Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review
Abstract
:1. Introduction
2. Related Work
- Which deep learning architectures are commonly employed for crop classification?
- Motivation: Identify the models that can achieve higher performance.
- 2.
- How does the performance of deep learning models compare to that of machine learning?
- Motivation: Evaluate the ability of deep learning to recognize and categorize images of crops.
- 3.
- What type of aerial imagery and data sources are used for training models?
- Motivation: Assess the availability of the datasets and scrutinize the crops that are classified.
- 4.
- What is the number of classes employed in the classification process?
- Motivation: Examine whether the number of categories utilized has an impact on the model’s performance.
3. Materials and Methods
4. Results
5. Crop Classification
5.1. Crop Classification Using Satellite Data
5.2. Crop Classification Using UAV Data
5.3. Crop Classification Using Multisource Data
6. Discussion
- Which deep learning architectures are commonly employed for crop classification?
- 2.
- How does the performance of deep learning models compare to that of machine learning?
- 3.
- What type of aerial imagery and data sources are used for training models?
- 4.
- What is the number of classes employed in the classification process?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Warf, B. Aerial Imagery: Data. In Encyclopedia of Geography; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson Education, Inc.: Glenview, IL, USA, 2015. [Google Scholar]
- Paine, D.P.; Kiser, J.D. Aerial Photography and Image Interpretation, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- European Court of Auditors. Using New Imaging Technologies to Monitor the Common Agricultural Policy: Steady Progress Overall, but Slower for Climate and Environment Monitoring. Special Report No 04, 2020; Publications Office: Luxembourg, 2021.
- Joint Research Centre (European Commission); Milenov, P.; Lemoine, G.; Devos, W.; Fasbender, D. Technical Guidance on the Decision to Go for Substitution of OTSC by Monitoring; Publications Office: Ispra, Italy, 2018; ISBN 978-92-79-94173-3.
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Chollet, F. Deep Learning with Python, 2nd ed.; Manning Publications Co.: Shelter Island, NY, USA, 2021; ISBN 978-1-61729-686-4. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Sykas, D.; Sdraka, M.; Zografakis, D.; Papoutsis, I. A Sentinel-2 Multiyear, Multicountry Benchmark Dataset for Crop Classification and Segmentation With Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3323–3339. [Google Scholar] [CrossRef]
- Selea, T.; Pslaru, M.-F. AgriSen—A Dataset for Crop Classification. In Proceedings of the 2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 1–4 September 2020; pp. 259–263. [Google Scholar]
- Choumos, G.; Koukos, A.; Sitokonstantinou, V.; Kontoes, C. Towards Space-to-Ground Data Availability for Agriculture Monitoring. In Proceedings of the 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Nafplio, Greece, 26–29 June 2022; pp. 1–5. [Google Scholar]
- Desai, G.; Gaikwad, A. Deep Learning Techniques for Crop Classification Applied to SAR Imagery: A Survey. In Proceedings of the 2021 Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 27–29 August 2021; pp. 1–6. [Google Scholar]
