Effects of Morphological Characteristics, Nutritional Status and Light on the Scale Propagation of Lilium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Morphological Observation and Sampling
2.3. Extraction of Nonstructural Carbohydrates in Lily Scales
2.4. Determination of Soluble Sugars
2.5. Determination of Starch
2.6. PCA
2.7. Statistical Analysis
3. Results
3.1. Morphological Analysis of Scales in Three Lily Cultivars
3.2. Analysis of Morphological Differences during Scale Propagation
3.2.1. Morphological Changes during Scale Propagation under Dark Conditions
3.2.2. Morphological Changes during Scale Propagation under Light Conditions
3.3. Comparative Analysis of Incidence Rate and Regeneration Efficiency of Scale Propagation
3.4. Effects of Explant Morphological Characteristics on Bulblet Regeneration
3.4.1. Comparative Analysis of Morphological Indexes between OS and MS in Three Lily Cultivars
3.4.2. Correlation Analysis of Scale Morphological Indexes with the Quantity and Quality of Regenerated Bulblets
3.5. Effects of Explant Nutritional Status on Bulblet Regeneration of Three Lily Cultivars
3.5.1. Analysis of Initial Nutrient Composition in Different Scales
3.5.2. Correlation Analysis of Scale Nutritional Status with the Quantity and Quality of Regenerated Bulblets
4. Discussion
4.1. Morphological Characteristics of Scales from Different Positions of the Bulb May Potentially Influence Bulblet Formation during Scaling
4.2. The Initial Content of Nonstructural Carbohydrates Correlates with Variations in Regeneration Capacity during Scaling
4.3. Light Accelerated the Formation of Bulblets during Early Scale Propagation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartmann, A.; Senning, M.; Hedden, P.; Sonnewald, U.; Sonnewald, S. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol. 2011, 155, 776–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Salmeron, V.; Cho, H.; Tonn, N.; Greb, T. The phloem as a mediator of plant growth plasticity. Curr. Biol. 2019, 29, R173–R181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huby, E.; Napier, J.A.; Baillieul, F.; Michaelson, L.V.; Dhondt-Cordelier, S. Sphingolipids: Towards an integrated view of metabolism during the plant stress response. New Phytol. 2020, 225, 659–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamenetsky, R.; Okubo, H. Ornamental Geophytes: From Basic Science to Sustainable Production; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Moreno-Pachón, N.M. Mechanisms of Vegetative Propagation in Bulbs a Molecular Approach. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar]
- Xu, L.; Yang, P.; Feng, Y.; Xu, H.; Cao, Y.; Tang, Y.; Yuan, S.; Liu, X.; Ming, J. Spatiotemporal transcriptome analysis provides insights into bicolor tepal development in Lilium ‘Tiny Padhye’. Front. Plant Sci. 2017, 8, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Ma, Y.; Li, Y.; Zhang, L.; Xia, Y. Plantlet regeneration from primary callus cultures of Lilium brownii F.E.Br. ex Miellez var. giganteum G. Y. Li & Z. H. Chen, a rare bulbous germplasm. Vitr. Cell. Dev. Biol. Plant 2019, 55, 44–59. [Google Scholar]
- Lee, E.; Yun, N.; Jang, Y.P.; Kim, J. Lilium lancifolium Thunb. extract attenuates pulmonary inflammation and air space enlargement in a cigarette smoke-exposed mouse model. J. Ethnopharmacol. 2013, 149, 148–156. [Google Scholar] [CrossRef]
