The Impact of Different Environments on Productive Performance, Welfare, and the Health of Muscovy Ducks during the Summer Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Feeding and Water Access
2.3. Body Temperature Analysis
2.4. Biochemical Blood Analysis
2.5. Productive Performance and Carcass Traits
2.6. Bone Quality and Element Composition Analysis
2.7. Statistical Analysis
3. Results
3.1. Body Temperature
3.2. Biochemical Blood Composition
3.3. Growth Performance and Carcass Value
3.4. Bone Quality and Element Composition
4. Discussion
4.1. Body Temperature
4.2. Biochemical Blood Composition
4.3. Growth Performance and Carcass Value
4.4. Bone Quality and Element Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Shafer, D.; Sifri, M.; Lilburn, M.; Karcher, D.; Cherry, P.; Wakenell, P.; Fraley, S.; Turk, M.; Fraley, G.S. Centennial Review: History and husbandry recommendations for raising Pekin ducks in research or commercial production. Poult. Sci. 2021, 100, 101241. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food and Agriculture Organization—FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#data (accessed on 10 December 2022).
- Rodenburg, T.B.; Bracke, M.B.; Berk, M.; Cooper, J.; Faure, J.; Guémené, J.M.; Guy, D.; Harlander, G.; Jones, A.; Kenierim, T.; et al. Welfare of ducks in European duck husbandry systems. World’s Poult. Sci. J. 2005, 61, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hamid, S.E.; Saleem, A.S.Y.; Youssef, M.I.; Mohammed, H.H.; Abdelaty, A.I. Influence of housing systems on duck behavior and welfare. J. Adv. Vet. Anim. Res. 2020, 7, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, M.S.; Ahmad, S.; Usman, M.; Dawood, M.; El-Sabrout, K.; Hashmi, S.G.; Khan, E.U.; Hussain, M.; Maqsood, M.A.; Latif, H.R. Effects of mirror and coloured balls as environmental enrichment tools on performance, welfare and meat quality traits of commercial broiler. Trop. Anim. Health Prod. 2022, 54, 151. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.A.; Waitt, C.D.; Dawkins, M.S. Water off a duck’s back: Showers and troughs match ponds for improving duck welfare. Appl. Anim. Behav. Sci. 2009, 116, 52–57. [Google Scholar] [CrossRef]
- Farghly, M.F.; Mahmoud, U.T. Access to outdoor swimming pond during summer season improved Muscovy ducks’ performance and health status. Livest. Sci. 2018, 211, 98–103. [Google Scholar] [CrossRef]
- Krunt, O.; Kraus, A.; Zita, L.; Machová, K.; Chmelíková, E.; Petrásek, S.; Novák, P. The Effect of Housing System and Gender on Relative Brain Weight, Body Temperature, Hematological Traits, and Bone Quality in Muscovy Ducks. Animals 2022, 12, 370. [Google Scholar] [CrossRef]
- Liste, G.; Kirkden, R.D.; Broom, D.M. Effect of water depth on pool choice and bathing behaviour in commercial Pekin ducks. Appl. Anim. Behav. Sci. 2012, 139, 123–133. [Google Scholar] [CrossRef]
- Sterling, K.G.; Bell, D.D.; Pesti, G.M.; Aggrey, S.E. Relationships among strain, performance, and environmental temperature in commercial laying hens. J. Appl. Poult. Res. 2003, 12, 85–91. [Google Scholar] [CrossRef]
