1990, 82, 1141–1148. [Google Scholar] [CrossRef]
- Mahmood, R.; Hubbard, K.G. An Analysis of Simulated Long-Term Soil Moisture Data for Three Land Uses under Contrasting Hydroclimatic Conditions in the Northern Great Plains. J. Hydrometeorol. 2004, 5, 160–179. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y.H.; Anlauf, R. Forecast and Analysis of Soil Moisture Based on SIMPEL model. J. Agric. Sci. Technol. 2013, 14, 490–493. [Google Scholar]
- Holland, J.E.; Biswas, A. Predicting the mobile water content of vineyard soils in New South Wales, Australia. Agric. Water Manag. 2015, 148, 34–42. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition. Geoderma 2013, 193–194, 180–188. [Google Scholar] [CrossRef]
- Prasad, R.; Ravinesh, C.; Li, Y.; Maraseni, T. Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach. Catena 2019, 177, 149–166. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W.; Khan, M.M. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction. J. Hydrol. 2016, 535, 211–225. [Google Scholar] [CrossRef]
- Kamilaris, A.; Francesc, X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Yalcin, H. An Approximation for A Relative Crop Yield Estimate from Field Images Using Deep Learning. In Proceedings of the International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019. [Google Scholar]
- Yu, J.; Tang, S.; Zhangzhong, L.; Zheng, W.; Xu, L. A Deep Learning Approach for Multi-Depth Soil Water Content Prediction in Summer Maize Growth Period. IEEE Access 2020, 8, 199097–199110. [Google Scholar] [CrossRef]
- Fathi, M.T.; Ezziyyani, M.; Ezziyyani, M.; Mamoune, S.E. Crop Yield Prediction Using Deep Learning in Mediterranean Region. In Proceedings of the Advanced Intelligent Systems for Sustainable Development (AI2SD’2019), Marrakech, Morocco, 8–11 July 2019. [Google Scholar]
- Ji, R.; Li, X.; Zhang, S.; Zheng, L. Prediction of soil moisture in multiple depth based on time delay neural network. Trans. Chin. Soc. Agric. Eng. 2017, 33, 132–136. [Google Scholar]
- Gill, M.K.; Asefa, T.; Kemblowski, M.W.; McKee, M. Soil moisture predition using support vector machines. J. Am. Water Resour. Assoc. 2006, 42, 1033–1046. [Google Scholar] [CrossRef]
- Pan, J.; Shangguan, W.; Li, L.; Yuan, H.; Zhang, S.; Lu, X.; Wei, N.; Dai, Y. Using data-driven methods to explore the predictability of surface soil moisture with FLUXNET site data. Hydrol. Process. 2019, 33, 2978–2996. [Google Scholar] [CrossRef]
- Tharani, P.P.; Baranidharan, B. An Analysis on Application of Deep Learning Techniques for Precision Agriculture. In Proceedings of the International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2–4 September 2021. [Google Scholar]
- Gumiere, S.J.; Camporese, M.; Botto, A.; Lafond, J.A.; Paniconi, C.; Gallichand, J.; Rousseau, A.N. Machine Learning vs. Physics-Based Modeling for Real-Time Irrigation Management. Front. Water 2020, 2, 8. [Google Scholar] [CrossRef]
- Li, P.; Zha, Y.; Shi, L.; Tso, C.-H.; Zhang, Y.; Zeng, W. Comparison of the use of a physical-based model with data assimilation and machine learning methods for simulating soil water dynamics. J. Hydrol. 2020, 584, 124692. [Google Scholar] [CrossRef]
- Liu, D.; Liu, C.; Tang, Y.; Gong, C. A GA-BP Neural Network Regression Model for Predicting Soil Moisture in Slope Ecological Protection. Sustainability 2022, 14, 1386. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. Improving soil moisture prediction using a novel encoder-decoder model with residual learning. Comput. Electron. Agric. 2022, 195, 106816. [Google Scholar] [CrossRef]
