Design and Parameter Optimization of Transverse-Feed Ramie Decorticator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Technical Requirements for Ramie Decortication
2.2. Structure and Operating Principle of the Transverse-Feed Ramie Decorticator
2.2.1. Overall Structure
2.2.2. Working Principle
2.3. Key Part Design and Parameter Determination
2.3.1. Ramie Decortication Mechanism
2.3.2. Ramie Decortication Device
2.3.3. Flexible Clamping and Delivery Device
2.4. Bench Test of Ramie Decortication
2.4.1. Test Conditions and Test Equipment
2.4.2. The Assessment Index
- (1)
- Fiber percentage of fresh stalk
- (2)
- Impurity rate of raw fiber
- (3)
- Production efficiency
2.4.3. Box–Behnken Test Scheme
3. Results and Discussion
3.1. Experiment Scheme and Results
3.2. Analysis of Test Results
3.2.1. Regression Model and Significance Analysis of the Impurity Rate of Raw Fiber
3.2.2. Regression Model and Significance Analysis of the Raw Fiber Percentage
3.3. Parameter Optimization and Verification Test
3.3.1. Parameter Optimization
3.3.2. Verification Test
4. Conclusions
- (1)
- The mathematical regression model between the test indices and the factors was built through the bench test of the separation of ramie decortication. A three-factor and three-level regression orthogonal test was designed and then performed using the Box–Behnken central combination method, and a quadratic polynomial regression model was built on the basis of the three factors of the fiber percentage of fresh stalk and the impurity rate of raw fiber as the assessment indices of ramie decortication. The optimal parameters were determined through experiments, and comprised a decortication clearance of 3.7 mm, a drum speed of 340 rpm, and a conveyance speed of 0.37 m/s.
- (2)
- The ramie decortication testing of the transverse-feed ramie decorticator was performed using the optimized parameters. As indicated by the results of this study, the fiber percentage of fresh stalk reached 5.05%, and the impurity rate of raw fiber was 1.24%, with the relative errors of the simulated values reaching 2.7% and 3.9%, respectively. Thus, the mean testing values were consistent with the optimized values, since the relative errors were smaller than 5%, suggesting that the regression models are accurate.
- (3)
- The productivity of the transverse-feed ramie decorticator reached 78.5 kg·h−1, which is 6~8 times that of the small ramie decorticator currently employed in the market. The impurity rate and the gum content of the raw fiber of the stripped ramie fiber were determined to be 1.24% and 23.45%, respectively, suggesting that the ramie fibers were of grade 2. The results conformed to the design requirements of the transverse-feed ramie decorticator, and the quality of the stripped fiber satisfied the requirements of textile enterprises and the market.
5. Discussion
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kipriotis, E.; Heping, X.; Vafeiadakis, T.; Kiprioti, M.; Alexopoulou, E. Ramie and kenaf as feed crops. Ind. Crops Prod. 2015, 68, 126–130. [Google Scholar] [CrossRef]
- Kalita, B.B.; Gogoi, N.; Kalita, S. Properties of ramie and its blends. Int. J. Eng. Res. Gen. Sci. 2013, 1, 1–6. [Google Scholar]