- Moazzam, S.I.; Khan, U.S.; Tiwana, M.I.; Iqbal, J.; Qureshi, W.S.; Shah, S.I. A Review of Application of Deep Learning for Weeds and Crops Classification in Agriculture. In Proceedings of the 2019 International Conference on Robotics and Automation in Industry (ICRAI), Rawalpindi, Pakistan, 21–22 October 2019; pp. 1–6. [Google Scholar]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep Learning Techniques to Classify Agricultural Crops through UAV Imagery: A Review. Neural Comput Applic 2022, 34, 9511–9536. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ruiz, L.A.; Almonacid-Caballer, J.; Crespo-Peremarch, P.; Recio, J.A.; Pardo-Pascual, J.E.; Sánchez-García, E. Automated Classification of Crop Types and Condition in a Mediterranean Area Using a Fine-Tuned Convolutional Neural Network. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus Publications: Nice, France, 2020; Volume XLIII-B3-2020, pp. 1061–1068. [Google Scholar]
- Gadiraju, K.K.; Ramachandra, B.; Chen, Z.; Vatsavai, R.R. Multimodal Deep Learning Based Crop Classification Using Multispectral and Multitemporal Satellite Imagery. In Proceedings of the Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; Association for Computing Machinery: New York, NY, USA, 2020; pp. 3234–3242. [Google Scholar]
- Patel, U.; Pathan, M.; Kathiria, P.; Patel, V. Crop Type Classification with Hyperspectral Images Using Deep Learning: A Transfer Learning Approach. Model. Earth Syst. Environ. 2022. [Google Scholar] [CrossRef]
- Bhosle, K.; Musande, V. Evaluation of CNN Model by Comparing with Convolutional Autoencoder and Deep Neural Network for Crop Classification on Hyperspectral Imagery. Geocarto Int. 2022, 37, 813–827. [Google Scholar] [CrossRef]
- Pluto-Kossakowska, J. Review on Multitemporal Classification Methods of Satellite Images for Crop and Arable Land Recognition. Agriculture 2021, 11, 999. [Google Scholar] [CrossRef]
- Hajnsek, I.; Bianchi, R.; Davidson, M.; D’Urso, G.; Gomez-Sanchez, J.A.; Hausold, A.; Horn, R.; Howse, J.; Loew, A.; Lopez-Sanchez, J.; et al. AGRISAR 2006—Airborne SAR and Optics Campaigns for an Improved Monitoring of Agricultural Processes and Practices. Geophys. Res. Abstr. 2007, 9, 04085. [Google Scholar]
- Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies. Remote Sens. 2020, 12, 2779. [Google Scholar] [CrossRef]
- Teimouri, M.; Mokhtarzade, M.; Baghdadi, N.; Heipke, C. Fusion of Time-Series Optical and SAR Images Using 3D Convolutional Neural Networks for Crop Classification. Geocarto Int. 2022, 37, 1–18. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Shumilo, L. Deep Recurrent Neural Network for Crop Classification Task Based on Sentinel-1 and Sentinel-2 Imagery. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6914–6917. [Google Scholar]
- Adrian, J.; Sagan, V.; Maimaitijiang, M. Sentinel SAR-Optical Fusion for Crop Type Mapping Using Deep Learning and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 175, 215–235. [Google Scholar] [CrossRef]
- Jiao, X.; McNairn, H.; Yekkehkhany, B.; Dingle Robertson, L.; Ihuoma, S. Integrating Sentinel-1 SAR and Sentinel-2 Optical Imagery with a Crop Structure Dynamics Model to Track Crop Condition. Int. J. Remote Sens. 2022, 43, 6509–6537. [Google Scholar] [CrossRef]
- Li, Z.; Chen, G.; Zhang, T. A CNN-Transformer Hybrid Approach for Crop Classification Using Multitemporal Multisensor Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 847–858. [Google Scholar] [CrossRef]
- Luo, C.; Meng, S.; Hu, X.; Wang, X.; Zhong, Y. Cropnet: Deep Spatial-Temporal-Spectral Feature Learning Network for Crop Classification from Time-Series Multi-Spectral Images. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4187–4190. [Google Scholar]