- Marinangeli, P.A.; Hernandez, L.F.; Pellegrini, C.P.; Curvetto, N.R. Bulblet differentiation after scale propagation of Lilium longiflorum. J. Am. Soc. Hortic. Sci. 2003, 128, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.; Sochacki, D. Propagation of Ornamental Geophytes physiology and management systems. In Ornamental Geophytes; Kamenetsky, R., Okubo, H., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 261–286. [Google Scholar]
- Li, X.; Wang, C.; Cheng, J.; Zhang, J.; da Silva, J.A.T.; Liu, X.; Duan, X.; Li, T.; Sun, H. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. Unicolor. BMC Plant Biol. 2014, 14, 358. [Google Scholar] [CrossRef] [Green Version]
- Askari, N. Aspects of Bulblet Growth of Lily In Vitro. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2016. [Google Scholar]
- Matsuo, E.; Nonaka, A.; Arisumi, K. Effect of bulb storage temperature on leaf emergence and plant development during scale propagation of Lilium longiflorum ‘White American’. ScientiaHorticulturae 1984, 24, 59–66. [Google Scholar] [CrossRef]
- Arda, A.; Özgür, K. Different approaches on bulblet formation with scaling in Madonna Lily (Lilium Candidum). Sci. Pap. Ser. B Hortic. 2016, 60, 209–216. [Google Scholar]
- Chang, L.; Xiao, Y.; She, L.; Xia, Y. Analysis of gene expression and enzyme activities related to starch metabolism in Lycoris sprengeri bulbs of different sizes. Sci. Hortic. 2013, 161, 118–124. [Google Scholar] [CrossRef]
- He, X.; Shi, L.; Yuan, Z.; Xu, Z.; Zhang, Z.; Yi, M. Effects of lipoxygenase on the corm formation and enlargement in Gladiolus hybridus. Sci. Hortic. 2008, 118, 60–69. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.; Suzuki, H.; Ariyada, O.; Erra-Balsells, R.; Nonami, H.; Hiraoka, K. Direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulbs by probe electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20, 2304–2311. [Google Scholar] [CrossRef] [Green Version]
- Liu, W. Study on Structure of Vascular Bundle and Starch Metabolism of Lily Bulb during Bulb Development. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2012. (In Chinese). [Google Scholar]
- Ruan, Y.-L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Q.; Li, Y.; Yang, L.; Zhang, Y.; Cai, Y. Effect of exogenous gibberellin, paclobutrazol, abscisic acid, and ethrel application on bulblet development in Lycoris radiata. Front. Plant Sci. 2021, 11, 615547. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, Z.; Gao, C.; Sun, M.; Li, S.; Min, R.; Wu, J.; Li, D.; Wang, X.; Wei, Y.; et al. Change in sucrose cleavage pattern and rapid starch accumulation govern lily shoot-to-bulblet transition in vitro. Front. Plant Sci. 2021, 11, 564713. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, Y.; Lvy, X.; Zhang, D.; Gao, C.; Lin, Y.; Liu, Y.; Wu, Y.; Xia, Y. Early sucrose degradation and the dominant sucrose cleavage pattern inflfluence Lycoris sprengeri bulblet regeneration in vitro. Int. J. Mol. Sci. 2021, 22, 11890. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, D.; Jiao, C.; Li, D.; Wu, Y.; Wang, X.; Gao, C.; Lin, Y.; Ruan, Y.; Xia, Y. Comparative transcriptome and metabolome analyses identified the mode of sucrose degradation as a metabolic marker for early vegetative propagation in bulbs of Lycoris. Plant J. 2022, 112, 115–134. [Google Scholar] [CrossRef]
- Cao, C.; Ju, X.; Qi, W.; Tang, N.; Tang, D. Different temperature and light treatments on the reproductive effect of Lilium davidi var. unicolor scales by air culture. North. Hortic. 2021, 24, 70–77. (In Chinese) [Google Scholar]
- Langens-Gerrits, M.M.; Miller, W.B.M.; Cros, A.F.; de Klerk, G.J. Effect of low temperature on dormancy breaking and growth after planting in lily bulblets regenerated in vitro. Plant Growth Regul. 2003, 40, 267–275. [Google Scholar] [CrossRef]