- Zhang, B.; Liu, H.; Huang, J.; Tian, K.; Shen, C.; Li, X.; Wang, X. Ramie field distribution model and miss cutting rate prediction based on the statistical analysis. Agriculture 2022, 12, 651. [Google Scholar] [CrossRef]
- Shen, C.; Chen, Q.M.; Zhou, Y.; Zhang, B.; Tian, K.P.; Li, X.W. Experiment and analysis on single stalk cutting of ramie. J. Chin. Agric. Mech. 2015, 36, 40–43. [Google Scholar]
- Shen, C.; Li, X.W.; Zhang, B.; Tian, K.P.; Huang, J.C.; Chen, Q.M. Bench experiment and analysis on ramie stalk cutting. Trans. Chin. Soc. Agric. Eng. 2016, 32, 68–76. [Google Scholar]
- Liu, F.; Liang, X.; Zhang, N.; Huang, Y.; Zhang, S. Effect of growth regulators on yield and fiber quality in ramie (Boemheria nivea (L.) Gaud.), China grass. Field Crops Res. 2001, 69, 41–46. [Google Scholar] [CrossRef]
- Tan, X.J.; Guo, K.J.; Zhang, D.S.; Su, N.; Man, D.W. Design of the lifting ramie decorticator. J. For. Eng. 2019, 4, 106–111. [Google Scholar]
- Shen, C.; Li, X.W.; Tian, K.P.; Zhang, B.; Huang, J.C. Experimental analysis on mechanical model of ramie stalk. Trans. Chin. Soc. Agric. Eng. 2015, 31, 26–33. [Google Scholar]
- Rehman, M.; Deng, G.; Qi, Q.L.; Ying, L.C.; Bo, W.; Ding, X.P.; Li, J.L. Ramie, a multipurpose crop: Potential applications, constraints and improvement strategies. Ind. Crops Prod. 2019, 137, 300–307. [Google Scholar] [CrossRef]
- Xiang, W.; Ma, L.; Liu, J.J.; Xiao, L.; Long, C.H. Research progress on technology and equipment of ramie fibre stripping and processing in China. J. Agric. Sci. Technol. 2019, 21, 59–69. [Google Scholar]
- Deng, J.F.; Cai, C.Q.; Li, J.S.; Ou, S.R.; Cai, J.J. Design and experiment of 6bx-40 ramie-stripping machine rotary-cutter. Chin. Soc. Agric. Mach. 2010, 41, 89–92. [Google Scholar]
- Yang, Y.D.; Deng, J.F. Experiment on ramie peeling machine and process parameters optimization. Trans. Chin. Soc. Agric. Eng. 2009, 25, 93–98. [Google Scholar]
- Xu, X.; Guo, K.J.; Tan, X.J.; Zhang, D.S.; Miao, Z.K. Research on mechanical properties of ramie stalk. J. Hunan Agric. Univ. Nat. Sci. 2018, 44, 447–452. [Google Scholar]
- Yan, K.M.; Zou, S.C.; Tang, L.B.; Su, G.B. Impact test and analysis of fracture toughness of ramie stalk. Trans. Chin. Soc. Agric. Eng. 2014, 30, 308–315. [Google Scholar]
- Zhu, J.G.; Guo, K.J.; Man, D.W.; Su, N. Design and test of a new type of ramie stripping machine-based on PLC. J. Agric. Mech. Res. 2020, 42, 101–105. [Google Scholar]
- Zou, S.C.; Su, G.B.; Shao, Y.G. Simulation optimization and experiment of separation device for ramie stalks based on discrete element method. J. Chin. Agric. Mech. 2017, 38, 60–67. [Google Scholar]
- Su, N.; Guo, K.J.; Wu, L.G.; Man, D.W.; Zhu, J.G. Parameter optimization of the new reverse-drawing ramie decorticator based on orthogonal experiment. China For. Prod. Ind. 2019, 56, 38–42. [Google Scholar]
- Zou, S.C.; Su, G.B.; Shao, Y.G.; Meng, L. Mechanics modeling and analysis of ramie stalk mechanical separation process. Hubei Agric. Sci. 2017, 56, 348–352. [Google Scholar]
- Su, G.B.; Wu, Q.M.; Yuan, L.J.; Zhou, H.Y. Design and test of ZMFQSL-1 type ramie fiber opening and washing machine. Trans. Chin. Soc. Agric. Eng. 2018, 34, 264–270. [Google Scholar]
- GB/T20793-2015; Degummed Ramie. China Standard Press: Beijing, China, 2015.
- DB43/T332-2007; Ramie-Fiber Processed with Decorticator. China Standard Press: Beijing, China, 2007.