- Simaraks, S.; Chinrasri, O.; Aengwanich, W. Haematological, electrolyte and serum biochemical values of the Thai indigenous chickens (Gallus domesticus) in northern Thailand. Songhlanakarin J. Sci. Technol. 2004, 26, 425–430. [Google Scholar]
- Koronowicz, A.A.; Banks, P.; Szymczyk, B.; Leszczyńska, T.; Master, A.; Piasna, E.; Szczepański, W.; Domagała, W.; Kopeć, A.; Piątkowska, E.; et al. Dietary conjugated linoleic acid affects blood parameters, liver morphology and expression of selected hepatic genes in laying hens. Brit. Poult. Sci. 2016, 57, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Kraus, A.; Zita, L.; Krunt, O.; Härtlová, H.; Chmelíková, E. Determination of selected biochemical parameters in blood serum and egg quality of Czech and Slovak native hens depending on the housing system and hen age. Poult. Sci. 2021, 100, 1142–1153. [Google Scholar] [CrossRef] [PubMed]
- Krunt, O.; Zita, L.; Kraus, A.; Volek, Z. How can housing system affect growth and carcass traits, meat quality and muscle fiber characteristics in biceps femoris and mineral content of tibia and femur bones in growing rabbits? Livest. Sci. 2021, 249, 104531. [Google Scholar] [CrossRef]
- Kraus, A.; Krunt, O.; Zita, L.; Vejvodová, K.; Drábek, O. Laying hens under smallholder conditions: Laying performance, growth and bone quality of tibia and femur including essential elements. Poult. Sci. 2022, 101, 101927. [Google Scholar] [CrossRef] [PubMed]
- Lay, D.C., Jr.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.B.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O’Sullivan, N.P.; et al. Hen welfare in different housing systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef]
- Bai, H.; Yang, B.; Dong, Z.; Li, X.; Song, Q.; Jiang, Y.; Chang, G.; Chen, G. Research Note: Effects of cage and floor rearing systems on growth performance, carcass traits, and meat quality in small-sized meat ducks. Poult. Sci. 2022, 101, 101520. [Google Scholar] [CrossRef]
- Shafer, D.J.; Burgess, R.P.; Conrad, K.A.; Prochaska, J.F.; Carey, J.B. Characterization of alkaline hydroxide-preserved whole poultry as a dry by product meal. Poult. Sci. 2001, 80, 1543–1548. [Google Scholar] [CrossRef]
- De Buisonje, F.E.; Kiezebrink, M.C. Badwaterverstrekking via ronddrinkers bij eenden onderzocht. Prakt. Pluim. 1999, 10, 27–32. [Google Scholar]
- Charkoudian, N.; Hart, E.C.; Barnes, J.N.; Joyner, M.J. Autonomic control of body temperature and blood pressure: Influences of female sex hormones. Clin. Auton. Res. 2017, 27, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Refinetti, R. Thermal chronobiology of domestic animals. Front. Biosci. 2003, 8, 258–264. [Google Scholar]
- Sanchez-Alavez, M.; Alboni, S.; Conti, B. Sex-and age-specific differences in core body temperature of C57Bl/6 mice. AGE 2011, 33, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Gilbreath, J.C.; Ko, R.C. Sex differential for body temperature in Japanese quail. Poult. Sci. 1970, 49, 34–36. [Google Scholar] [CrossRef]
- Maloney, S.K.; Dawson, T.J. Sexual dimorphism in basal metabolism and body temperature of a large bird, the emu. Condor 1993, 95, 1034–1037. [Google Scholar] [CrossRef]
