An Insight into the Global Problem of Gastrointestinal Helminth Infections amongst Livestock: Does Nanotechnology Provide an Alternative?
Abstract
:1. Introduction
2. Methodology
3. Anthelmintic Drugs and Resistance
4. Factors Leading to Drug Resistance
5. Plant-Based Drugs as an Alternative to Combat Anthelmintic Drug Resistance
6. Nanomedicine & Anthelmintics
6.1. Inorganic Nano Particle (NP)
6.1.1. Gold Nanoparticles
6.1.2. Silver Nanoparticles
6.1.3. Zinc Oxide and Iron Oxide Nanoparticles
6.1.4. Nickel Oxide Nanoparticles
6.2. Organic Nanoparticles
Chitosan Nanoparticles
7. Conclusion and Future Prospectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Singh, D.K. Livestock production systems in India: An appraisal across agro-ecological regions. Indian J. Agric. Econ. 2008, 63, 577–597. [Google Scholar]
- Chamberlin, J.; Jayne, T.S. Does farm structure affect rural household incomes? Evidence from Tanzania. Food Policy 2020, 90, 101805. [Google Scholar] [CrossRef]
- Birthal, P.S.; Joshi, P.K.; Kumar, A. Assessment of Research Priorities for Livestock Sector in India; Agricultural Economics and Policy Research (ICAR): New Delhi, India, 2002; pp. 1–89.
- Pessoa, L.M.; Morais, S.M.; Bevilaqua, C.M.L.; Luciano, J.H.S. Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus. Vet. Parasitol. 2002, 109, 59–63. [Google Scholar] [CrossRef]
- Nahed-Toral, J.; López-Tirado, Q.; Mendoza-Martınez, G.; Aluja-Schunemann, A.; Trigo-Tavera, F.J. Epidemiology of parasitosis in the Tzotzil sheep production system. Small Rumin. Res. 2003, 49, 199–206. [Google Scholar] [CrossRef]
- Hesterberg, U.W.; Bagnall, R.; Perrett, K.; Horner, R.; Gummow, B. A questionnaire survey of perceptions and preventive measures related to animal health amongst cattle owners of rural communities in KwaZulu-Natal, South Africa. J. S. Afr. Vet. Assoc. 2007, 78, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Ballweber, L.R. Diagnostic methods for parasitic infections in livestock. Vet. Clin. Food Anim. Pract. 2006, 22, 695–705. [Google Scholar] [CrossRef]
- Ekong, P.S.; Juryit, R.; Dika, N.M.; Nguku, P.; Musenero, M. Prevalence and risk factors for zoonotic helminth infection among humans and animals-Jos, Nigeria, 2005–2009. Pan Afr. Med. J. 2012, 12, 6. [Google Scholar]
- Grisi, L.; Leite, R.C.; Martins, J.R.; Barros, A.T.; Andreotti, R.; Cançado, P.H.; León, A.A.; Pereira, J.B.; Villela, H.S. Reavaliação do potencial impacto econômico de parasitos de bovinos no Brasil. Rev. Bras. Parasitol. Vet. 2014, 23, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, J.L. Global food security: The impact of veterinary parasites and parasitologists. Vet. Parasitol. 2013, 195, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Băcescu, B.; Mickiewicz, M.; et al. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef] [PubMed]
- Stear, M.J.; Doligalska, M.; Donskow-Schmelter, K. Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology 2007, 134, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.; Araújo, J.V.; Braga, F.R.; Frassy, L.N.; Tavela, A.O.; Carvalho, R.O.; Castejon, F.V. Biological control of sheep gastrointestinal nematodiasis in a tropical region of the southeast of Brazil with the nematode predatory fungi Duddingtonia flagrans and Monacrosporium thaumasium. Parasitol. Res. 2009, 105, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Preston, S.; Jiao, Y.; Baell, J.B.; Keiser, J.; Crawford, S.; Koehler, A.V.; Wang, T.; Simpson, M.M.; Kaplan, R.M.; Cowley, K.J.; et al. International Journal for Parasitology: Drugs and Drug Resistance Screening of the ‘Open Scaffolds’ collection from Compounds Australia identi fi es a new chemical entity with anthelmintic activities against different developmental stages of the barber. