Intensive Meadows on Organic Soils of Temperate Climate–Useful Value of Grass Mixtures after the Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experiment Design
2.2. Biomass Properties Analysis
2.3. Statistical Analysis
2.4. Meteorological Condition and Groundwater Level
3. Results and Discussion
3.1. Floristic Composition of Mixtures
3.2. Dry Matter Yield
3.3. Fodder Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niedbała, G.; Wróbel, B.; Piekutowska, M.; Zielewicz, W.; Paszkiewicz-Jasińska, A.; Wojciechowski, T.; Niazian, M. Application of Artificial Neural Networks Sensitivity Analysis for the Pre-Identification of Highly Significant Factors Influencing the Yield and Digestibility of Grassland Sward in the Climatic Conditions of Central Poland. Agronomy 2022, 12, 1133. [Google Scholar] [CrossRef]
- Bogunovic, I.; Kljak, K.; Dugan, I.; Grbeša, D.; Telak, L.J.; Duvnjak, M.; Kisic, I.; Kapović Solomun, M.; Pereira, P. Grassland Management Impact on Soil Degradation and Herbage Nutritional Value in a Temperate Humid Environment. Agriculture 2022, 12, 921. [Google Scholar] [CrossRef]
- Schils, R.L.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; Berge, H.T.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Plantureux, S.; Bernués, A.; Huguenin-Elie, O.; Hovstad, K.; Isselstein, J.; McCracken, D.; Therond, O.; Vackar, D. Ecosystem service indicators for grasslands in relation to ecoclimatic regions and land use systems. Grassl. Sci. Eur. 2016, 21, 524–547. [Google Scholar]
- Deru, J.G.C.; Bloem, J.; de Goede, R.; Brussaard, L.; van Eekeren, N. Effects of organic and inorganic fertilizers on soil properties related to the regeneration of ecosystem services in peat grasslands. Appl. Soil Ecol. 2023, 187, 104838. [Google Scholar] [CrossRef]
- Pietrzak, S.; Hołaj-Krzak, J.T. The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration. J. Water Land Dev. 2022, 54, 68–76. [Google Scholar] [CrossRef]
- Ward, S.E.; Smat, S.M.; Quirk, H.; Tallowin, J.R.B.; Mortimer, S.R.; Shiel, R.S.; Wilby, A.; Bardgett, R.D. Legacy effects of grassland management on soil carbon to depth. Glob. Chang. Biol. 2016, 22, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, J.; Kopeć, M. The scheme of nutrient addition affects vegetation composition and plant species richness in different ways: Results from a long-term grasslands experiment. Agric. Ecosyst. Environ. 2020, 291, 106789. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Leiber, F.; Probst, S.; Kreuzer, M.; Weigelt, A.; Buchmann, N.; Scherer-Lorenzen, M. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 2020, 11, 768. [Google Scholar] [CrossRef]
- Isselstein, J.; Jeangros, B.; Pavlů, V.V. Agronomic aspects of biodiversity targeted management of temperate grasslands in Europe—A review. Agron. Res. 2005, 3, 139–151. [Google Scholar]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef]
- Olszewska, M. Effects of Cultivar, Nitrogen Rate and Harvest Time on the Content of Carbohydrates and Protein in the Biomass of Perennial Ryegrass. Agronomy 2021, 11, 468. [Google Scholar] [CrossRef]
- Velthof, G.L.; Hoving, I.E.; Dolfing, J.; Smit, A.; Kuikman, P.J.; Oenema, O. Method and timing of grassland renovation affects herbage yield, nitrate leaching, and nitrous oxide emission in intensively managed grasslands. Nutr. Cycl. Agroecosyst. 2010, 86, 401–412. [Google Scholar] [CrossRef]