- Prakash, S.; Sharma, A.; Sahu, S.S. Soil Moisture Prediction Using Machine Learning. In Proceedings of the Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018. [Google Scholar]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors 2018, 18, 3408. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.W.; Zhao, J.F.; Zhang, W.C.; Xu, X.X. A Novel Soil Moisture Predicting Method Based on Artificial Neural Network and Xinanjiang Model. Adv. Mater. Res. 2010, 121–122, 1028–1032. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Q.; Yang, F.X.; Deng, Z.L. Research of adaptive genetic neural network algorithm in soil moisture prediction. Comput. Eng. Appl. 2018, 54, 54–59+69. [Google Scholar]
- Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547–557. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, J.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Comparative evaluation of drought indices for monitoring drought based on remote sensing data. Environ. Sci. Pollut. Res. 2021, 28, 20408–20425. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Zheng, W.; Zhangzhong, L.; Zhang, X.; Wang, C.; Zhang, S.; Sun, S.; Niu, H. A Review on the Soil Moisture Prediction Model and Its Application in the Information System. In Proceedings of the Computer and Computing Technologies in Agriculture XI, Jilin, China, 12–15 August 2017. [Google Scholar]
- Jiang, A.J.; Peng, H.Y.; Wang, B.M. The analyses of Jiangsu climate variety in forty years. J. Meteorol. Sci. 2006, 26, 525–529. [Google Scholar]
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhao, Y.F.; Ren, Z.H.; Gao, J. Design and Verification of Quality Control Methods for Automatic Soil Moisture Observation Data in China. Meteorology 2018, 44, 244–257. [Google Scholar]
- Wang, S.; Fu, G. Modelling soil moisture using climate data and normalized difference vegetation index based on nine algorithms in alpine grasslands. Front. Environ. Sci. 2023, 11, 1130448. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Int. Jt. Conf. Artif. Intell. 1995, 14, 1137–1145. [Google Scholar]
- Eisenman, R.L. A profit-sharing interpretation of shapley value for n-person games. Syst. Res. Behav. Sci. 1967, 12, 396–398. [Google Scholar] [CrossRef]
- Niazkar, M. Assessment of artificial intelligence models for calculating optimum properties of lined channels. J. Hydroinform. 2020, 22, 1410–1423. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef]
- Matei, O.; Rusu, T.; Petrovan, A.; Mihuţ, G. A Data Mining System for Real Time Soil Moisture Prediction. Procedia Eng. 2017, 181, 837–844. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Nguyen, C.T.; Zhang, J.; Liang, S.; Bui, X.T.; Hoang, N.B. A low-cost approach for soil moisture prediction using multi-sensor data and machine learning algorithm. Sci. Total Environ. 2022, 833, 155066. [Google Scholar] [CrossRef]
- Filipovi, N.; Brdar, S.; Mimi, G.; Marko, O.; Crnojevi, V. Regional soil moisture prediction system based on long short-term memory network. Biosyst. Eng. 2022, 213, 30–38. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 2022, 409, 115651. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.E.; Sherry, R.; Luo, Y. Changes in soil water dynamics due to variation in precipitation and temperature: An ecohydrological analysis in a tallgrass prairie. Water Resour. Res. 2010, 46, W03523. [Google Scholar] [CrossRef]
- Feng, H.; Liu, Y. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. J. Hydrol. 2015, 531, 1129–1140. [Google Scholar] [CrossRef]