- Hu, Y.; Chen, J.H.; Sun, Z.M.; Wang, X.F.; Luan, M.B. Identification and evaluation of major agronomic traits and main fiber quality in ramie germplasm resources. J. Plant Genet. Resour. 2015, 16, 54–58. [Google Scholar]
- Ma, L.; Long, C.H.; Lyu, J.N.; Liu, J.J. Mechanical performance indexes of ramie decorticator and testing methods. Plant Fiber Sci. China 2015, 37, 135–137, 156. [Google Scholar]
- Yan, K.M. Ramie Stalk Separation Under Impact Loading Test and Simulation. Master’s Thesis, Wuhan Textile University, Wuhan, China, 2017. (In Chinese with English abstract). [Google Scholar]
- Lv, J.N.; Long, C.H.; Zhao, J.; Ma, L.; Lyv, H.B. Design and experiment of transverse-feeding ramie decorticator. Trans. Chin. Soc. Agric. Eng. 2013, 29, 16–21. [Google Scholar]
- Xu, X. The Design and Key Components Simulation of the New Ramie Decorticator. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2018. [Google Scholar]
- Zhang, Y.H.; Zeng, X.R.; Jia, L.; Wang, Y.S. Comparative test and optimization selection of several ramie threshing machines. Plant Fiber Sci. China 2020, 42, 141–144. [Google Scholar]
- Wang, J.Y.; Wu, M.L.; Lyu, J.N.; Lin, Y.; Xie, W. Experimental study on tear strength of ramie bast fiber. J. Hunan Agric. Univ. Nat. Sci. 2017, 43, 565–569. [Google Scholar]
- Santhi, K.A.; Srinivas, C.; Kumar, R.A. Experimental investigation of mechanical properties of Jute-Ramie fibres reinforced with epoxy hybrid composites. Mater. Today: Proc. 2021, 39, 1309–1315. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, M.; Liu, L.; Zhang, R.; Cheng, L.; Yu, J. Research on the character and degumming process of different parts of ramie fiber. Text. Res. J. 2018, 88, 2013–2023. [Google Scholar] [CrossRef]
- Ma, L.; Long, C.H.; Lyv, J.N.; He, H.B. Optimization of components parameters on ramie decorticator. Chin. Agric. Mech. 2011, 73–76+72. [Google Scholar]
- Tao, A.F.; Qi, J.M.; Lin, L.H.; Xun, J.Z.; Zhang, X.L.; Cao, Y.; Cui, G.X. An overview on origin and evolution of major fiber crops in China. Plant Fiber Sci. China 2016, 38, 136–142. [Google Scholar]
- Yang, A.M.; Xiang, W.; Yan, B.; Duan, Y.P.; Lv, J.N.; Wu, M.L. Optimization and test of structural parameters of flat hob chopper. Agriculture 2022, 12, 824. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, D.; Yang, L.; Cui, T.; Song, W.; He, X.T.; Wu, H.L.; Dong, J.Q. Optimal design and experiment of critical components of hand-pushing corn plot precision planter. Agriculture 2022, 12, 2103. [Google Scholar] [CrossRef]
- Ren, D.; Yu, H.; Zhang, R.; Li, J.; Li, J.Q.; Zhao, Y.B.; Liu, F.B.; Zhang, J.H.; Wang, W. Research and experiments of hazelnut harvesting machine based on CFD-DEM analysis. Agriculture 2022, 12, 2115. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Processed length of ramie/mm | 600~1700 |
Gum content of raw fiber/% | ≤28 |
Impurity rate of raw fiber/% | ≤2.0 |
Fiber percentage of fresh stalk/% | ≥4.0 |
Productivity/(kg·h−1) | ≥40 |
Grade of ramie fiber | Grade 2 and above |
Levels | Experimental Factor | ||
---|---|---|---|
e | Decorticating Clearance x1/mm | Drum Speed x2/(r·min−1) | Conveying Speed x3/(m·s−1) |
−1 | 2.0 | 200 | 0.24 |
0 | 3.5 | 350 | 0.36 |
1 | 5.0 | 500 | 0.48 |
Number. | Experimental Factor | Fiber Percentage of Fresh Stalk Y1/% | Impurity Rate of Raw Fiber Y2/% | ||
---|---|---|---|---|---|