- Suswoyo, I.; Sulistyawan, I. Benefit of swimming access to behaviour, body and plumage condition and heat stress effect of local ducks. Int. J. Poult. Sci. 2014, 13, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.S.; Mahmud, A.; Mehmood, S.; Pasha, T.N.; Hussain, J.; Khan, M.T. Blood biochemistry and immune response in Aseel chicken under free range, semi-intensive, and confinement rearing systems. Poult. Sci. 2017, 96, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Erisir, Z.; Poyraz, O.; Onbasilar, E.E.; Erdem, E.; Kandemir, O. Effect of different housing systems on growth and welfare of Pekin ducks. J. Anim. Vet. Adv. 2009, 8, 235–239. [Google Scholar]
- Abo Ghanima, M.M.; El-Edel, M.A.; Ashour, E.A.; Abd El-Hack, M.E.; Othman, S.I.; Alwaili, M.A.; Abd El-Aziz, A.H. The influences of various housing systems on growth, carcass traits, meat quality, immunity and oxidative stress of meat-type ducks. Animals 2020, 10, 410. [Google Scholar] [CrossRef] [Green Version]
- Gallenberger, M.; Castell, W.; Hense, B.A.; Kuttler, C. Dynamics of glucose and insulin concentration connected to the β-cell cycle: Model development and analysis. Theor. Biol. Med. Model. 2012, 9, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.A.; Aliyu, J.; Wada, N.I.; Hassan, A.M. Effect of sex and genotype on blood serum electrolytes and biochemical parameters of Nigerian indigenous chickens. Iran. J. Appl. Anim. Sci. 2012, 2, 361–365. [Google Scholar]
- Williams, B.; Waddington, D.; Solomon, S.; Farquharson, C. Dietary effects on bone quality and turnover, and Ca and P metabolism in chickens. Res. Vet. Sci. 2000, 69, 81–87. [Google Scholar] [CrossRef]
- Park, W.B.; Han, S.C.; Park, C.; Hong, S.U.; Han, U.; Singh, S.P.; Pyo, M. KVP2O7 as a robust high-energy cathode for potassium-ion batteries: Pinpointed by a full screening of the inorganic registry under specific search conditions. Adv. Energy Mater. 2018, 8, 1703099. [Google Scholar] [CrossRef]
- Kumar, B.V.; Singh, G.; Meur, S.K. Effects of addition of electrolyte and ascorbic acid in feed during heat stress in buffaloes. Asian-Australas. J. Anim. Sci. 2010, 23, 880–888. [Google Scholar] [CrossRef]
- Ladokun, A.O.; Yakubu, A.; Otite, J.R.; Omeje, J.N.; Sokunbi, O.A.; Onyeji, E. Haematological and serum biochemical indices of naked neck and normally feathered Nigerian indigenous chickens in a sub humid tropical environment. Int. J. Poult. Sci. 2008, 7, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Pieper-Bigelow, C.; Strocchi, A.; Levitt, M.D. Where does serum amylase come from and where does it go? Gastroenterol. Clin. North Am. 1990, 19, 793–810. [Google Scholar] [CrossRef]
- Al-Dujaili, J.R.; Khalid, A.; Saleh, H.S. Hematological and biochemical features of the blood in different strains of domestic chicken. J. Genet. Environ. Resour. Conserv. 2021, 9, 133–137. [Google Scholar]
- Damaziak, K.; Michalczuk, M.; Adamek, D.; Czapliński, M.; Niemiec, J.; Goryl, A.; Pietrzak, D. Influence of housing system on the growth and histological structure of duck muscles. S. Afr. J. Anim. Sci. 2014, 44, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Farghly, M.F.; Mahrose, K.M.; Ullah, Z.; Rehman, Z.U.; Ding, C. Influence of swimming time in alleviating the deleterious effects of hot summer on growing Muscovy duck performance. Poult. Sci. 2017, 96, 3912–3919. [Google Scholar] [CrossRef]