- Walker, K.J.; Stevens, P.A.; Stevens, D.P.; Mountford, J.; Manchester, S.J.; Pywell, R.F. The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biol. Conserv. 2004, 119, 1–18. [Google Scholar] [CrossRef]
- Gaweł, E.; Grzelak, M. The Influences of Different Methods of Grassland Renovation on the Weight of Post-Harvest Residues and the Abundance of Selected Soil Nutrients. Agronomy 2020, 10, 1590. [Google Scholar] [CrossRef]
- Baryła, R. Suitability of Lolium perenne for meadow mixtures in postboggy habitat. Grassl. Sci. Pol. 2004, 7, 9–20. (In Polish) [Google Scholar]
- Dembek, R.; Łyszczarz, R. Production potential and dietary value of fodder made from The Noteć Canal Valley grasslands. Pamięt. Puławski 2008, 147, 31–43. (In Polish) [Google Scholar]
- Becker, T.; Isselstein, J.; Jürschik, R.; Benke, M.; Kayser, M. Performance of Modern Varieties of Festuca arundinacea and Phleum pratense as an Alternative to Lolium perenne in Intensively Managed Sown Grasslands. Agronomy 2020, 10, 540. [Google Scholar] [CrossRef]
- Halling, M.A. Yield stability of Festulolium and perennial ryegrass in southern and central Sweden. Grassl. Sci. Eur. 2012, 17, 118–120. [Google Scholar]
- Curran, N.; Grogan, D.; Milbourne, D.; Byrne, S.L.; O’Riordan, E.; Hanley, M.; Grant, J.; Hodkinson, T.R.; Barth, S. Persistency, yield, and silage quality of Festulolium cultivars over a consecutive five-year period under a mild Atlantic climate. Biol. Plant. 2020, 64, 856–864. [Google Scholar] [CrossRef]
- Østrem, L.; Volden, B.; Larsen, A. Morphology, dry matter yield and phenological characters at different maturity stages of ×Festulolium compared with other grass species. Acta Agric. Scand. B Soil Plant Sci. 2013, 63, 531–542. [Google Scholar] [CrossRef]
- McDonagh, J.; O’Donovan, M.; McEvoy, M.; Gilliland, T.J. Genetic gain in perennial ryegrass (Lolium perenne) varieties 1973 to 2013. Euphytica 2016, 212, 187–199. [Google Scholar] [CrossRef]
- Kemešytė, V.; Jaškūnė, K.; Statkevičiūtė, G. Festulolium field performance under fluctuating growing conditions in Lithuania. Biol. Plant. 2020, 64, 821–827. [Google Scholar] [CrossRef]
- Cougnon, M.; Baert, J.; Van Waes, C.; Reheul, D. Performance and quality of tall fescue (Festuca arundinacea schreb.) and perennial ryegrass (Lolium perenne L.) and mixtures of both species grown with or without white clover (Trifolium repens L.) under cutting management. Grass Forage Sci. 2014, 69, 666–677. [Google Scholar] [CrossRef]
- Radkowski, A.; Bocianowski, J.; Nowosad, K.; Piwowarczyk, E.; Bakinowska, E.; Radkowska, I.; Wolski, K. Comparison of the Yield and Chemical Composition of Eleven Timothy (Phleum pratense L.) Genotypes under Three Locations in Poland. Agronomy 2020, 10, 1743. [Google Scholar] [CrossRef]
- Neumann, C.; Bassler, R.; Seibold, R.; Barth, C. Methodenbuch. Band III, Die Chemische Untersuchung von Futtermittel [The VDLUFA Method Book Volume III—The Chemical Analysis of Animal Feed], 3rd ed.; VDLUFA–Verlag: Darmstadt, Germany, 1997; pp. 1–2190. (In German) [Google Scholar]
- Filipek, J. Zagadnienie wielkości próbek przeznaczonych do analizy botaniczno-wagowej w doświadczeniach łąkarskich [The size of samples for botanical weight analysis in meadow experiments]. Postep. Nauk. Rol. 1970, 4, 85–98. (In Polish) [Google Scholar]
- Dietrich, O.; Behrendt, A.; Wegehenkel, M. The Water Balance of Wet Grassland Sites with Shallow Water Table Conditions in the North-Eastern German Lowlands in Extreme Dry and Wet Years. Water 2021, 13, 2259. [Google Scholar] [CrossRef]