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Arnold, K.E.; Boxall, A.B.; Brown, A.R.; Cuthbert, R.J.; Gaw, S.; Hutchinson, T.H.; Jobling, S.; Madden, J.C.; Metcalfe, C.D.; Naidoo, V.; et al. Assessing the exposure risk and impacts of pharmaceuticals in the environment on individuals and ecosystems. Biol. Lett. 2013, 9, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyene, T. Veterinary Drug Residues in Food-animal Products: Its Risk Factors and Potential Effects on Public Health. J. Vet. Sci. Technol. 2015, 7, 1000285. [Google Scholar] [CrossRef]
- El-Makawy, A.; Radwan, H.A.; Ghaly, I.S.; Abd El-Raouf, A. Genotoxical, teratological and biochemical effects of anthelmintic drug oxfendazole Maximum Residue Limit (MRL) in male and female mice. Reprod. Nutr. Dev. 2006, 46, 139–156. [Google Scholar] [CrossRef] [Green Version]
- Tsiboukis, D.; Sazakli, E.; Jelastopulu, E.; Leotsinidis, M. Anthelmintics residues in raw milk. Assessing intake by a children population. Pol. J. Vet. Sci. 2013, 16, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Gauci, C.; Heath, D.; Chow, C.; Lightowlers, M.W. Hydatid disease: Vaccinology and development of the EG95 recombinant vaccine. Expert Rev. Vaccines 2005, 4, 103–112. [Google Scholar] [CrossRef]
- Lightowlers, M.W. Vaccines for prevention of cysticercosis. Acta Trop. 2003, 87, 129–135. [Google Scholar] [CrossRef]
- Fawzi, E.M.; González-Sánchez, M.E.; Corral, M.J.; Cuquerella, M.; Alunda, J.M. Vaccination of lambs against Haemonchus contortus infection with a somatic protein (Hc23) from adult helminths. Int. J. Parasitol. 2014, 44, 429–436. [Google Scholar] [CrossRef]
- Furgasa, W.; Abunna, F.; Yimer, L.; Haile, G. Review on Anthelmintic Resistance against Gastrointestinal Nematodes of Small Ruminants: Its Status and Future Perscpective in Ethiopia. J. Vet. Sci. Ani. Husb. 2018, 6, 407. [Google Scholar]
- Skuce, P.; Stenhouse, L.; Jackson, F.; Hypša, V.; Gilleard, J. Benzimidazole resistance allele haplotype diversity in United Kingdom isolates of Teladorsagia circumcincta supports a hypothesis of multiple origins of resistance by recurrent mutation. Int. J. Parasitol. 2010, 40, 1247–1255. [Google Scholar] [CrossRef]
- Lyons, E.T.; Tolliver, S.C.; Ionita, M.; Lewellen, A.; Collins, S.S. Field studies indicating reduced activity of ivermectin on small strongyles in horses on a farm in Central Kentucky. Parasitol. Res. 2008, 103, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Chandrawathani, P.; Waller, P.J.; Adnan, M.; Ho, J. Evolution of High-level, Multiple Anthelmintic Resistance on a Sheep Farm in Malaysia. Trop. Anim. Health Prod. 2003, 35, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Prichard, R.K. Anthelmintic resistance in nematodes: Extent, recent understanding and future directions for control and research. Int. J. Parasitol. 1990, 20, 515–523. [Google Scholar] [CrossRef]
- Scott, E.W.; Armour, J. Effect of development of resistance to benzimidazoles, salicylanilides and ivermectin on the pathogenicity and survival of Haemonchus contortus. Vet. Rec. 1991, 128, 346–349. [Google Scholar] [CrossRef]
