Research on Tractor Optimal Obstacle Avoidance Path Planning for Improving Navigation Accuracy and Avoiding Land Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obstacle Avoidance Path Model
2.1.1. Bezier Curve
2.1.2. Obstacle Avoidance Path Model
2.2. Tractor Kinematic Model
- The tractor is a rigid body.
- The tractor is front-wheel-steered and the left and right wheels are steered at the same angle.
- The roll and pitch movements are ignored.
- The lateral sliding is ignored.
2.3. Selection Range of Control Points
2.3.1. Key Point Coordinates
2.3.2. Control Point Selection Range
2.4. Constraint Functions
2.4.1. Geometric Constraints
2.4.2. Tractor Kinematic Constraint
2.5. Objective Function
2.6. Search Strategy of Optimal Control Points
2.6.1. Individual Establisher
2.6.2. Fitness Function
3. Results and Discussion
3.1. Experimental Settings
3.2. Obstacle Avoidance Path Planning
3.3. Field Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Mayyahi, A.; Aldair, A.A.; Rashid, A.T. Intelligent Control of Mobile Robot Via Waypoints Using Nonlinear Model Predictive Controller and Quadratic Bezier Curves Algorithm. J. Electr. Eng. Technol. 2020, 15, 1857–1870. [Google Scholar] [CrossRef]
- Panda, B.K.; Bhanja, U.; Pattnaik, P.K. Obstacle and mobility aware optimal routing for manet. J. Intell. Fuzzy Syst. 2019, 37, 1007–1017. [Google Scholar] [CrossRef]
- Zambom, A.Z.; Seguin, B.; Zhao, F. Robot path planning in a dynamic environment with stochastic measurements. J. Glob. Optim. 2019, 73, 389–410. [Google Scholar] [CrossRef]
- Ren, H.; Chen, S.; Yang, L.; Zhao, Y. Optimal Path Planning and Speed Control Integration Strategy for UGVs in Static and Dynamic Environments. IEEE Trans. Vehicular Technol. 2020, 69, 10619. [Google Scholar] [CrossRef]
- Xiaobo, X.; Yangjie, S.; Xiang, S.; Qi, Z.; Yifu, J.; Junjie, G.; Jianfeng, Z.; Ruihong, Z. Obstacle avoidance path control method for agricultural machinery automatic driving based on optimized Bezier. Trans. Chin. Soc. Agric. Eng. 2019, 35, 82–88. [Google Scholar]
- Wan, N.; Xu, D.; Ye, H. Improved cubic B-spline curve method for path optimization of manipulator obstacle avoidanc. In Proceedings of the Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018. [Google Scholar]
- Han, G.; Zhou, Z.; Zhang, T.; Wang, H.; Liu, L.; Peng, Y.; Guizani, M. Ant-Colony-Based Complete-Coverage Path-Planning Algorithm for Underwater Gliders in Ocean Areas with Thermoclines. IEEE Trans. Vehicular Technol. 2020, 69, 8959–8971. [Google Scholar] [CrossRef]
- Chen, W.; Sun, J.; Li, W.; Zhao, D. A real-time multi-constraints obstacle avoidance method using LiDAR. J. Intell. Fuzzy Syst. 2020, 39, 119–131. [Google Scholar] [CrossRef]
- Wang, X.; Yan, Y.; Gu, X. Spot welding robot path planning using intelligent algorithm. J. Manuf. Process. 2019, 42, 1–10. [Google Scholar] [CrossRef]
- Song, B.; Wang, Z.; Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. 2021, 100, 106960. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, M.; Yin, L. Dynamic Path Planning of the UAV Avoiding Static and Moving Obstacles. J. Intell. Robotic Syst. 2020, 99, 909–931. [Google Scholar] [CrossRef]
- Zhong, X.; Tian, J.; Hu, H.; Peng, X. Hybrid Path Planning Based on Safe A* Algorithm and Adaptive Window Approach for Mobile Robot in Large-Scale Dynamic Environment. J. Intell. Robotic Syst. 2020, 99, 65–77. [Google Scholar] [CrossRef]
- Hao, K.; Zhao, J.; Yu, K.; Li, C.; Wang, C. Path Planning of Mobile Robots Based on a Multi-Population Migration Genetic Algorithm. Sensors 2020, 20, 5873. [Google Scholar] [CrossRef] [PubMed]
- Receveur, J.B.; Victor, S.; Melchior, P. Autonomous car decision making and trajectory tracking based on genetic algorithms and fractional potential fields. Intell. Service Robot. 2020, 13, 315–330. [Google Scholar] [CrossRef]
- Ajeil, F.H.; Ibraheem, I.K.; Azar, A.T.; Humaidi, A.J. Autonomous navigation and obstacle avoidance of an omnidirectional mobile robot using swarm optimization and sensors deployment. Int. J. Adv. Robot. Syst. 2020, 17, 172988142092949. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Ding, M.; Zhuang, L.; Tao, J. Monocular vision based obstacle avoidance trajectory planning for Unmanned Aerial Vehicle. Aerospace Sci. Technol. 2020, 106, 106199. [Google Scholar] [CrossRef]
- Elhoseny, M.; Tharwat, A.; Hassanien, A.E. Bezier Curve Based Path Planning in a Dynamic Field using Modified Genetic Algorithm. J. Comput. Sci. 2018, 25, 339–350. [Google Scholar] [CrossRef]