- Miller, W.B.; Langhans, R.W. Carbohydrate changes of easter lilies during growth in normal and reduced irradiance environments. J. Am. Soc. Hortic. Sci. 1989, 114, 310–315. [Google Scholar] [CrossRef]
- Ranwala, A.P.; Miller, W.B. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange chromatography with pulsed amperometric detection. New Phytol. 2008, 180, 421–433. [Google Scholar] [CrossRef]
- Hou, J.; Miller, W.B.; Chang, Y.A. Effects of Simulated Dark Shipping on the Carbohydrate Status and Post-shipping Performance of Phalaenopsis. J. Am. Soc. Hortic. Sci. 2011, 136, 364–371. [Google Scholar] [CrossRef]
- Li, K.; Ren, H.; Zhao, W.; Zhao, X.; Gan, C. Factors affecting bulblet multiplication in bulbous plants. Sci. Hortic. 2023, 312, 111837. [Google Scholar] [CrossRef]
- Pablo, A.M.; Nestor, R.C. Bulb quality and traumatic acid influence bulblet formation from scaling in Lilium species and hybrids. Hortscience 1997, 32, 739–741. [Google Scholar]
- Paek, K.Y.; Sung, N.S.; Park, C.H. Several factors affecting bulblet regeneration from the culture of scale segment and node-bud in Fritillary as medicinal bulbous plant. Acta Hortic. 1996, 440, 498–503. [Google Scholar] [CrossRef]
- Sun, H.; Lu, Y.; Wang, C. Effects of GA3 and IBA as well as two mediums on scale propagation of Lilium oriental hybrid ‘Sorbonne’. Acta Agric. Boreali-Occident. Sin. 2009, 18, 234–239. (In Chinese) [Google Scholar]
- Park, N. Effect of temperature, scale position, and growth regulators on the bulblet formation and growth during scale propagation of Lilium. Acta Hortic. 1996, 414, 257–262. [Google Scholar] [CrossRef]
- Rice, L.J.; Finnie, J.F.; Van Staden, J. In vitro bulblet production of Brunsvigia undulata from twin-scales. S. Afr. J. Bot. 2011, 77, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Lazare, S.; Zaccai, M. Flowering pathway is regulated by bulb size in Lilium longiflflorum (Easter lily). Plant Biol. 2016, 18, 577–584. [Google Scholar] [CrossRef]
- Lian, M.L.; Chakrabarty, D.; Paek, K.Y. Growth of Lilium Oriental Hybrid ‘Casa blanca’ bulblet using bioreactor culture. Sci. Hortic. 2003, 97, 41–48. [Google Scholar] [CrossRef]
- Fennell, C.W.; van Staden, J.; Bornman, C.H. Biotechnology of southern African bulbs. S. Afr. J. Bot. 2004, 70, 37–46. [Google Scholar]
- Babashpour-asl, M.; Movafeghi, A.; Zare, K. In Vitro production of bulblet in Galanthus transcaucasicus Fomin, an endangered medicinal plant. J. Plant Physiol. Breed. 2016, 6, 1–8. [Google Scholar]
- Okubo, H.; Huang, C.W.; Uemoto, S. Role of outer scale in twin-scale propagation of Hippeastrum hybridum and comparison of bulblet formation from single- and twinscales. Acta Hortic. 1990, 266, 59–66. [Google Scholar] [CrossRef]
- Amico Roxas, U.; Iapichino, G.; Zizzo, G.V. Effect of different bulb sections on Lycoris bulblet multiplication by chipping. Acta Hortic. 2000, 517, 99–106. [Google Scholar] [CrossRef]
- Abedinimazraeh, M.; Kalatehjari, S. In vitro regeneration of bulblet using two and four bulb-scales explants of summer snowflake (Leucojum aestivum L.). Ornam. Hortic. 2021, 27, 221–231. [Google Scholar] [CrossRef]
- Ren, Z.; Xia, Y.; Zhang, D.; Li, Y.; Wu, Y. Cytological analysis of the bulblet initiation and development in Lycoris species. Sci. Hortic. 2017, 218, 72–79. [Google Scholar] [CrossRef]