- Mejía, M.; Igartúa, B.M.F.; Schmidt, E.; Cabaret, J. Multispecies and multiple anthelmintic resistance on cattle nematodes in a farm in Argentina: The beginning of high resistance? Vet. Res. 2003, 34, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Bathool, A.; Gowda, D.V.; Khan, M.S.; Ahmed, A.; Vasudha, S.L.; Rohitash, K. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride. J. Adv. Pharm. Technol. Res. 2012, 3, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Samson-Himmelstjerna, G. Molecular diagnosis of anthelmintic resistance. Vet. Parasitol. 2006, 136, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Vercruysse, J.; Deprez, P.; Everaert, D.; Bassissi, F.; Alvinerie, M. Breed differences in the pharmacokinetics of ivermectin administered subcutaneously to Holstein and Belgian Blue calves. Vet. Parasitol. 2008, 152, 136–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotze, A.C.; Ruffell, A.P.; Knox, M.R.; Kelly, G.A. Relative potency of macrocyclic lactones in in vitro assays with larvae of susceptible and drug-resistant Australian isolates of Haemonchus contortus and H. placei. Vet. Parasitol. 2014, 203, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Baiak, B.H.B.; Lehnen, C.R.; da Rocha, R.A. Anthelmintic resistance in cattle: A systematic review and meta-analysis. Livest. Sci. 2018, 217, 127–135. [Google Scholar] [CrossRef]
- Verma, R.; Lata, K.; Das, G. An overview of anthelmintic resistance in gastrointestinal nematodes of livestock and its management: India perspectives. Int. J. Chem. Stud. 2018, 6, 1755–1762. [Google Scholar]
- Claerebout, E.; De Wilde, N.; Van Mael, E.; Casaert, S.; Velde, F.V.; Roeber, F.; Veloz, P.V.; Levecke, B.; Geldhof, P. Anthelmintic resistance and common worm control practices in sheep farms in Flanders, Belgium. Vet. Parasitol. Reg. Stud. Rep. 2020, 20, 100393. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.I. Ivermectin resistance in intestinal parasites of camels in a private farm at Assiut, Egypt. Comp. Clin. Path. 2018, 27, 1221–1226. [Google Scholar] [CrossRef]
- Mphahlele, M.; Tsotetsi-Khambule, A.M.; Moerane, R.; Komape, D.M.; Thekisoe, O.M.M. Anthelmintic resistance and prevalence of gastrointestinal nematodes infecting sheep in Limpopo Province, South Africa. Vet. World 2021, 14, 302. [Google Scholar] [CrossRef] [PubMed]
- Bartley, D.J.; Devin, L.; Nath, M.; Morrison, A.A. Selection and characterisation of monepantel resistance in Teladorsagia circumcincta isolates. Int. J. Parasitol. Drugs Drug Resist 2015, 5, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, R.K.; Von Samson-himmelstjerna, G.; Silvestre, A. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185. [Google Scholar] [CrossRef]
- Dolinská, M.U.; Königová, A.; Babják, M.; Várady, M. Comparison of two in vitro methods for the detection of ivermectin resistance in Haemonchus contortus in sheep. Helminthologia 2016, 53, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Mickiewicz, M.; Czopowicz, M.; Moroz, A.; Potărniche, A.V.; Szaluś-Jordanow, O.; Spinu, M.; Górski, P.; Markowska-Daniel, I.; Várady, M.; Kaba, J. Prevalence of anthelmintic resistance of gastrointestinal nematodes in Polish goat herds assessed by the larval development test. BMC Vet. Res. 2021, 17, 19. [Google Scholar] [CrossRef]
- Potârniche, A.V.; Mickiewicz, M.; Olah, D.; Cerbu, C.; Spînu, M.; Hari, A.; Györke, A.; Moroz, A.; Czopowicz, M.; Várady, M.; et al. First report of anthelmintic resistance in gastrointestinal nematodes in goats in Romania. Animals 2021, 11, 2761. [Google Scholar] [CrossRef]
- Van den Brom, R.; Moll, L.; Kappert, C.; Vellema, P. Haemonchus contortus resistance to monepantel in sheep. Vet. Parasitol. 2015, 209, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Erez, M.S.; Kozan, E. Anthelmintic resistance in farm animals. Kocatepe Vet. J. 2018, 11, 322–330. [Google Scholar]