- Starčević, M.; Mahmutović, H.; Glamočlija, N.; Bašić, M.; Andjelković, R.; Mitrović, R.; Marković, R.; Janjić, J.; Bošković, M.; Baltić, M.Ž. Growth performance, carcass characteristics, and selected meat quality traits of two strains of Pekin duck reared in intensive vs semi-intensive housing systems. Animal 2021, 15, 100087. [Google Scholar] [CrossRef]
- Oguntunji, A.O.; Ayorinde, K.L. Sexual size dimorphism and sex determination by morphometric measurements in locally adapted Muscovy duck (Cairina moschata) in Nigeria. Acta Agricult. Sloven. 2015, 104, 15–24. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Zhang, H.X.; Ruan, D.; Lin, Y.C. Influence of particle size and calcium source on production performance, egg quality, and bone parameters in laying ducks. Poult. Sci. 2014, 93, 2560–2566. [Google Scholar] [CrossRef]
- Rath, N.C.; Huff, G.R.; Huff, W.E.; Balog, J.M. Factors regulating bone maturity and strength in poultry. Poult. Sci. 2000, 79, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Silversides, F.G.; Singh, R.; Cheng, K.M.; Korver, D.R. Comparison of bones of 4 strains of laying hens kept in conventional cages and floor pens. Poult. Sci. 2012, 91, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; White, D.; Chen, C.; Kim, W.K.; Adhikari, P. Effects of the housing environment and laying hen strain on tibia and femur bone properties of different laying phases of Hy-Line hens. Poult. Sci. 2021, 100, 100933. [Google Scholar] [CrossRef] [PubMed]
- González-Cerón, F.; Rekaya, R.; Aggrey, S.E. Genetic analysis of bone quality traits and growth in a random mating broiler population. Poult. Sci. 2015, 94, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Corr, S.A.; Gentle, M.J.; McCorquodale, C.C.; Bennett, D. The effect of morphology on the musculoskeletal system of the modern broiler. Anim. Welf. 2003, 12, 145–157. [Google Scholar]
- Leterrier, C.; Nys, Y. Composition, cortical structure and mechanical properties of chicken tibiotarsi: Effect of growth rate. Brit. Poult. Sci. 1992, 33, 925–939. [Google Scholar] [CrossRef]
- Miazgowski, T.; Rył, A.; Szylińska, A.; Rotter, I. The Impact of Major and Trace Elements in Serum and Bone on Dual-Energy X-Ray Absorptiometry-Derived Hip Strength. Calc. Tissue Intern. 2022, 110, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Shastak, Y.; Rodehutscord, M. A review of the role of magnesium in poultry nutrition. World’s Poult. Sci. J. 2015, 71, 125–138. [Google Scholar] [CrossRef]
- Kenney, M.A.; McCoy, H.; Williams, L. Effects of magnesium deficiency on strength, mass, and composition of rat femur. Calcif. Tissue Int. 1994, 54, 44–49. [Google Scholar] [CrossRef]
- Barsony, J.; Sugimura, Y.; Verbalis, J.G. Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J. Biol. Chem. 2011, 286, 10864–10875. [Google Scholar] [CrossRef] [Green Version]
- Teucher, B.; Fairweather-Tait, S. Dietary sodium as a risk factor for osteoporosis: Where is the evidence? Proc. Nutr. Soc. 2003, 62, 859–866. [Google Scholar] [PubMed] [Green Version]
