Validation and Application of Liquid Chromatography Coupled with Tandem Mass Spectrometry Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid (AMPA), and Glufosinate in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Equipment
2.3. Instrumental Details, Chromatographic and Mass Spectrometry Conditions
2.4. Stock Solutions and Spiked Samples Preparations
2.5. Methods
2.5.1. Extraction
2.5.2. Derivatization Reaction
2.5.3. Clean-Up Procedure
2.5.4. Quantifications
2.6. Validation Study
2.6.1. Selectivity
2.6.2. Limit of Detection (LOD) and Limit of Quantification (LOQ)
2.6.3. Linearity
2.6.4. Precision and Accuracy
2.6.5. Robustness
2.6.6. Uncertainty
- Perform spiked determinations at different concentration levels evaluated.
- Calculate concentration and percent recovery.
- Calculate the standard deviation (SD) and relative standard deviation (RSD) of results where the process is under statistical control (no outliers or out-of-control results).
- Calculate the measurement uncertainty at the 95% confidence level as follows:
- 5.
- Calculate the measurement uncertainty interval for a measured value as follows:
2.6.7. Matrix Effect (ME)
2.7. Method Application to Agricultural Soil Analysis
2.8. Quality Assurance of the Method
3. Results and Discussion
3.1. Analytical Method Validation
3.1.1. Selectivity
3.1.2. LODs and LOQs
3.1.3. Linearity
3.1.4. Accuracy and Precision
3.1.5. Robustness
3.1.6. Uncertainty
3.1.7. Matrix Effect (ME)
3.2. Method Application
3.3. Comparative Advantages of the Validated Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mesnage, R.; Defarge, N.; De Vendômois, J.S.; Séralini, G. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem. Toxicol. 2015, 84, 133–153. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef]
- Al-Rajab, A.J.; Amellal, S.; Schiavon, M. Sorption and leaching of 14 C-glyphosate in agricultural soils. Agron. Sustain. Dev. 2008, 28, 419–428. [Google Scholar] [CrossRef]
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA). Registro de Plaguicidas Agrícolas. 2020. Available online: https://www.gob.mx/senasica/documentos/registro-de-plaguicidas_agricolas?state=published (accessed on 1 May 2023).
- Lópe, N.J.S.; Madrid, M.L.A. Herbicida glifosato: Usos, toxicidad y regulación. Biotecnia 2011, 13, 23–28. [Google Scholar]
- Dovidauskas, S.; Okada, I.A.; Dos Santos, F.R. Validation of a simple ion chromatography method for simultaneous determination of glyphosate, aminomethylphosphonic acid and ions of Public Health concern in water intended for human consumption. J. Chromatogr. A 2020, 1632, 461603. [Google Scholar] [CrossRef]
- Ojelade, B.S.; Durowoju, O.S.; Adesoye, P.O.; Gibb, S.W.; Ekosse, G.I. Review of Glyphosate-Based Herbicide and Aminomethylphosphonic Acid (AMPA): Environmental and Health Impacts. Appl. Sci. 2022, 12, 8789. [Google Scholar] [CrossRef]
- Saurat, D.; Raffy, G.; Bonvallot, N.; Monfort, C.; Fardel, O.; Glorennec, P.; Chevrier, C.; Le Bot, B. Determination of glyphosate and AMPA in indoor settled dust by hydrophilic interaction liquid chromatography with tandem mass spectrometry and implications for human exposure. J. Hazard. Mater. 2022, 446, 130654. [Google Scholar] [CrossRef] [PubMed]
- Code of Federal Regulations. Glyphosate: Tolerances for Residues. 2022. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/part-180/subpart-C/section-180.364 (accessed on 9 May 2023).
- Valle, A.L.; Mello, F.C.C.; Alves-Balvedi, R.P.; Rodrigues, L.P.; Goulart, L.R. Glyphosate detection: Methods, needs and challenges. Environ. Chem. Lett. 2019, 17, 291–317. [Google Scholar] [CrossRef]
- Gandhi, K.; Khan, S.; Patrikar, M.; Markad, A.; Kumar, N.; Choudhari, A.; Sagar, P.; Indurkar, S. Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environ. Chall. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Gill, J.P.K.; Sethi, N.; Mohan, A. Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environ. Chem. Lett. 2017, 15, 85–100. [Google Scholar] [CrossRef]
- European Chemicals Agency. Glyphosate Not Classified as a Carcinogen by ECHA. ECHA/PR/17/06. 2017. Available online: https://echa.europa.eu/-/glyphosate-not-classified-as-a-carcinogen-by-echa (accessed on 9 May 2023).