- Yang, S.; Gu, L.; Li, X.; Jiang, T.; Ren, R. Crop Classification Method Based on Optimal Feature Selection and Hybrid CNN-RF Networks for Multi-Temporal Remote Sensing Imagery. Remote Sens. 2020, 12, 3119. [Google Scholar] [CrossRef]
- Koppaka, R.; Moh, T.-S. Machine Learning in Indian Crop Classification of Temporal Multi-Spectral Satellite Image. In Proceedings of the 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM), Taichung, Taiwan, 3–5 January 2020; pp. 1–8. [Google Scholar]
- Lozano-Tello, A.; Fernández-Sellers, M.; Quirós, E.; Fragoso-Campón, L.; García-Martín, A.; Gutiérrez Gallego, J.A.; Mateos, C.; Trenado, R.; Muñoz, P. Crop Identification by Massive Processing of Multiannual Satellite Imagery for EU Common Agriculture Policy Subsidy Control. Eur. J. Remote Sens. 2021, 54, 1–12. [Google Scholar] [CrossRef]
- Quinton, F.; Landrieu, L. Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series. Remote Sens. 2021, 13, 4599. [Google Scholar] [CrossRef]
- Portalés-Julià, E.; Campos-Taberner, M.; García-Haro, F.J.; Gilabert, M.A. Assessing the Sentinel-2 Capabilities to Identify Abandoned Crops Using Deep Learning. Agronomy 2021, 11, 654. [Google Scholar] [CrossRef]
- Siesto, G.; Fernández-Sellers, M.; Lozano-Tello, A. Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks. Remote Sens. 2021, 13, 3378. [Google Scholar] [CrossRef]
- Rosa, L.E.C.L.; Oliveira, D.A.B.; Feitosa, R.Q. End-to-End CNN-CRFs for Multi-Date Crop Classification Using Multitemporal Remote Sensing Image Sequences. In Proceedings of the Proceedings of the CIKM 2021 Workshops Co-Located with 30th ACM International Conference on Information and Knowledge Management (CIKM 2021), Gold Coast, QLD, Australia, 1–5 November 2021. [Google Scholar]
- Zhang, W.-T.; Wang, M.; Guo, J. A Novel Multi-Scale CNN Model for Crop Classification with Time-Series Fully Polarization SAR Images. In Proceedings of the 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 3–5 November 2021; pp. 1–5. [Google Scholar]
- Li, J.; Shen, Y.; Yang, C. An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images. Remote Sens. 2021, 13, 65. [Google Scholar] [CrossRef]
- Guo, J.; Bai, Q.-Y.; Li, H.-H. Crop Classification Using Differential-Scattering-Feature Driven CNN for Dual-Pol SAR Images. In Proceedings of the 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 3–5 November 2021; pp. 1–5. [Google Scholar]
- Stergioulas, A.; Dimitropoulos, K.; Grammalidis, N. Crop Classification from Satellite Image Sequences Using a Two-Stream Network with Temporal Self-Attention. In Proceedings of the 2022 IEEE International Conference on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 21–23 June 2022; pp. 1–6. [Google Scholar]
- Seydi, S.T.; Amani, M.; Ghorbanian, A. A Dual Attention Convolutional Neural Network for Crop Classification Using Time-Series Sentinel-2 Imagery. Remote Sens. 2022, 14, 498. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Z.-L.; Luo, J.; Wu, T.; Liu, N. Farmland Parcel-Based Crop Classification in Cloudy/Rainy Mountains Using Sentinel-1 and Sentinel-2 Based Deep Learning. Int. J. Remote Sens. 2022, 43, 1054–1073. [Google Scholar] [CrossRef]