- Papadopoulos, E.; Gallidis, E.; Ptochos, S. Anthelmintic resistance in sheep in Europe: A selected review. Vet. Parasitol. 2012, 189, 85–88. [Google Scholar] [CrossRef]
- Coles, G.C.; Watson, C.L.; Anziani, O.S. Ivermectin-resistant Cooperia in cattle. Vet. Rec. 2001, 148, 283–284. [Google Scholar] [PubMed]
- Gasbarre, L.C.; Smith, L.L.; Lichtenfels, J.R.; Pilitt, P.A. Veterinary Parasitology The identification of cattle nematode parasites resistant to multiple classes of anthelmintics in a commercial cattle population in the US. Vet. Parasitol. 2009, 166, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Anziani, O.S.; Suarez, V.; Guglielmone, A.A.; Warnke, O. Resistance to benzimidazole and macrocyclic lactone anthelmintics in cattle nematodes in Argentina. Vet. Parasitol. 2004, 122, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M. Anthelmintic resistance in nematodes of horses. Vet. Parasitol. 2002, 33, 491–507. [Google Scholar] [CrossRef] [Green Version]
- Comer, K.C.; Hillyer, M.H.; Coles, G.C. Anthelmintic use and resistance on thoroughbred training yards in the UK. Vet. Rec. 2006, 158, 596. [Google Scholar] [CrossRef]
- Wirtherle, N.; Schnieder, T. Prevalence of benzimidazole resistance on horse farms in Germany. Vet. Rec. 2004, 154, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Fennell, B.J.; Naughton, J.A.; Barlow, J.; Brennan, G.; Fairweather, I.; Hoey, E.; McFerran, N.; Trudgett, A.; Bell, A. Microtubules as antiparasitic drug targets. Expert Opin. Drug Discov. 2008, 3, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Fissiha, W.; Kinde, M.Z. Anthelmintic Resistance and Its Mechanism: A Review. Infect. Drug Resist. 2021, 14, 5403–5410. [Google Scholar] [CrossRef] [PubMed]
- Wolstenholme, A.J.; Rogers, A.T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 2006, 131, S85. [Google Scholar] [CrossRef]
- Nielsen, M.K.; Fritzen, B.; Duncan, J.L.; Guillot, J.; Eysker, M.; Dorchies, P.; Laugier, C.; Beugnet, F.; Meana, A.; Lussot-Kervern, I.; et al. Practical aspects of equine parasite control: A review based upon a workshop discussion consensus. Equine Vet. J. 2010, 42, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Vercruysse, J.; Albonico, M.; Behnke, J.M.; Kotze, A.C.; Prichard, R.K.; McCarthy, J.S.; Montresor, A.; Levecke, B. Is anthelmintic resistance a concern for the control of human soil-transmitted helminths? Int. J. Parasitol. Drugs Drug Resist. 2011, 1, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, H.A. Anthelmintics resistance; how to overcome it? Iran J. Parasitol. 2013, 8, 18. [Google Scholar]
- Jabbar, A.; Iqbal, Z.; Kerboeuf, D.; Muhammad, G.; Khan, M.N.; Afaq, M. Anthelmintic resistance: The state of play revisited. Life Sci. 2006, 79, 2413–2431. [Google Scholar] [CrossRef]
- Akhtar, M.; Malik, A. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Bioresour. Technol. 2000, 74, 35–47. [Google Scholar] [CrossRef]
- Partridge, F.A.; Forman, R.; Bataille, C.J.; Wynne, G.M.; Nick, M.; Russell, A.J.; Else, K.J.; Sattelle, D.B. Anthelmintic drug discovery: Target identification, screening methods and the role of open science. Beilstein J. Org. Chem. 2020, 16, 1203–1224. [Google Scholar] [CrossRef]
- Liu, M.; Panda, S.K.; Luyten, W. Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules 2020, 10, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Traditional herbs: A remedy for cardiovascular disorders. Phytomedicine 2016, 23, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Moshi, M.J.; Otieno, D.F.; Mbabazi, P.K.; Weisheit, A. The Ethnomedicine of the Haya people of Bugabo ward, Kagera Region, north western Tanzania. J. Ethnobiol. Ethnomed. 2009, 5, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981−2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.M.; Safar, E.H. A brief insight on anti-Toxoplasma gondii activity of some medicinal plants. Aperito. J. Bacteriol. Virol. Parasitol. 2014, 1, 107. [Google Scholar]