- Zuckerman, A.J. IARC Monographs on the Evaluation of Carcinogen Risks to Humans. J. Clin. Pathol. 2015, 112, 691. [Google Scholar]
- Comisión Federal Para la Protección Contra Riestos Sanitarios (COFEPRIS). Catálogo de Plaguicidas. 2009. Available online: http://www.cofepris.ggob.mx/wb/cfp/catalogo_de_plaguicidas (accessed on 10 May 2023).
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health. 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Buekers, J.; Remy, S.; Bessems, J.; Govarts, E.; Rambaud, L.; Riou, M.; Tratnik, J.S.; Stajnko, A.; Katsonouri, A.; Makris, K.C.; et al. Glyphosate and AMPA in Human Urine of HBM4EU Aligned Studies: Part A Children. Toxics 2022, 10, 552. [Google Scholar] [CrossRef]
- Moldovan, H.; Imre, S.; Duca, R.C.; Farczádi, L. Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate. Int. J. Environ. Res. Public Health 2023, 20, 3314. [Google Scholar] [CrossRef] [PubMed]
- Verdini, E.; Pecorelli, I. The current status of analytical methods applied to the determination of polar pesticides in food of animal origin: A brief review. Foods 2022, 11, 1527. [Google Scholar] [CrossRef]
- Ramírez-Muñoz, F. El Herbicida Glifosato y sus Alternativas, Serie de Informes Técnicos; Universidad Nacional-Instituto Regional de Estudios en Sustancias Tóxicas (UNA-IRET): Heredia, Costa Rica, 2021. [Google Scholar]
- Sun, L.; Kong, D.; Gu, W.; Guo, X.; Tao, W.; Shan, Z.; Wang, Y.; Wang, N. Determination of glyphosate in soil/sludge by high performance liquid chromatography. J. Chromatogr. A 2017, 1502, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Kaczyński, P.; Łozowicka, B. Liquid chromatographic determination of glyphosate and aminomethylphosphonic acid residues in rapeseed with MS/MS detection or derivatization/fluorescence detection. Open Chem. 2015, 13, 1011–1019. [Google Scholar] [CrossRef]
- Chamkasem, N.; Harmon, T. Direct determination of glyphosate, glufosinate, and AMPA in soybean and corn by liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 4995–5004. [Google Scholar] [CrossRef]
- De Gerónimo, E.; Lorenzón, C.; Iwasita, B.; Costa, J.L. Evaluation of two extraction methods to determine glyphosate and aminomethylphosphonic acid in soil. Soil Sci. 2018, 183, 34–40. [Google Scholar] [CrossRef]
- Ibáñez, M.; Pozo, Ó.J.; Sancho, J.V.; López, F.J.; Hernández, F. Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. A 2005, 1081, 145–155. [Google Scholar] [CrossRef]
- Todorovic, G.R.; Mentler, A.; Popp, M.; Hann, S.; Köllensperger, G.; Rampazzo, N.; Blum, W.E. Determination of glyphosate and AMPA in three representative agricultural Austrian soils with a HPLC-MS/MS method. Soil Sediment Contam. Int. J. 2013, 22, 332–350. [Google Scholar] [CrossRef]
- Silva, V.; Montanarella, L.; Jones, A.; Fernández-Ugalde, O.; Mol, H.G.; Ritsema, C.J.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total. Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef]
- Delhomme, O.; Rodrigues, A.; Hernandez, A.; Chimjarn, S.; Bertrand, C.; Bourdat-Deschamps, M.; Fritsche, C.; Pelosi, C.; Nélieu, S.; Millet, M. A method to assess glyphosate, glufosinate and aminomethylphosphonic acid in soil and earthworms. J. Chromatogr. A 2021, 1651, 462339. [Google Scholar] [CrossRef] [PubMed]
- Pastrana Cervantes, D. Glyphosate and AMPA Concentrations in Two Types of Agroecosystems and in the Natural Vegetation of Hopelchen, Mexico. Minor Thesis, Wageningen University & Research, Wageningen, The Netherlands, 2016. [Google Scholar]
- Qian, K.; Tang, T.; Shi, T.; Wang, F.; Li, J.; Cao, Y. Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3, 5-dinitrobenzotrifluoride. Anal. Chim. Acta 2009, 635, 222–226. [Google Scholar] [CrossRef]
- Islas, G.; Rodriguez, J.A.; Mendoza-Huizar, L.H.; Pérez-Moreno, L.F.; Carrillo, E.G. Determination of glyphosate and aminomethylphosphonic acid in soils by HPLC with pre-column derivatization using 1, 2-naphthoquinone-4-sulfonate. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 1298–1309. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Druart, C.; Delhomme, O.; De Vaufleury, A.; Ntcho, E.; Millet, M. Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil. Anal. Bioanal. Chem. 2011, 399, 1725–1732. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, X.; Luo, J.; Wu, Z.; Wang, L.; Li, B.; Wang, Y.; Sun, G. Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules 2015, 20, 1161–1175. [Google Scholar] [CrossRef]