- Ragab, R. Towards a continuous operational system to estimate the root-zone soil moisture from intermittent remotely sensed surface moisture. J. Hydrol. 1995, 173, 1–25. [Google Scholar] [CrossRef]
- Yan, H.; Dechant, C.; Hamid, M. Improving Soil Moisture Profile Prediction with the Particle Filter-Markov Chain Monte Carlo Method. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6134–6147. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, H.; Wang, W.F.; Wang, W.; Sun, D. Soil moisture content prediction model for tea plantations based on SVM optimised by the bald eagle search algorithm. Cogn. Comput. Syst. 2021, 3, 351–360. [Google Scholar] [CrossRef]
- Wang, X.; Lv, J.; Wang, C.; Xie, D. Soil moisture content prediction using wavelet transform and support vector machine with genetic algorithm optimization. ICIC Express Lett. Part B Appl. 2014, 5, 1141–1148. [Google Scholar]
Soil Type | Soil Bulk Density (g·cm−3) | Field Water Capacity (%) | Withering Humidity (%) | Samples |
---|---|---|---|---|
Sand | 1.43 | 25.46 | 4.04 | 40,880 |
Loam | 1.40 | 26.50 | 5.29 | 75,920 |
Clay | 1.36 | 26.62 | 5.72 | 87,600 |
Names | Units | Descriptions | Range |
---|---|---|---|
Sunshine hours | h | Accumulated sunshine hours | 0–128.6 |
Precipitation | mm | Cumulative precipitation | 0–595.4 |
Evapotranspiration | mm | Averaged potential evapotranspiration | 0.1–10.2 |
Wind speed | ms−1 | Averaged wind speed | 0–15.9 |
Relative humidity | % | Averaged mean air relative humidity | 19–100 |
Pressure | hPa | Averaged water vapor pressure | 0.6–42.0 |
Averaged atmospheric pressure | 983.5–1042.4 | ||
Temperature | °C | Averaged mean air temperature | −11.1–36.0 |
Averaged minimum air temperature | −15.6–31.9 | ||
Averaged maximum air temperature | −7.2–40.9 | ||
Averaged mean soil surface temperature | −7.0–45.8 | ||
Averaged minimum soil surface temperature | −14.7–31.2 | ||
Averaged maximum soil surface temperature | −0.9–70.2 | ||
Averaged 0–10 cm mean soil temperature | −2.7–39.0 |
ML | Models | R | RMSE | MAE | MARE | NSE | ACC (%) |
---|---|---|---|---|---|---|---|
XGBoost | Model_soil&atmo | 0.69 | 11.11 | 4.87 | 0.12 | 0.50 | 88% |
Model_atmo | 0.66 | 11.49 | 4.96 | 0.14 | 0.47 | 86% | |
ANN | Model_soil&atmo | 0.59 | 12.85 | 6.55 | 0.16 | 0.27 | 84% |
Model_atmo | 0.56 | 13.19 | 6.71 | 0.17 | 0.23 | 83% | |
RF | Model_soil&atmo | 0.64 | 12.08 | 6.07 | 0.15 | 0.36 | 85% |
Model_atmo | 0.63 | 12.25 | 6.19 | 0.16 | 0.34 | 84% | |
SVM | Model_soil&atmo | 0.54 | 13.68 | 7.56 | 0.17 | 0.19 | 83% |
Model_atmo | 0.51 | 13.58 | 6.86 | 0.18 | 0.18 | 82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Ling, F.; Wang, Y. Research on Provincial-Level Soil Moisture Prediction Based on Extreme Gradient Boosting Model. Agriculture 2023, 13, 927. https://doi.org/10.3390/agriculture13050927
Ren Y, Ling F, Wang Y. Research on Provincial-Level Soil Moisture Prediction Based on Extreme Gradient Boosting Model. Agriculture. 2023; 13(5):927. https://doi.org/10.3390/agriculture13050927
Chicago/Turabian StyleRen, Yifang, Fenghua Ling, and Yong Wang. 2023. "Research on Provincial-Level Soil Moisture Prediction Based on Extreme Gradient Boosting Model" Agriculture 13, no. 5: 927. https://doi.org/10.3390/agriculture13050927
APA StyleRen, Y., Ling, F., & Wang, Y. (2023). Research on Provincial-Level Soil Moisture Prediction Based on Extreme Gradient Boosting Model. Agriculture, 13(5), 927. https://doi.org/10.3390/agriculture13050927