- Githiori, J.B.; Höglund, J.; Waller, P.J.; Baker, R.L. Evaluation of anthelmintic properties of some plants used as livestock dewormers against Haemonchus contortus infections in sheep. Parasitology 2004, 129, 245–253. [Google Scholar] [CrossRef]
- Gathuma, J.M.; Mbaria, J.M.; Wanyama, J.; Kaburia, H.F.A.; Mpoke, L.; Mwangi, J.N. Efficacy of Myrsine africana, Albizia anthelmintica and Hilderbrantia sepalosa herbal remedies against mixed natural sheep helminthosis in Samburu district, Kenya. J. Ethnopharmacol. 2004, 91, 7–12. [Google Scholar] [CrossRef]
- Zeineldin, M.; Abdelmegeid, M.; Barakat, R.; Ghanem, M. A Review: Herbal Medicine as an Effective Therapeutic Approach for Treating Digestive Disorders in Small Ruminants. Alex. J. Vet. Sci. 2018, 56, 33–44. [Google Scholar] [CrossRef]
- Ansari, S.H.; Islam, F. Influence of nanotechnology on herbal drugs: A Review. J. Adv. Pharm. Technol. Res. 2012, 3, 142–146. [Google Scholar] [CrossRef]
- Sharma, M. Applications of nanotechnology based dosage forms for delivery of herbal drugs. Res. Rev. J. Pharm. Nanotechnol. 2014, 2, 456. [Google Scholar]
- Murugan, K.; Anitha, J.; Suresh, U.; Rajaganesh, R.; Panneerselvam, C.; Aziz, A.T.; Tseng, L.C.; Kalimuthu, K.; Alsalhi, M.S.; Devanesan, S.; et al. Chitosan-fabricated Ag nanoparticles and larvivorous fishes: A novel route to control the coastal malaria vector Anopheles sundaicus? Hydrobiologia 2017, 797, 335–350. [Google Scholar] [CrossRef]
- Alexis, F.; Rhee, J.; Richie, J.P.; Radovic-moreno, A.F. New frontiers in nanotechnology for cancer treatment. Urol. Oncol. Semin. Orig. Investig. 2008, 26, 74–85. [Google Scholar] [CrossRef]
- Benelli, G. Gold nanoparticles—Against parasites and insect vectors. Acta Trop. 2017, 178, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.K.; Murmu, S.; Saha, S.; Tandon, V.; Acharya, K. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS ONE 2014, 9, e84693. [Google Scholar] [CrossRef] [PubMed]
- Doenhoff, M.J.; Cioli, D. Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis. 2008, 21, 659–667. [Google Scholar] [CrossRef]
- Zaheer, T.; Muneer, S.; Abbas, R.Z.; Khan, M.K.; Imran, M.; Ahmed, A.; Zaheer, I.; Perveen, N. 9 Nanomaterialsagainst. In Nanomaterials in the Battle Against Pathogens and Disease Vectors; CRC Press: Boca Raton, FL, USA, 2022; p. 229. [Google Scholar]
- Barabadi, H.; Honary, S.; Mohammadi, M.A.; Ahmadpour, E. Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ. Sci. Pollut. Res. 2017, 24, 5800–5810. [Google Scholar] [CrossRef]
- Yetim, I.; Erzurumlu, K.; Hokelek, M.; Baris, S.; Dervisoglu, A.; Polat, C.; Belet, U.; Buyukkarabacak, Y.; Guvenli, A. Results of alcohol and albendazole injections in hepatic hydatidosis: Experimental study. J. Gastroenterol. Hepatol. 2005, 20, 1442–1447. [Google Scholar] [CrossRef]