- Bandana, B.; Sharma, N.; Joshi, R.; Gulati, A.; Sondhia, S. Dissipation kinetics of glyphosate in tea and tea-field under northwestern mid-hill conditions of India. J. Pestic. Sci. 2015, 40, 82–86. [Google Scholar] [CrossRef]
- Jan, M.R.; Shah, J.; Muhammad, M.; Ara, B. Glyphosate herbicide residue determination in samples of environmental importance using spectrophotometric method. J. Hazard. Mater. 2009, 169, 742–745. [Google Scholar] [CrossRef]
- Felton, D.E.; Ederer, M.; Steffens, T.; Hartzell, P.L.; Waynant, K.V. UV–vis spectrophotometric analysis and quantification of glyphosate for an interdisciplinary undergraduate laboratory. J. Chem. Educ. 2018, 95, 136–140. [Google Scholar] [CrossRef]
- El-Gendy, K.; Mosallam, E.; Ahmed, N.; Aly, N. Determination of glyphosate residues in Egyptian soil samples. Anal. Biochem. 2018, 557, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Börjesson, E.; Torstensson, L. New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil. J. Chromatogr. A 2000, 886, 207–216. [Google Scholar] [CrossRef]
- Stalikas, C.D.; Konidari, C.N. Analytical methods to determine phosphonic and amino acid group-containing pesticides. J. Chroatogr. A 2001, 907, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Ryu, S.; Sakiyama, N.; Makita, M. Simple and rapid determination of the herbicide glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. J. Chromatogr. A 1996, 726, 253–258. [Google Scholar] [CrossRef]
- Salazar López, N.J.; Silveira Gramont, M.I.; Zuno Floriano, F.G.; Rodríguez Olibarría, G.; Hengel, M.; Aldana Madrid, M.L. Dissipation of glyphosate from grapevine soils in Sonora, Mexico. Terra Latinoam. 2016, 34, 385–391. [Google Scholar]
- Zhang, W.; Feng, Y.; Ma, L.; An, J.; Zhang, H.; Cao, M.; Zhu, H.; Kang, W.; Lian, K. A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. J. Chromatogr. A 2019, 1589, 116–121. [Google Scholar] [CrossRef]
- Muñoz, R.; Guevara-Lara, A.; Santos, J.L.; Miranda, J.M.; Rodriguez, J.A. Determination of glyphosate in soil samples using CdTe/CdS quantum dots in capillary electrophoresis. Microchem. J. 2019, 146, 582–587. [Google Scholar] [CrossRef]
- Bastidas-Bastidas, P.d.J.; Leyva-Morales, J.B.; Olmeda-Rubio, C.; Pineda-Landeros, J.M.; Martínez-Rodríguez, I.E. Comparison of two methods for multi-residue analysis of organophosphorus pesticides in agricultural products with high and low moisture content. Rev. Bio. Cienc. 2019, 6, e654. [Google Scholar] [CrossRef]
- Karanasios, E.; Karasali, H.; Marousopoulou, A.; Akrivou, A.; Markellou, E. Monitoring of glyphosate and AMPA in soil samples from two olive cultivation areas in Greece: Aspects related to spray operators activities. Environ. Monit. Assess. 2018, 190, 361. [Google Scholar] [CrossRef]
- García-Hernández, J.; Leyva-Morales, J.B.; Bastidas-Bastidas, P.d.J.; Leyva-García, G.N.; Valdez-Torres, J.B.; Aguilar-Zarate, G.; Betancourt-Lozano, M. A comparison of pesticide residues in soils from two highly technified agricultural valleys in northwestern Mexico. J. Environ. Sci. Health B 2021, 56, 548–565. [Google Scholar] [CrossRef]
- McMahon, N.F.; Hardin, B.M. Pesticide Analytical Manual (PAM), 3rd ed.; Food and Drug Administration (FDA): Washington, DC, USA, 1998; Volume 1. [Google Scholar]
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Teddington, UK, 2014. [Google Scholar]
- Salvatierra-Stamp, V.d.C.; Ceballos-Magaña, S.G.; González, J.; Ibarra-Galván, V.; Muñiz-Valencia, R. Analytical method development for the determination of emerging contaminants in water using supercritical-fluid chromatography coupled with diode-array detection. Anal. Bioanal. Chem. 2015, 407, 4219–4226. [Google Scholar] [CrossRef]
- Masís-Mora, M.; Beita-Sandí, W.; Rodríguez-Yáñez, J.; Rodríguez-Rodríguez, C.E. Validation of a methodology by LC-MS/MS for the determination of triazine, triazole and organophosphate pesticide residues in biopurification systems. J. Chromatogr. B 2020, 1156, 122296. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua (CONAGUA). Estadísticas Agrícolas de los Distritos de Riego. Año Agrícola 2017–2018. 2019. Available online: https://www.gob.mx/conagua/documentos/estadisticas-agricolas-de-los-distritos-de-riego (accessed on 13 April 2022).