- Inoue, K.; Kaizu, Y.; Igarashi, S.; Imou, K. The development of autonomous navigation and obstacle avoidance for a robotic mower using machine vision technique. IFAC-Papers OnLine 2019, 52, 173–177. [Google Scholar] [CrossRef]
- Yi, D.; Zhang, Y.; Tsang, H.K. Optimal Bezier Curve Transition for Low-Loss Ultra-compact S bends. Opt. Lett. 2022, 15, 876–879. [Google Scholar] [CrossRef]
- Kim, J. Trajectory Generation of a Two-Wheeled Mobile Robot in an Uncertain Environment. IEEE Trans. Ind Electron. 2019, 67, 5586–5594. [Google Scholar] [CrossRef]
- Bai, G.; Meng, Y.; Liu, L.; Luo, W.; Gu, Q.; Li, K. Anti-sideslip path tracking of wheeled mobile robots based on fuzzy model predictive control. Electron. Lett. 2020, 56, 490–493. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S.; Ren, H.; Gao, Z.; Liu, Z. Path Tracking and Handling Stability Control Strategy With Collision Avoidance for the Autonomous Vehicle Under Extreme Conditions. IEEE Transactions on Vehicular Technol. 2020, 69, 14602–14617. [Google Scholar] [CrossRef]
- Rodrigues, L.L.; Potts, A.S.; Vilcanqui, O.A.; Sguarezi Filho, A.J. Tuning a model predictive controller for Doubly Fed Induction Generator employing a constrained Genetic Algorithm. IET Electric Power Appl. 2019, 13, 812–819. [Google Scholar] [CrossRef]
- Gonzalez, J.L.; Jo, P.K.; Abbaspour, R.; Bakir, M.S. Flexible Interconnect Design Using a Mechanically-Focused, Multi-Objective Genetic Algorithm. J. Microelectromech. Syst. 2018, 27, 677–685. [Google Scholar] [CrossRef]
- Ali, H.; Gong, D.; Wang, M.; Dai, X. Path Planning of Mobile Robot With Improved Ant Colony Algorithm and MDP to Produce Smooth Trajectory in Grid-Based Environment. Front. Neurorobot. 2020, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Kim, H.J.; Jeon, C.W.; Moon, H.C.; Kim, J.H.; Yi, S.Y. Application of a 3D tractor-driving simulator for slip estimation-based path-tracking control of auto-guided tillage operation. Biosyst. Eng. 2019, 178, 70–85. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Yue, X.; Zhang, G.; Wen, X.; Ma, B.; Xu, L.; Chen, L. Real-time detection of crop rows in maize fields based on autonomous extraction of ROI. Expert Syst. Appl. 2023, 213, 118826. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, S.S.; Ahn, C.K.; Shi, P.; Lim, C.C. Finite Distribution Estimation-based Dynamic Window Approach to Reliable Obstacle Avoidance of Mobile Robot. IEEE Trans. Ind. Electron. 2020, 35, 82–88. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
d1 | 2.5 m |
w | 2.4 m |
L | 2.06 m |
Rmin | 4 m |
θmax | π/6 |
Model | LF1104-C |
---|---|
Type | Four-Wheel Drive |
PTO Power (Kw) | ≥67 |
Maximum Traction (Kn) | 19.8 |
Length (Including Suspension) | 4436 |
Width (Factory Wheelbase) | 2250 |
Height | 2765 |
Wheelbase (Mm) | 2314 |
Front Wheel (Factory Wheelbase) | 1748–2000 (1760) |
Rear Wheel (Factory Wheelbase) | 1620–2120 (1632) |
Ground Clearance (Mm) | 440 (Under The Bent Rod Housing) |
Front Counterweight (Kg) | 400 |
Rear Counterweight (Kg) | 300 |
Minimum Operation Mass (Assembly Frame Without Counterweight, With Cab (Kg)) | 4250 |
Key Points | Coordinates |
---|---|
ps | (117.07882885798031, 33.69548283272718) |
pv | (117.0787965, 33.69550988) |
pe | (117.07882885798195, 33.69553692727986) |
Path | kmax | kave | Sp/m2 |
---|---|---|---|
TA | 0.66 | 0.17 | 23.14 |
PR | 1.71 | 0.12 | 36.00 |
APF | 4.73 | 0.79 | 22.61 |
DWA | 1.82 | 0.13 | 38.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Xie, H.; Sun, L.; Shang, T. Research on Tractor Optimal Obstacle Avoidance Path Planning for Improving Navigation Accuracy and Avoiding Land Waste. Agriculture 2023, 13, 934. https://doi.org/10.3390/agriculture13050934
Chen H, Xie H, Sun L, Shang T. Research on Tractor Optimal Obstacle Avoidance Path Planning for Improving Navigation Accuracy and Avoiding Land Waste. Agriculture. 2023; 13(5):934. https://doi.org/10.3390/agriculture13050934
Chicago/Turabian StyleChen, Hongtao, Hui Xie, Liming Sun, and Tansu Shang. 2023. "Research on Tractor Optimal Obstacle Avoidance Path Planning for Improving Navigation Accuracy and Avoiding Land Waste" Agriculture 13, no. 5: 934. https://doi.org/10.3390/agriculture13050934
APA StyleChen, H., Xie, H., Sun, L., & Shang, T. (2023). Research on Tractor Optimal Obstacle Avoidance Path Planning for Improving Navigation Accuracy and Avoiding Land Waste. Agriculture, 13(5), 934. https://doi.org/10.3390/agriculture13050934