- Napierała, M.; Sojka, M.; Jaskuła, J. Impact of Water Meadow Restoration on Forage Hay Production in Different Hydro-Meteorological Conditions: A Case Study of Racot, Central Poland. Sustainability 2023, 15, 2959. [Google Scholar] [CrossRef]
- Kitczak, T.; Jänicke, H.; Bury, M.; Malinowski, R. The Usefulness of Mixtures with Festulolium braunii for the Regeneration of Grassland under Progressive Climate Change. Agriculture 2021, 11, 537. [Google Scholar] [CrossRef]
- Kulik, M.; Baryła, R. The relationship of share of Lolium perenne and Trifolium repens in pasture sward on peat-muck soil in long-term use. Grassl. Sci. Pol. 2013, 16, 55–67. (In Polish) [Google Scholar]
- Baryła, R.; Drozd, M. Yielding of meadow mixtures with a share of different Perennial Ryegrass (Lolium perenne L.) varietes and persistency of this species in post-boggy habitat. Zesz. Probl. Post. Nauk. Rol. 2001, 479, 15–22. (In Polish) [Google Scholar]
- Czyż, H.; Jänicke, H.; Kitczak, T.; Bury, M. The evaluation of grasslands restored with full cultivation method and located on organic soil in the valley of the river Randow (Germany). Grassl. Sci. Pol. 2015, 18, 59–74. (In Polish) [Google Scholar]
- Schlegel, P.; Wyss, U.; Arrigo, Y.; Hess, H.D. Mineral concentrations of fresh herbage from mixed grassland as influenced by botanical composition, harvest time and growth stage. Anim. Feed Sci. Tech. 2016, 219, 226–233. [Google Scholar] [CrossRef]
- Downing, T.; Gamroth, M. Nonstructural Carbohydrates in Cool-Season Grasses; Special Report 1079-E; Oregon State University: Corvallis, OR, USA, 2007; pp. 1–16. [Google Scholar]
- Krzywiecki, S. Znaczenie traw w żywieniu zwierząt gospodarskich. W: Perspektywy hodowli zwierząt w Polsce. Materiały Konferencyjne [The importance of grasses in farm animal nutrition]. In Proceedings of the Perspectives for Animal Breeding in Poland Conference Materials, Wrocław, Poland, 18–19 September 1995; pp. 33–40. [Google Scholar]
- Ciepiela, G.A. Zawartość węglowodanów strukturalnych i niestrukturalnych oraz ligniny w Dactylis glomerata L. i Festulolium braunii (K. Richt.) A. Camus zasilanych biostymulatorem Kelpak SL i azotem [Content of structural and nonstructural carbohydrates and lignin in Dactylis glomerata L. and Festulolium braunii (K. Richt.) A. Camus supplied by biostimulator Kelpak SL and nitrogen]. Nauka Przyr. Technol. 2014, 8, 1–12. [Google Scholar]
- Gaweł, E.; Grzelak, M. The impact of grassland renovation on sward composition and quality under organic farming conditions. Pol. J. Agron. 2019, 39, 35–43. [Google Scholar] [CrossRef]
Species and Cultivar | Mixture (Object) 1 | ||
---|---|---|---|
1 | 2 | 3 | |
Festuca arundinacea | 85 | 55 | |
Lolium perenne | 15 | 25 | 100 |
Phleum pratense | - | 20 |
Object | Species | Share in Mixture (%) | Share on Sward (%) in Years | |||||
---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |||
1 | Festuca arundinacea | 85 | 66 | 72 | 68 | 93 | 82 | 65 |
Lolium perenne | 15 | 34 | 26 | 31 | 5 | 16 | 21 | |
Other | - | - | 1 | 2 | 2 | 14 | ||
2 | Festuca arundinacea | 55 | 62 | 68 | 65 | 72 | 81 | 62 |
Lolium perenne | 25 | 27 | 25 | 24 | 12 | 10 | 14 | |
Phleum pratense | 20 | 11 | 7 | 9 | 8 | 5 | 8 | |
Other | - | - | 2 | 8 | 4 | 16 | ||
3 | Lolium perenne | 100 | 100 | 100 | 97 | 91 | 90 | 74 |
Other | - | - | 3 | 9 | 10 | 26 |
Mixture | Cut | Years | Mean | |||||