- Weaver, C.M. Potassium and health. Adv. Nutr. 2013, 4, 368–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razmandeh, R.; Nasli-Esfahani, E.; Heydarpour, R.; Faridbod, F.; Ganjali, M.R.; Norouzi, P.; Khoda-Amorzideh, D. Association of Zinc, Copper and Magnesium with bone mineral density in Iranian postmenopausal women–A case control study. J. Diabetes Metab. Disord. 2014, 13, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Pepa, G.; Brandi, M.L. Microelements for bone boost: The last but not the least. Clin. Cases. Miner. Bone Metab. 2016, 13, 181. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.H.; Orvig, C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J. Inorg. Biochem. 2006, 100, 1925–1935. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhao, L. Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities. Acta Biomat. 2016, 43, 358–368. [Google Scholar] [CrossRef]
Housing System | Gender | External Body Temperature (°C) |
---|---|---|
DL 1 | 36.6 a | |
DLSP 2 | 36.1 b | |
Drakes | 35.9 b | |
Ducks | 36.8 a | |
p-Value | ||
Housing system | 0.0231 | |
Gender | 0.0001 | |
SEM 3 | 0.019 |
Housing System | Gender | ALB 1 (g·L−1) | GLOB 2 (g·L−1) | ALB/GLOB 3 | TP 4 (g·L−1) | Ca 5 (mmol·L−1) | P 6 (mmol·L−1) | Na 7 (mmol·L−1) | K 8 (mmol·L−1) | Mg 9 (mmol·L−1) | Cl 10 (mmol·L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
DL 11 | 15.8 | 15.9 | 0.997 | 32.3 | 2.95 a | 2.37 | 156.9 | 3.55 | 0.884 | 105.2 | |
DLSP 12 | 15.8 | 15.7 | 1.005 | 32.2 | 2.94 b | 2.36 | 156.8 | 3.54 | 0.881 | 105.3 | |
Drakes | 15.8 | 15.8 | 0.999 | 32.2 | 2.94 b | 2.36 | 156.9 | 3.53 | 0.871 | 105.2 | |
Ducks | 15.8 | 15.8 | 1.003 | 32.3 | 2.96 a | 2.37 | 156.8 | 3.56 | 0.894 | 105.4 | |
p-Value | |||||||||||
Housing system | 0.5089 | 0.1038 | 0.4980 | 0.5089 | 0.0446 | 0.8310 | 0.6793 | 0.6729 | 0.7836 | 0.4975 | |
Gender | 0.4120 | 0.8968 | 0.4079 | 0.2659 | 0.0095 | 0.3563 | 0.6675 | 0.3870 | 0.1040 | 0.3417 | |
SEM 13 | 0.040 | 0.053 | 0.002 | 0.081 | 0.003 | 0.009 | 0.115 | 0.014 | 0.005 | 0.107 |
Housing System | Gender | CHOL 1 (mmol·L−1) | GLU 2 (mmol·L−1) | CR 3 (µmol·L−1) | U 4 (mmol·L−1) | TAG 5 (mmol·L−1) | AMY 6 (IU·L−1) | AST 7 (IU·L−1) | ALT 8 (IU·L−1) | GPT 9 (IU·L−1) | GGT 10 (IU·L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
DL 11 | 4.51 | 12.85 a | 18.3 | 1.54 | 0.921 | 51.1 | 52.0 | 40.8 | 20.2 | 2.50 | |
DLSP 12 | 4.43 | 12.16 b | 18.6 | 1.49 | 0.884 | 52.5 | 52.2 | 40.0 | 19.8 | 2.47 | |
Drakes | 4.50 | 12.14 b | 18.7 a | 1.53 | 0.883 | 50.3 b | 51.1 | 40.0 | 19.7 b | 2.46 b | |
Ducks | 4.44 | 12.87 a | 18.2 b | 1.50 | 0.922 | 53.3 a | 53.1 | 40.8 | 20.3 a | 2.51 a | |
p-Value | |||||||||||
Housing system | 0.0626 | 0.0466 | 0.2372 | 0.4661 | 0.0780 | 0.3257 | 0.8473 | 0.1265 | 0.0846 | 0.2734 | |
Gender | 0.1630 | 0.0388 | 0.0491 | 0.6460 | 0.0688 | 0.0357 | 0.0745 | 0.2659 | 0.0141 | 0.0442 | |
SEM 13 | 0.023 | 0.180 | 0.147 | 0.035 | 0.011 | 0.750 | 0.589 | 0.269 | 0.116 | 0.012 |
Housing System | Gender | LW5 1 (g) | LW13 2 (g) | ADWG 3 (g) | ADFC 4 (g) | FCR 5 |
---|---|---|---|---|---|---|
DL 6 | 1167 a | 3874 b | 48.34 b | 177.59 a | 3.79 a | |
DLSP 7 | 1114 b | 3932 a | 50.30 a | 172.30 b | 3.52 b | |
Drakes | 1258 a | 4851 a | 64.16 a | 212.07 a | 3.31 b | |
Ducks | 1024 b | 2955 b | 34.48 b | 137.82 b | 4.00 a | |
p-Value | ||||||
Housing system | 0.0004 | 0.0002 | 0.0003 | 0.0024 | 0.0001 | |