- Sreedhar, R.; Varshney, A.; Dhanya, M. Sugarcane Crop Classification Using Time Series Analysis of Optical and SAR Sentinel Images: A Deep Learning Approach. Remote Sens. Lett. 2022, 13, 812–821. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Xun, L.; Wang, J.; Wu, Z.; Henchiri, M.; Zhang, S.; Zhang, S.; Bai, Y.; Yang, S.; et al. Evaluating the Effectiveness of Machine Learning and Deep Learning Models Combined Time-Series Satellite Data for Multiple Crop Types Classification over a Large-Scale Region. Remote Sens. 2022, 14, 2341. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Tan, T.-H.; Chen, T.-H.; Chuah, J.H.; Chang, L.; Wu, M.-C.; Tatini, N.B.; Ma, S.-C.; Alkhaleefah, M. Spatial-Temporal Neural Network for Rice Field Classification from SAR Images. Remote Sens. 2022, 14, 1929. [Google Scholar] [CrossRef]
- Yusoff, N.M.; Muharam, F.M. The Use of Multi-Temporal Landsat Imageries in Detecting Seasonal Crop Abandonment. Remote Sens. 2015, 7, 11974–11991. [Google Scholar] [CrossRef] [Green Version]
- Szatmári, D.; Feranec, J.; Goga, T.; Rusnák, M.; Kopecká, M.; Oťaheľ, J. The Role of Field Survey in the Identification of Farmland Abandonment in Slovakia Using Sentinel-2 Data. Can. J. Remote Sens. 2021, 47, 569–587. [Google Scholar] [CrossRef]
- López-Andreu, F.J.; Erena, M.; Dominguez-Gómez, J.A.; López-Morales, J.A. Sentinel-2 Images and Machine Learning as Tool for Monitoring of the Common Agricultural Policy: Calasparra Rice as a Case Study. Agronomy 2021, 11, 621. [Google Scholar] [CrossRef]
- Löw, F.; Fliemann, E.; Abdullaev, I.; Conrad, C.; Lamers, J.P.A. Mapping Abandoned Agricultural Land in Kyzyl-Orda, Kazakhstan Using Satellite Remote Sensing. Appl. Geogr. 2015, 62, 377–390. [Google Scholar] [CrossRef]
- Volpi, I.; Marchi, S.; Petacchi, R.; Hoxha, K.; Guidotti, D. Detecting Olive Grove Abandonment with Sentinel-2 and Machine Learning: The Development of a Web-Based Tool for Land Management. Smart Agric. Technol. 2023, 3, 100068. [Google Scholar] [CrossRef]
- Weilandt, F.; Behling, R.; Goncalves, R.; Madadi, A.; Richter, L.; Sanona, T.; Spengler, D.; Welsch, J. Early Crop Classification via Multi-Modal Satellite Data Fusion and Temporal Attention. Remote Sens. 2023, 15, 799. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Kwak, G.-H.; Park, C.-W.; Ahn, H.-Y.; Na, S.-I.; Lee, K.-D.; Park, N.-W. Potential of Bidirectional Long Short-Term Memory Networks for Crop Classification with Multitemporal Remote Sensing Images. Korean J. Remote Sens. 2020, 36, 515–525. [Google Scholar] [CrossRef]
- Kwak, G.-H.; Park, N.-W. Two-Stage Deep Learning Model with LSTM-Based Autoencoder and CNN for Crop Classification Using Multi-Temporal Remote Sensing Images. Korean J. Remote Sens. 2021, 37, 719–731. [Google Scholar] [CrossRef]
- Wei, L.; Wang, K.; Lu, Q.; Liang, Y.; Li, H.; Wang, Z.; Wang, R.; Cao, L. Crops Fine Classification in Airborne Hyperspectral Imagery Based on Multi-Feature Fusion and Deep Learning. Remote Sens. 2021, 13, 2917. [Google Scholar] [CrossRef]
- Nowakowski, A.; Mrziglod, J.; Spiller, D.; Bonifacio, R.; Ferrari, I.; Mathieu, P.P.; Garcia-Herranz, M.; Kim, D.-H. Crop Type Mapping by Using Transfer Learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102313. [Google Scholar] [CrossRef]
- Pandey, A.; Jain, K. An Intelligent System for Crop Identification and Classification from UAV Images Using Conjugated Dense Convolutional Neural Network. Comput. Electron. Agric. 2022, 192, 106543. [Google Scholar] [CrossRef]
- Reedha, R.; Dericquebourg, E.; Canals, R.; Hafiane, A. Transformer Neural Network for Weed and Crop Classification of High Resolution UAV Images. Remote Sens. 2022, 14, 592. [Google Scholar] [CrossRef]