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA). Manual Técnico de Muestreo de Plaguicidas Agrícolas para Determinación de Residuos de Plaguicidas. 2012. Available online: https://www.gob.mx/senasica/documentos/manual-tecnico-de-muestreo-de-vegetales-para-la-determinacion-de-residuos-de-plaguicidas?state=published (accessed on 13 March 2022).
- Sancho, J.V.; Pozo, O.J.; Hernández, F. Liquid chromatography and tandem mass spectrometry: A powerful approach for the sensitive and rapid multiclass determination of pesticides and transformation products in water. Analyst 2004, 129, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Peruzzo, P.J.; Porta, A.A.; Ronco, A.E. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ. Pollut. 2008, 156, 61–66. [Google Scholar] [CrossRef]
- Karageorgou, E.; Samanidou, V. Youden test application in robustness assays during method validation. J. Chromatogr. A 2014, 1353, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Da Costa César, I.; Antônio Pianetti, G. Robustness evaluation of the chromatographic method for the quantitation of lumefantrine using Youden’s test, Braz. J. Pharm. Sci. 2009, 45, 235–240. [Google Scholar] [CrossRef]
- Instituto Mexicano de Normalización y Certificación, A.C. (IMNC). NMX-CH-140-IMNC-2002. Guía Para la Expresión de Incertidumbre en Las Mediciones; Instituto Mexicano de Normalización y Certificación, A.C. (IMNC): Ciudad de México, México, 2002. [Google Scholar]
- Goon, A.; Kundu, C.; Roy, S.; Das, S.; Bhattacharyya, A. Analytical Method Validation for the Determination of Glyphosate in Tea and Soil using LC-ESI-MS/MS and Degradation Dynamics of Glyphosate in Indian Tea Field Ecosystem. Pestic. Res. J. 2015, 27, 115–121. [Google Scholar]
- Pano-Farias, N.S.; Ceballos-Magaña, S.G.; Jurado, J.M.; Aguayo-Villarreal, I.A.; Muñiz-Valencia, R. Analytical method for pesticides in avocado and papaya by means of ultra-high performance liquid chromatography coupled to a triple quadrupole mass detector: Validation and uncertainty assessment. J. Food Sci. 2018, 83, 2265–2272. [Google Scholar] [CrossRef]
- Acosta-Dacal, A.; Rial-Berriel, C.; Díaz-Díaz, R.; Bernal-Suárez, M.M.; Luzardo, O.P. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total. Environ. 2021, 753, 142015. [Google Scholar] [CrossRef]
- Łozowicka, B.; Rutkowska, E.; Jankowska, M. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ. Sci. Pollut. Res. 2017, 24, 7124–7138. [Google Scholar] [CrossRef] [PubMed]
- Alcántara-de la Cruz, R.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; De Prado, R. Glyphosate ban in Mexico: Potential impacts on agriculture and weed management. Pest Manag. Sci. 2021, 77, 3820–3831. [Google Scholar] [CrossRef] [PubMed]
- Kocadal, K.; Alkas, F.B.; Battal, D.; Saygi, S. A review on advances and perspectives of glyphosate determination: Challenges and opportunities. Arch. Environ. Prot. 2022, 48, 89–98. [Google Scholar] [CrossRef]
Analytes | Precursor (m/z) | Product Ion (m/z) | Cone (V) | Collision (eV) |
---|---|---|---|---|
Glyphosate | 392 | 170 | 20 | 15 |
214 | 20 | 10 | ||
Glufosinate | 404 | 136 | 15 | 15 |