Gender | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
SEM 8 | 36.374 | 285.910 | 4.486 | 11.237 | 0.113 |
Housing System | Gender | SW 1 (g) | SEW 2 (g) | EW 3 (g) | DoP 4 (%SEW) | AF 5 (%SEW) | Wings (%EW) | Thighs (%EW) | Breasts (%EW) |
---|---|---|---|---|---|---|---|---|---|
DL 6 | 3742 | 2810 | 2407 | 74.73 | 0.97 a | 17.53 | 21.55 | 33.45 a | |
DLSP 7 | 3723 | 2780 | 2392 | 74.50 | 0.75 b | 17.33 | 21.80 | 32.34 b | |
Drakes | 4825 a | 3644 a | 3123 a | 75.54 a | 0.93 | 16.95 b | 22.02 a | 31.85 b | |
Ducks | 2640 b | 1945 b | 1675 b | 73.68 b | 0.78 | 17.91 a | 21.33 b | 33.94 a | |
p-Value | |||||||||
Housing system | 0.7330 | 0.4915 | 0.7062 | 0.3915 | 0.0181 | 0.4951 | 0.3653 | 0.0021 | |
Gender | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.1126 | 0.0017 | 0.0153 | 0.0001 | |
SEM 8 | 123.110 | 95.647 | 81.722 | 0.167 | 0.047 | 0.155 | 0.143 | 0.216 |
Housing System | Gender | Fracture Toughness (N) | Length (mm) | Width (mm) | Weight (g) |
---|---|---|---|---|---|
DL 1 | 383.4 | 112.1 | 8.12 | 11.1 | |
DLSP 2 | 378.8 | 113.6 | 8.10 | 11.3 | |
Drakes | 482.3 a | 124.0 a | 9.5 a | 15.3 a | |
Ducks | 278.9 b | 102.4 b | 7.3 b | 7.5 b | |
p-Value | |||||
Housing system | 0.3674 | 0.4672 | 0.8834 | 0.6228 | |
Gender | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
SEM 3 | 17.157 | 3.235 | 0.301 | 0.563 |
Housing System | Gender | Fracture Toughness (N) | Length (mm) | Width (mm) | Weight (g) |
---|---|---|---|---|---|
DL 1 | 367.3 | 68.9 | 9.5 | 8.5 | |
DLSP 2 | 359.5 | 70.4 | 9.6 | 8.0 | |
Drakes | 455.2 a | 76.0 a | 11.1 a | 10.2 a | |
Ducks | 278.0 b | 63.5 b | 8.7 b | 4.9 b | |
p-Value | |||||
Housing system | 0.5614 | 0.2876 | 0.9554 | 0.4654 | |
Gender | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
SEM 3 | 15.878 | 1.618 | 0.311 | 0.583 |
Housing System | Gender | B 1 (mg·kg−1) | Ca 2 (g·kg−1) | Cd 3 (mg·kg−1) | Co 4 (mg·kg−1) | Cr 5 (mg·kg−1) | Cu 6 (mg·kg−1) | Fe 7 (mg·kg−1) | K 8 (g·kg−1) | Mg 9 (g·kg−1) | Mn 10 (mg·kg−1) |
DL 11 | 91.5 | 271.4 b | 0.13 | 1.19 | 2.66 b | 20.2 a | 62.1 | 3.2 b | 4.3 b | 9.98 b | |
DLSP 12 | 101.9 | 277.0 a | 0.13 | 1.21 | 3.41 a | 17.5 b | 60.0 | 3.5 a | 4.6 a | 11.45 a | |
Drakes | 90.3 b | 274.9 | 0.13 | 1.21 | 3.36 a | 18.1 | 65.7 a | 3.4 | 4.7 a | 10.22 b | |
Ducks | 103.1 a | 273.8 | 0.13 | 1.18 | 2.75 b | 19.6 | 56.7 b | 3.4 | 4.2 b | 11.25 a | |
p-Value | |||||||||||
Housing system | 0.0208 | 0.0142 | 0.6182 | 0.7895 | 0.0002 | 0.0171 | 0.5859 | 0.0418 | 0.0001 | 0.0063 | |
Gender | 0.0006 | 0.5899 | 0.6182 | 0.7895 | 0.0016 | 0.1907 | 0.0415 | 0.9837 | 0.0001 | 0.0495 | |
SEM 13 | 9.853 | 1.149 | 0.003 | 0.044 | 0.105 | 0.565 | 2.204 | 0.081 | 0.040 | 0.282 | |
Housing System | Gender | Na 14 (g·kg−1) | Ni 15 (mg·kg−1) | P 16 (g·kg−1) | Pb 17 (mg·kg−1) | S 18 (g·kg−1) | V 19 (mg·kg−1) | Zn 20 (mg·kg−1) | DM 21 (%) | Ash (%) | |
DL | 8.6 | 0.49 | 114.4 a | 1.55 | 7.3 b | 0.67 b | 411.6 | 88.7 | 56.7 | ||
DLSP | 8.8 | 0.57 | 107.8 b | 1.92 | 7.8 a | 1.02 a | 428.9 | 88.8 | 56.1 | ||
Drakes | 8.9 a | 0.63 a | 108.9 b | 1.40 b | 7.7 a | 0.78 | 404.7 b | 86.1 b | 58.5 a | ||
Ducks | 8.4 b | 0.43 b | 112.8 a | 2.07 a | 7.4 b | 0.92 | 435.4 a | 91.3 a | 54.5 b | ||
p-Value | |||||||||||