---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |||
1 | 1 | 3.78 | 6.11 | 3.93 | 3.44 | 3.70 | 4.33 | 4.22 |
2 | 4.18 | 4.40 | 3.24 | 3.30 | 2.57 | 2.25 | 3.32 | |
3 | 6.22 | 5.31 | 4.15 | 5.22 | 7.21 | 4.49 | 5.43 | |
4 | 2.72 | 4.14 | 3.09 | 2.95 | n. d. * | 3.72 | 3.32 | |
5 | n. d. * | 2.83 | 4.05 | 3.10 | n. d. * | n. d. * | 3.33 | |
Total | 16.9 | 22.79 | 18.46 | 18.01 | 13.48 | 14.79 | 17.41 | |
2 | 1 | 3.78 | 6.80 | 4.24 | 3.37 | 3.84 | 3.87 | 4.32 |
2 | 4.49 | 4.09 | 2.90 | 3.00 | 2.58 | 2.07 | 3.19 | |
3 | 5.20 | 4.98 | 3.78 | 5.66 | 5.29 | 3.78 | 4.78 | |
4 | 3.37 | 4.08 | 3.15 | 3.18 | n. d. * | 3.08 | 3.37 | |
5 | n. d. * | 2.58 | 3.69 | 2.76 | n. d. * | n. d. * | 3.01 | |
Total | 16.84 | 22.53 | 17.76 | 17.97 | 11.71 | 12.80 | 16.60 | |
3 | 1 | 3.25 | 4.93 | 2.43 | 1.24 | 3.73 | 3.84 | 3.24 |
2 | 4.99 | 3.24 | 4.22 | 4.03 | 2.96 | 2.09 | 3.59 | |
3 | 4.56 | 3.83 | 3.89 | 5.81 | 3.40 | 3.27 | 4.13 | |
4 | 2.60 | 3.64 | 3.10 | 2.69 | n. d. * | 1.94 | 2.79 | |
5 | n. d. * | 2.68 | 3.71 | 3.00 | n. d. * | n. d. * | 3.13 | |
Total | 15.40 | 18.32 | 17.35 | 16.77 | 10.09 | 11.14 | 14.85 | |
Mean of years | 16.38 | 21.21 | 17.86 | 17.58 | 11.76 | 12.91 | 16.28 | |
HSD 0.05 | i. d. ** | 1.95 | 1.06 | i. d. ** | 2.73 | 3.05 | 0.65 |
Mixture | Cut | Crude Protein | Crude Fibre | Crude Fat | Soluble Sugars | The Net Energy |
---|---|---|---|---|---|---|
1 | 1 | 152.2 | 281.3 | 20.2 | 92.0 | 5.9 |
2 | 148.7 | 280.8 | 21.0 | 95.5 | 6.0 | |
3 | 145.2 | 272.7 | 22.2 | 122.7 | 6.1 | |
4 | 145.5 | 255.5 | 22.8 | 131.0 | 6.3 | |
5 | 144.3 | 256.2 | 23.7 | 135.5 | 6.4 | |
Mean | 147.2 | 269.3 | 22.0 | 115.3 | 6.1 | |
2 | 1 | 167.5 | 290.2 | 20.8 | 74.2 | 6.0 |
2 | 166.7 | 284.5 | 21.2 | 77.7 | 6.0 | |
3 | 153.0 | 281.0 | 21.7 | 90.3 | 6.0 | |
4 | 161.2 | 273.8 | 23.2 | 90.3 | 6.1 | |
5 | 153.5 | 292.5 | 21.8 | 89.8 | 5.9 | |
Mean | 160.4 | 284.4 | 21.7 | 84.5 | 6.0 | |
3 | 1 | 171.3 | 295.3 | 23.0 | 68.0 | 6.0 |
2 | 180.3 | 284.3 | 22.7 | 75.0 | 6.1 | |
3 | 178.3 | 280.0 | 23.3 | 70.7 | 6.2 | |
4 | 201.3 | 265.3 | 21.3 | 72.3 | 6.2 | |
5 | 186.3 | 265.3 | 23.3 | 73.0 | 6.1 | |
Mean | 183.5 | 278.1 | 22.7 | 71.8 | 6.1 | |
Mean for cuts | 1 | 163.7 | 288.9 | 21.3 | 78.1 | 6.0 |
2 | 165.2 | 283.2 | 21.6 | 82.7 | 6.0 | |
3 | 158.8 | 277.9 | 22.4 | 94.6 | 6.1 | |
4 | 169.3 | 264.9 | 22.4 | 97.9 | 6.2 | |
5 | 161.4 | 271.3 | 22.9 | 99.4 | 6.1 | |
Mean | 163.7 | 277.3 | 22.1 | 90.5 | 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitczak, T.; Jänicke, H.; Bury, M.; Jarnuszewski, G. Intensive Meadows on Organic Soils of Temperate Climate–Useful Value of Grass Mixtures after the Regeneration. Agriculture 2023, 13, 1126. https://doi.org/10.3390/agriculture13061126
Kitczak T, Jänicke H, Bury M, Jarnuszewski G. Intensive Meadows on Organic Soils of Temperate Climate–Useful Value of Grass Mixtures after the Regeneration. Agriculture. 2023; 13(6):1126. https://doi.org/10.3390/agriculture13061126
Chicago/Turabian StyleKitczak, Teodor, Heidi Jänicke, Marek Bury, and Grzegorz Jarnuszewski. 2023. "Intensive Meadows on Organic Soils of Temperate Climate–Useful Value of Grass Mixtures after the Regeneration" Agriculture 13, no. 6: 1126. https://doi.org/10.3390/agriculture13061126
APA StyleKitczak, T., Jänicke, H., Bury, M., & Jarnuszewski, G. (2023). Intensive Meadows on Organic Soils of Temperate Climate–Useful Value of Grass Mixtures after the Regeneration. Agriculture, 13(6), 1126. https://doi.org/10.3390/agriculture13061126