182 | 15 | 10 | ||
AMPA | 334 | 111.8 | 20 | 20 |
156 | 20 | 15 |
Pesticides | LOD (µg/kg) | LOQ (µg/kg) | Linearity (R2) | Accuracy (Average Recovery %) | Precision (% CV) | Expanded Uncertainty (%) |
---|---|---|---|---|---|---|
Glyphosate | 1.368 | 4.105 | 0.996 | 97.45 ± 7.17 | 7.78 | 15.88 |
AMPA | 0.692 | 2.076 | 0.992 | 99.10 ± 7.58 | 7.23 | 14.76 |
Glufosinate | 1.219 | 3.658 | 0.999 | 93.56 ± 7.76 | 8.29 | 16.93 |
Factor | AMPA (%) | Glyphosate (%) | Glufosinate (%) | ||
---|---|---|---|---|---|
a = pH Buffer of 8 | A | A-a | −3.33 | 14.91 | −35.22 |
b = Volume of dichloromethane of 2.5 mL | B | B-b | 25.77 | 25.01 | 28.28 |
c = Stirring time of 15 min | C | C-c | −30.36 | −25.06 | −17.91 |
d = Derivatization time of 30 min | D | D-d | 8.98 | 7.260 | 8.41 |
e = Volume of FMOC of 1 mL | E | E-e | −7.86 | −10.25 | −14.56 |
Mean | 94.35 | 90.32 | 96.79 | ||
Standard deviation (s) | 12.09 | 12.27 | 16.42 | ||
√2*s | 4.92 | 4.95 | 5.73 | ||
Criterion (X-x) < √2*s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyva-Morales, J.B.; Cabrera, R.; Bastidas-Bastidas, P.d.J.; Valenzuela-Quintanar, A.I.; Pérez-Camarillo, J.P.; González-Mendoza, V.M.; Perea-Domínguez, X.P.; Márquez-Pacheco, H.; Amillano-Cisneros, J.M.; Badilla-Medina, C.N.; et al. Validation and Application of Liquid Chromatography Coupled with Tandem Mass Spectrometry Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid (AMPA), and Glufosinate in Soil. Agriculture 2023, 13, 1131. https://doi.org/10.3390/agriculture13061131
Leyva-Morales JB, Cabrera R, Bastidas-Bastidas PdJ, Valenzuela-Quintanar AI, Pérez-Camarillo JP, González-Mendoza VM, Perea-Domínguez XP, Márquez-Pacheco H, Amillano-Cisneros JM, Badilla-Medina CN, et al. Validation and Application of Liquid Chromatography Coupled with Tandem Mass Spectrometry Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid (AMPA), and Glufosinate in Soil. Agriculture. 2023; 13(6):1131. https://doi.org/10.3390/agriculture13061131
Chicago/Turabian StyleLeyva-Morales, José Belisario, Rosina Cabrera, Pedro de Jesús Bastidas-Bastidas, Ana Isabel Valenzuela-Quintanar, Juan Pablo Pérez-Camarillo, Víctor Manuel González-Mendoza, Xiomara Patricia Perea-Domínguez, Henri Márquez-Pacheco, Jesús Mateo Amillano-Cisneros, César Noé Badilla-Medina, and et al. 2023. "Validation and Application of Liquid Chromatography Coupled with Tandem Mass Spectrometry Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid (AMPA), and Glufosinate in Soil" Agriculture 13, no. 6: 1131. https://doi.org/10.3390/agriculture13061131
APA StyleLeyva-Morales, J. B., Cabrera, R., Bastidas-Bastidas, P. d. J., Valenzuela-Quintanar, A. I., Pérez-Camarillo, J. P., González-Mendoza, V. M., Perea-Domínguez, X. P., Márquez-Pacheco, H., Amillano-Cisneros, J. M., Badilla-Medina, C. N., Ontíveros-García, L. A., & Cruz-Acevedo, E. (2023). Validation and Application of Liquid Chromatography Coupled with Tandem Mass Spectrometry Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid (AMPA), and Glufosinate in Soil. Agriculture, 13(6), 1131. https://doi.org/10.3390/agriculture13061131