- Miller, W.B.; Langhans, R.W. Low temperature alters carbohydrate metabolism in easter lily bulbs. HortScience 1990, 25, 463–465. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.S.; Chakrabarty, D.; Paek, K.Y. Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro. Sci. Hortic. 2002, 96, 195–204. [Google Scholar] [CrossRef]
- Xia, Y.; Zheng, H.; Huang, C.; Xu, W. Accumulation and distribution of 14C-photosynthate during bulb development of Lilium oriental hybrid. J. Nucl. Agric. Sci. 2006, 20, 417–422. (In Chinese) [Google Scholar]
- Geigenberger, P.; Merlo, L.; Reimholz, R.; Stitt, M. When growing potato tubers are detached from their mother plant there is a rapid inhibition of starch synthesis, involving inhibition of ADP-glucose pyrophosphorylase. Planta 1994, 193, 486–493. [Google Scholar] [CrossRef]
- Abelenda, J.A.; Navarro, C.; Prat, S. From the model to the crop: Genes controlling tuber formation in potato. Curr. Opin. Biotechnol. 2011, 22, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhu, L.; Pan, C.; Xu, L.; Liu, Y.; Ke, W.; Yang, P. Transcriptomic analysis of the regulation of rhizome formation in temperate and tropical lotus (Nelumbo nucifera). Sci. Rep. 2015, 5, 13059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, Y.; Zhu, Z.; Guo, Q.; Yang, X.; Liu, L.; Sun, Y.; Wang, C. Dynamic changes in carbohydrate metabolism and endogenous hormones during Tulipa edulis stolon development into a new bulb. J. Plant Biol. 2016, 59, 121–132. [Google Scholar] [CrossRef]
- Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signaling in plants. Plant Cell 2002, 14 (Suppl. S1), S185–S205. [Google Scholar] [CrossRef] [Green Version]
- Smeekens, S.; Ma, J.; Hanson, J.; Rolland, F. Sugar signals and molecular networks controlling plant growth. Curr. Opin. Plant Biol. 2010, 13, 274–279. [Google Scholar] [CrossRef]
- Kumar, S.; Kashyap, M.; Sharma, D.R. In vitro regeneration and bulblet growth from lily bulbscale explants as affected by retardants, sucrose and irradiance. Biol. Plant. 2005, 49, 629–632. [Google Scholar] [CrossRef]
- Kim, E.K.; Hahn, E.J.; Murthy, H.N.; Paek, K.Y. High frequency of shoot multiplication and bulblet formation of garlic in liquid cultures. Plant Cell Tissue Organ Cult. 2003, 73, 231–236. [Google Scholar] [CrossRef]
- Khonakdari, M.R.; Rezadoost, H.; Heydari, R.; Mirjalili, M.H. Effect of photoperiod and plant growth regulators on in vitro mass bulblet proliferation of Narcissus tazzeta L. (Amaryllidaceae), a potential source of galantamine. Plant Cell Tissue Organ Cult. 2020, 142, 187–199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.-M.; Cui, L.; Gao, C.; Wu, Y.; Cui, Q.; Li, D.-Z.; Zheng, L.-Q.; Xia, Y.-P. Effects of Morphological Characteristics, Nutritional Status and Light on the Scale Propagation of Lilium. Agriculture 2023, 13, 1341. https://doi.org/10.3390/agriculture13071341
Ren Z-M, Cui L, Gao C, Wu Y, Cui Q, Li D-Z, Zheng L-Q, Xia Y-P. Effects of Morphological Characteristics, Nutritional Status and Light on the Scale Propagation of Lilium. Agriculture. 2023; 13(7):1341. https://doi.org/10.3390/agriculture13071341
Chicago/Turabian StyleRen, Zi-Ming, Liu Cui, Cong Gao, Yun Wu, Qi Cui, Dong-Ze Li, Li-Qun Zheng, and Yi-Ping Xia. 2023. "Effects of Morphological Characteristics, Nutritional Status and Light on the Scale Propagation of Lilium" Agriculture 13, no. 7: 1341. https://doi.org/10.3390/agriculture13071341
APA StyleRen, Z.-M., Cui, L., Gao, C., Wu, Y., Cui, Q., Li, D.-Z., Zheng, L.-Q., & Xia, Y.-P. (2023). Effects of Morphological Characteristics, Nutritional Status and Light on the Scale Propagation of Lilium. Agriculture, 13(7), 1341. https://doi.org/10.3390/agriculture13071341