- Li, X.; Cui, Y.; Zhou, X.; Liu, S. Impact of Sample Quality to Deep Learning Classification Model of Multiple Crop Types on UAV Remotely Sensed Images. Appl. Math. Model. Comput. Simul. 2022, 20, 475–488. [Google Scholar] [CrossRef]
- Kalita, I.; Singh, G.P.; Roy, M. Explainable Crop Classification from by Analyzing an Ensemble of DCNNs under Multi-Filter & Multi-Scale Framework. Multimed. Tools Appl. 2022, 82, 18409–18433. [Google Scholar] [CrossRef]
- Yang, B.; Hu, S. What Kind Of Spatial And Spectral Resolution Of Uav-Borne Hyperspectral Image Is Required For Precise Crop Classification When Using Deep Learning. In Proceedings of the 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Rome, Italy, 13–16 September 2022; pp. 1–5. [Google Scholar]
- Hu, X.; Wang, X.; Zhong, Y.; Zhang, L. S3ANet: Spectral-Spatial-Scale Attention Network for End-to-End Precise Crop Classification Based on UAV-Borne H2 Imagery. ISPRS J. Photogramm. Remote Sens. 2022, 183, 147–163. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Li, P.; Liu, X.; Li, Y.; Wang, Y. Explainable Crop Classification from UAV Imagery Based on Deep Learning. Remote Sens. 2020, 12, 1842. [Google Scholar] [CrossRef]
- Ong, P.; Teo, K.S.; Sia, C.K. UAV-Based Weed Detection in Chinese Cabbage Using Deep Learning. Smart Agric. Technol. 2023, 4, 100181. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Zhang, Y.; Zhang, S.; Ding, X.; Atkinson, P.M. A Scale Sequence Object-Based Convolutional Neural Network (SS-OCNN) for Crop Classification from Fine Spatial Resolution Remotely Sensed Imagery. Int. J. Digit. Earth 2021, 14, 1528–1546. [Google Scholar] [CrossRef]
- Li, H.; Tian, Y.; Zhang, C.; Zhang, S.; Atkinson, P.M. Temporal Sequence Object-Based CNN (TS-OCNN) for Crop Classification from Fine Resolution Remote Sensing Image Time-Series. Crop J. 2022, 10, 1507–1516. [Google Scholar] [CrossRef]
- Agilandeeswari, L.; Prabukumar, M.; Radhesyam, V.; Phaneendra, K.L.N.B.; Farhan, A. Crop Classification for Agricultural Applications in Hyperspectral Remote Sensing Images. Appl. Sci. 2022, 12, 1670. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, H.; Wang, A.; Iwahori, Y. Precise Crop Classification of Hyperspectral Images Using Multi-Branch Feature Fusion and Dilation-Based MLP. Remote Sens. 2022, 14, 2713. [Google Scholar] [CrossRef]
- Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sens. 2022, 14, 871. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, L.; Zhou, Z.-G.; Jiang, H.; Liu, Q. Bridging Optical and SAR Satellite Image Time Series via Contrastive Feature Extraction for Crop Classification. ISPRS J. Photogramm. Remote Sens. 2023, 195, 222–232. [Google Scholar] [CrossRef]
- Reji, J.; Nidamanuri, R.R. Deep Learning Based Fusion of LiDAR Point Cloud and Multispectral Imagery for Crop Classification Sensitive to Nitrogen Level. In Proceedings of the 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 27–29 January 2023; Volume 1, pp. 1–4. [Google Scholar]
- Divyanth, L.G.; Guru, D.S.; Soni, P.; Machavaram, R.; Nadimi, M.; Paliwal, J. Image-to-Image Translation-Based Data Augmentation for Improving Crop/Weed Classification Models for Precision Agriculture Applications. Algorithms 2022, 15, 401. [Google Scholar] [CrossRef]
- Munipalle, V.K.; Nelakuditi, U.R.; Nidamanuri, R.R. Agricultural Crop Hyperspectral Image Classification Using Transfer Learning. In Proceedings of the 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 27–29 January 2023; Volume 1, pp. 1–4. [Google Scholar]