Decortication Clearance x1 (mm) | Drum Speed x2 (rpm) | Conveyance Speed x3 (m·s−1) | |||
1 | −1 | −1 | 0 | 5.07 | 1.21 |
2 | 1 | −1 | 0 | 5.68 | 1.89 |
3 | −1 | 1 | 0 | 4.61 | 0.85 |
4 | 1 | 1 | 0 | 5.48 | 1.71 |
5 | −1 | 0 | −1 | 4.77 | 0.97 |
6 | 1 | 0 | −1 | 5.54 | 1.74 |
7 | −1 | 0 | 1 | 4.83 | 1.05 |
8 | 1 | 0 | 1 | 5.65 | 1.85 |
9 | 0 | −1 | −1 | 5.04 | 1.33 |
10 | 0 | 1 | −1 | 4.76 | 0.97 |
11 | 0 | −1 | 1 | 5.21 | 1.42 |
12 | 0 | 1 | 1 | 4.85 | 1.05 |
13 | 0 | 0 | 0 | 5.13 | 1.23 |
14 | 0 | 0 | 0 | 5.16 | 1.19 |
15 | 0 | 0 | 0 | 5.12 | 1.25 |
16 | 0 | 0 | 0 | 5.09 | 1.21 |
17 | 0 | 0 | 0 | 5.13 | 1.22 |
Source of Variance | Sum of Squares | Degrees of Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 1.58 | 9 | 0.18 | 241.79 | <0.0001 ** |
x1 | 1.18 | 1 | 1.18 | 1618.6 | <0.0001 ** |
x2 | 0.21 | 1 | 0.21 | 290.24 | <0.0001 ** |
x3 | 0.023 | 1 | 0.023 | 31.75 | 0.0008 ** |
x1x2 | 0.017 | 1 | 0.017 | 23.22 | 0.0019 ** |
x1x3 | 6.25 × 10−4 | 1 | 6.25 × 10−4 | 0.86 | 0.3849 |
x2x3 | 1.60 × 10−3 | 1 | 1.60 × 10−3 | 2.20 | 0.1817 |
x12 | 0.11 | 1 | 0.11 | 144.87 | <0.0001 ** |
x22 | 0.023 | 1 | 0.023 | 31.89 | 0.0008 ** |
x32 | 0.032 | 1 | 0.032 | 43.53 | 0.0003 ** |
Residual error | 5.10 × 10−3 | 7 | 7.28 × 10−4 | ||
Lack of fit | 2.58 × 10−3 | 3 | 8.58 × 10−4 | 1.36 | 0.3741 |
Pure error | 2.52 × 10−3 | 4 | 6.30 × 10−4 | ||
Total | 1.59 | 16 | |||
R2 = 0.9968, R2adj = 0.9927, CV = 0.53%, Adeq precision = 52.799 |
Source of Variance | Sum of Squares | Degrees of Freedom | Mean Square | F Values | p Values |
---|---|---|---|---|---|
Model | 1.61 | 9 | 0.18 | 187.39 | <0.0001 ** |
x1 | 1.21 | 1 | 1.21 | 1267.88 | <0.0001 ** |
x2 | 0.2 | 1 | 0.2 | 211.43 | <0.0001 ** |
x3 | 0.016 | 1 | 0.016 | 16.99 | 0.0044 ** |
x1x2 | 8.10 × 10−3 | 1 | 8.10 × 10−3 | 8.49 | 0.0225 * |
x1x3 | 2.25 × 10−4 | 1 | 2.25 × 10−4 | 0.24 | 0.642 |
x2x3 | 2.50 × 10−5 | 1 | 2.50 × 10−5 | 0.026 | 0.8759 |
x12 | 0.17 | 1 | 0.17 | 181.06 | <0.0001 ** |
x22 | 2.37 × 10−4 | 1 | 2.37 × 10−4 | 0.25 | 0.6335 |
x32 | 1.68 × 10−3 | 1 | 1.68 × 10−3 | 1.77 | 0.2255 |
Residual error | 6.68 × 10−3 | 7 | 9.54 × 10−4 | ||
Lack of fit | 4.68 × 10−3 | 3 | 1.56 × 10−3 | 3.12 | 0.1504 |
Pure error | 2.00 × 10−3 | 4 | 5.00 × 10−4 | ||
Total | 1.61 | 16 | |||
R2 = 0.9959, R2adj = 0.9906, CV= 2.37%, Adeq precision = 46.234 |
Items | Value of Validation Test | Predicted Value | Relative Errors/% |
---|---|---|---|
Fiber percentage of fresh stalk/% | 5.05 | 5.19 | 2.7 |
Impurity rate of raw fiber/% | 1.24 | 1.29 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, W.; Yan, B.; Duan, Y.; Tang, Z.; Ma, L.; Liu, J.; Lv, J. Design and Parameter Optimization of Transverse-Feed Ramie Decorticator. Agriculture 2023, 13, 1175. https://doi.org/10.3390/agriculture13061175
Xiang W, Yan B, Duan Y, Tang Z, Ma L, Liu J, Lv J. Design and Parameter Optimization of Transverse-Feed Ramie Decorticator. Agriculture. 2023; 13(6):1175. https://doi.org/10.3390/agriculture13061175
Chicago/Turabian StyleXiang, Wei, Bo Yan, Yiping Duan, Zhe Tang, Lan Ma, Jiajie Liu, and Jiangnan Lv. 2023. "Design and Parameter Optimization of Transverse-Feed Ramie Decorticator" Agriculture 13, no. 6: 1175. https://doi.org/10.3390/agriculture13061175
APA StyleXiang, W., Yan, B., Duan, Y., Tang, Z., Ma, L., Liu, J., & Lv, J. (2023). Design and Parameter Optimization of Transverse-Feed Ramie Decorticator. Agriculture, 13(6), 1175. https://doi.org/10.3390/agriculture13061175