Housing system | 0.7854 | 0.4021 | 0.0001 | 0.0983 | 0.0009 | 0.0016 | 0.3129 | 0.2708 | 0.2015 | ||
Gender | 0.0001 | 0.0237 | 0.0004 | 0.0044 | 0.0014 | 0.1865 | 0.0017 | 0.0001 | 0.0001 | ||
SEM | 0.216 | 0.044 | 0.621 | 0.121 | 0.106 | 0.060 | 19.037 | 0.261 | 0.412 |
Housing System | Gender | B 1 (mg·kg−1) | Ca 2 (g·kg−1) | Cd 3 (mg·kg−1) | Co 4 (mg·kg−1) | Cr 5 (mg·kg−1) | Cu 6 (mg·kg−1) | Fe 7 (mg·kg−1) | K 8 (g·kg−1) | Mg 9 (g·kg−1) | Mn 10 (mg·kg−1) |
DL 11 | 124.5 a | 276.6 | 0.13 b | 1.14 b | 3.40 | 87.7 | 106.9 b | 4.8 b | 4.51 b | 10.5 b | |
DLSP 12 | 94.9 b | 277.9 | 0.17 a | 1.44 a | 3.44 | 18.9 | 122.3 a | 5.3 a | 4.62 a | 13.3 a | |
Drakes | 93.4 b | 280.0 | 0.16 a | 1.44 a | 3.49 | 19.3 | 129.7 a | 5.3 a | 4.61 | 12.3 | |
Ducks | 126.1 a | 274.5 | 0.13 b | 1.37 b | 3.34 | 87.3 | 99.5 b | 4.9 b | 4.52 | 11.5 | |
p-Value | |||||||||||
Housing system | 0.0048 | 0.6499 | 0.0055 | 0.0055 | 0.8175 | 0.1227 | 0.0459 | 0.0019 | 0.0134 | 0.0001 | |
Gender | 0.0020 | 0.8679 | 0.0224 | 0.0055 | 0.4225 | 0.1269 | 0.0001 | 0.0079 | 0.0733 | 0.0879 | |
SEM 13 | 9.391 | 1.496 | 0.007 | 0.058 | 0.092 | 22.563 | 4.108 | 75.560 | 0.024 | 0.264 | |
Housing System | Gender | Na 14 (g·kg−1) | Ni 15 (mg·kg−1) | P 16 (g·kg−1) | Pb 17 (mg·kg−1) | S 18 (g·kg−1) | V 19 (mg·kg−1) | Zn 20 (mg·kg−1) | DM 21 (%) | Ash (%) | |
DL | 9.40 a | 0.67 | 116.2 a | 1.34 b | 8.3 a | 0.83 | 489.1 | 88.5 b | 62.2 | ||
DLSP | 8.96 b | 0.64 | 109.2 b | 2.07 a | 8.0 b | 0.75 | 452.5 | 89.9 a | 62.2 | ||
Drakes | 9.14 | 0.67 | 112.0 | 1.25 b | 8.0 b | 0.59 b | 447.7 b | 87.5 b | 62.9 a | ||
Ducks | 9.21 | 0.64 | 113.4 | 2.16 a | 8.3 a | 0.99 a | 493.9 a | 91.1 a | 61.5 b | ||
p-Value | |||||||||||
Housing system | 0.0399 | 0.8437 | 0.0001 | 0.0024 | 0.0030 | 0.4258 | 0.0877 | 0.0001 | 0.9923 | ||
Gender | 0.7499 | 0.8544 | 0.2419 | 0.0002 | 0.0010 | 0.0001 | 0.0317 | 0.0001 | 0.0389 | ||
SEM | 0.180 | 0.086 | 0.699 | 0.139 | 0.075 | 0.058 | 18.73 | 0.053 | 17.515 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krunt, O.; Zita, L.; Kraus, A.; Vejvodová, K.; Drábek, O.; Kuře, J.; Chmelíková, E. The Impact of Different Environments on Productive Performance, Welfare, and the Health of Muscovy Ducks during the Summer Season. Agriculture 2023, 13, 1319. https://doi.org/10.3390/agriculture13071319
Krunt O, Zita L, Kraus A, Vejvodová K, Drábek O, Kuře J, Chmelíková E. The Impact of Different Environments on Productive Performance, Welfare, and the Health of Muscovy Ducks during the Summer Season. Agriculture. 2023; 13(7):1319. https://doi.org/10.3390/agriculture13071319
Chicago/Turabian StyleKrunt, Ondřej, Lukáš Zita, Adam Kraus, Kateřina Vejvodová, Ondřej Drábek, Jiří Kuře, and Eva Chmelíková. 2023. "The Impact of Different Environments on Productive Performance, Welfare, and the Health of Muscovy Ducks during the Summer Season" Agriculture 13, no. 7: 1319. https://doi.org/10.3390/agriculture13071319
APA StyleKrunt, O., Zita, L., Kraus, A., Vejvodová, K., Drábek, O., Kuře, J., & Chmelíková, E. (2023). The Impact of Different Environments on Productive Performance, Welfare, and the Health of Muscovy Ducks during the Summer Season. Agriculture, 13(7), 1319. https://doi.org/10.3390/agriculture13071319