- Bhosle, K.; Musande, V. Evaluation of Deep Learning CNN Model for Land Use Land Cover Classification and Crop Identification Using Hyperspectral Remote Sensing Images. J. Indian Soc. Remote Sens. 2019, 47, 1949–1958. [Google Scholar] [CrossRef]
- Patel, H.; Bhagia, N.; Vyas, T.; Bhattacharya, B.; Dave, K. Crop Identification and Discrimination Using AVIRIS-NG Hyperspectral Data Based on Deep Learning Techniques. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3728–3731. [Google Scholar]
- Yi, Z.; Jia, L.; Chen, Q.; Jiang, M.; Zhou, D.; Zeng, Y. Early-Season Crop Identification in the Shiyang River Basin Using a Deep Learning Algorithm and Time-Series Sentinel-2 Data. Remote Sens. 2022, 14, 5625. [Google Scholar] [CrossRef]
- Hruška, J.; Adão, T.; Pádua, L.; Marques, P.; Peres, E.; Sousa, A.; Morais, R.; Sousa, J.J. Deep Learning-Based Methodological Approach for Vineyard Early Disease Detection Using Hyperspectral Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 9063–9066. [Google Scholar]
- Kulkarni, O. Crop Disease Detection Using Deep Learning. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–4. [Google Scholar]
- Park, H.; JeeSook, E.; Kim, S.-H. Crops Disease Diagnosing Using Image-Based Deep Learning Mechanism. In Proceedings of the 2018 International Conference on Computing and Network Communications (CoCoNet), Astana, Kazakhstan, 15–17 August 2018; pp. 23–26. [Google Scholar]
- Long, Y.; Liu, C. Research on Deep Learning Method of Crop Disease Identification. In Proceedings of the Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Rangarajan, A.K.; Purushothaman, R.; Ramesh, A. Tomato Crop Disease Classification Using Pre-Trained Deep Learning Algorithm. Procedia Comput. Sci. 2018, 133, 1040–1047. [Google Scholar] [CrossRef]
- Wang, A.X.; Tran, C.; Desai, N.; Lobell, D.; Ermon, S. Deep Transfer Learning for Crop Yield Prediction with Remote Sensing Data. In Proceedings of the Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Tsouli Fathi, M.; Ezziyyani, M.; Ezziyyani, M.; El Mamoune, S. Crop Yield Prediction Using Deep Learning in Mediterranean Region. In Proceedings of the Advanced Intelligent Systems for Sustainable Development (AI2SD’2019); Ezziyyani, M., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 106–114. [Google Scholar]
- Renju, R.S.; Deepthi, P.S.; Chitra, M.T. A Review of Crop Yield Prediction Strategies Based on Machine Learning and Deep Learning. In Proceedings of the 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), Kochi, India, 23–25 June 2022; pp. 1–6. [Google Scholar]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Bah, M.D.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images. Remote Sens. 2018, 10, 1690. [Google Scholar] [CrossRef] [Green Version]
- Osorio, K.; Puerto, A.; Pedraza, C.; Jamaica, D.; Rodríguez, L. A Deep Learning Approach for Weed Detection in Lettuce Crops Using Multispectral Images. AgriEngineering 2020, 2, 471–488. [Google Scholar] [CrossRef]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Anwar, S. Deep Learning-Based Identification System of Weeds and Crops in Strawberry and Pea Fields for a Precision Agriculture Sprayer. Precis. Agric 2021, 22, 1711–1727. [Google Scholar] [CrossRef]
- Bai, X.; Wang, X.; Liu, X.; Liu, Q.; Song, J.; Sebe, N.; Kim, B. Explainable Deep Learning for Efficient and Robust Pattern Recognition: A Survey of Recent Developments. Pattern Recognit. 2021, 120, 108102. [Google Scholar] [CrossRef]
Paper | Year | Models | Data Source * |
---|---|---|---|
[28] | 2020 | CNN-Transformer, CNN; CNN-LSTM | Sentinel-2 (3), Landsat-8 (9) |
[29] | 2020 | 2D-CNN, 3D-CNN, LSTM | Sentinel-2, Landsat-8 (10) |
[30] | 2020 | Conv1D-RF, VGG-RF, Conv1D, VGG | Sentinel-2 (4) |
[31] | 2020 | 1D-CNN, 2D-CNN, RNN-LSTM, RNN-GRU | Sentinel-2 (10) |
[25] | 2020 | LSTM, MLP, U-net | Sentinel-1, Sentinel-2 (14) |
[32] | 2021 | ANN | Sentinel-2 (4) |
[33] | 2021 | PSE + LTAE | Sentinel-2 (20) |
[34] | 2021 | Bi-LSTM, LSTM | Sentinel-2 (16) |
[35] | 2021 | CNN | Sentinel-2 (11) |
[36] | 2021 | CNN-CRF, CNN | Sentinel-1 (9) |
[37] | 2021 | MSFCN, CNN, | Sentinel-1 (14) |
[38] | 2021 | LSTM, CNN, GAN | Landsat-8 (3) |
[39] | 2021 | CNN | AgriSAR (6) |
[40] | 2022 | CNN | Sentinel2-Agri (20) |
[41] | 2022 | CNNDAM, R-CNN, 2D-CNN, 3D-CNN | Sentinel-2 (10) |
[24] | 2022 | 2D-CNN, 3D-CNN, MLP | Sentinel-1, Sentinel-2 (7) |
[42] | 2022 | LSTM | Sentinel-1, Sentinel-2 (6) |
[43] | 2022 | LSTM | Sentinel-1, Sentinel-2 (2) |
[44] | 2022 | Conv1D, LSTM | MODIS (5) |
[45] | 2022 | ConvLSTM-RFC | Sentinel-1 (2) |
Paper | Year | Models | Data Source * |
---|---|---|---|
[53] | 2020 | Bi-LSTM, LSTM | Custom (4) |
[54] | 2021 | CNN, LSTM, Convolutional LSTM | Custom (4) |
[55] | 2021 | DNN-CRF, DNN | WHU-Hi-HongHu (18), Xiong’an (20) |
[56] | 2021 | GoogLeNet; VGG-16 | Custom (6); Custom (4) |
[57] | 2022 | DCNN, AlexNet, VGG-16, VGG-19, ResNet-50 | Custom (5) |
[58] | 2022 | ViT, EfficientNet, ResNet | Custom (5) |
[59] | 2022 | ResNet50, VGG16, VGG19 | Custom (6) |
[60] | 2022 | Inception V3 + MFMS-DCNN, Inception V3, MFMS-DCNN, MR and PR Ensemble | Plant Seedling (12), Custom (12) |
[61] | 2022 | 1D-CNN, 3D-CNN | WHU-Hi-HongHu (22), WHU-Hi-HanChuan (16), WHU-Hi-LongKou (9) |
[62] | 2022 | CNNCRF, SSFCN-CRF | WHU-Hi-HongHu (22), WHU-Hi-HanChuan (16), WHU-Hi-JiaYu (12) |
Paper | Year | Models | Data Source * |
---|---|---|---|
[17] | 2020 | VGG-19 | Sentinel-2 (6), Single-date VHR orthoimages (2) |
[18] | 2020 | VGG16, ResNet50, DenseNet201, LSTM, CNN, MLP | VHR USDA NAIP, MODIS (6) |
[19] | 2022 | 2D-CNN, 3D-CNN, VGG16/19, ResNet, DenseNet | Indian Pines (16), Pavia (9), Salinas (16) |
[20] | 2022 | CNN, Convolutional Autoencoder, DNN | EO-1 Hyperion (16), Indian Pines (4) |
[65] | 2021 | SS-OCNN, PCNN, OBIA, OCNN, MOCNN | Single-date UAVSAR (9), RapidEye (10) |
[66] | 2022 | TS-OCNN, OCNN, OBIA, PCNN | UAVSAR (10), RapidEye (9) |
[67] | 2022 | 2D-CNN, CNN-MFL | Indian Pines (16), Salinas (16), UAV WHU-Hi-HongHu (22) |
[68] | 2022 | DMLP, DMLPFFN, CNN, ResNet, MLP | Salinas (16), KSC (13), WHU-Hi-LongKou (9), WHU-Hi-HanChuan (16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, I.; Morais, R.; Sousa, J.J.; Cunha, A. Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review. Agriculture 2023, 13, 965. https://doi.org/10.3390/agriculture13050965
Teixeira I, Morais R, Sousa JJ, Cunha A. Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review. Agriculture. 2023; 13(5):965. https://doi.org/10.3390/agriculture13050965
Chicago/Turabian StyleTeixeira, Igor, Raul Morais, Joaquim J. Sousa, and António Cunha. 2023. "Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review" Agriculture 13, no. 5: 965. https://doi.org/10.3390/agriculture13050965
APA StyleTeixeira, I., Morais, R., Sousa, J. J., & Cunha, A. (2023). Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review. Agriculture, 13(5), 965. https://doi.org/10.3390/agriculture13050965