- Goel, V.; Kaur, P.; Singla, L.D.; Choudhury, D. Biomedical evaluation of Lansium parasiticum extract-protected silver nanoparticles against Haemonchus contortus, a parasitic worm. Front. Mol. Biosci. 2020, 396, 595646. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, D.; Pan, Y.; Qu, W.; Hao, H.; Wang, X.; Liu, Z.; Xie, S. Nanoparticles for antiparasitic drug delivery. Drug Deliv. 2019, 26, 1206–1221. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, S.B.; Adnan, R.; Muhammad, R.; Khan, R. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front. Chem. 2020, 8, 376. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.O.; Ferdous, J.; Banik, S.; Islam, R.; Uddin, A.H.M.M. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complement Altern. Med. 2016, 16, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, A.; Ullah, R.; Uddin, I.; Zia, I.; Rehman, L.; Abidi, S.M. In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, Gigantocotyle explanatum. Exp. Parasitol. 2019, 198, 95–104. [Google Scholar] [CrossRef]
- Tomar, R.S.; Preet, S. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. J. Helminthol. 2016, 91, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Geary, T.G.; Sangster, N.C.; Thompson, D.P. Frontiers in anthelmintic pharmacology. Vet. Parasitol. 2006, 84, 275–295. [Google Scholar] [CrossRef]
- Eguale, T.; Tilahun, G.; Debella, A.; Feleke, A.; Makonnen, E. Haemonchus contortus: In vitro and in vivo anthelmintic activity of aqueous and hydro-alcoholic extracts of Hedera helix. Exp. Parasitol. 2007, 116, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Charitha, V.G. Evaluation of the Anthelmintic Activity (in-vitro) of Neem Leaf Extract-Mediated Silver Nanoparticles against Haemonchus contortus. Indian J. Pure Appl. Biosci. 2017, 5, 118–128. [Google Scholar] [CrossRef]
- Barbosa, A.C.; Silva, L.P.; Ferraz, C.M.; Tobias, F.L.; de Araújo, J.V.; Loureiro, B.; Braga, G.M.; Veloso, F.B.; de Freitas Soares, F.E.; Fronza, M.; et al. Nematicidal activity of silver nanoparticles from the fungus Duddingtonia flagrans. Int. J. Nanomed. 2019, 14, 2341–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.P.; Oliveira, J.P.; Keijok, W.J.; da Silva, A.R.; Aguiar, A.R.; Guimarães, M.C.; Ferraz, C.M.; Araújo, J.V.; Tobias, F.L.; Braga, F.R. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int. J. Nanomed. 2017, 12, 6373. [Google Scholar] [CrossRef] [Green Version]
- Priya, S.; Santhi, S. Biosynthesis and in vitro anthelmintic activity ofsilver nanoparticles using aqueous leaf extracts of azadirachta indica. World J. Pharm. Pharm. Sci. 2015, 4, 2105–2116. [Google Scholar]
- Nithya, T.G.; Sivakumar, S.; Sangeetha, K. Antibacterial activity of Vallarai Chooranam against Human Pathogens. Int. J. PharmTech Res. 2012, 4, 162–168. [Google Scholar]
- Sathiyaraj, S.; Suriyakala, G.; Dhanesh, A.; Sivakumar, G. Green Biosynthesis of Silver Nanoparticles Using Vallarai Chooranam and Their Potential Biomedical Applications. J. Inorg. Organomet Polym. Mater. 2020, 30, 4709–4719. [Google Scholar] [CrossRef]
- Preet, S.; Tomar, R.S. Anthelmintic e ff ect of biofabricated silver nanoparticles using Ziziphus jujuba leaf extract on nutritional status of Haemonchus contortus. Small Rumin. Res. 2017, 154, 45–51. [Google Scholar] [CrossRef]
- Davila, G.; Irsik, M.; Greiner, E.C. Toxocara vitulorum in beef calves in North Central Florida. Vet. Parasitol. 2010, 168, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Kulathunga, D.; Wickramasinghe, S.; Rajapakse, R.; Yatawara, L.; Jayaweera, W.R.; Agatsuma, T. Immunolocalization of arginine kinase (AK) in Toxocara canis, Toxocara vitulorum, and Ascaris lumbricoides. Parasitol. Res. 2012, 111, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Venjakob, P.L.; Thiele, G.; Clausen, P.-H.; Nijhof, A.M. Toxocara vitulorum infection in German beef cattle. Parasitol. Res. 2017, 116, 1085–1088. [Google Scholar] [CrossRef]
- Ahmed, M.; Manal, B.; Garhy, E.; Fahmy, S.R. In vitro anti- Toxocara vitulorum effect of silver nanoparticles. J. Parasit. Dis. 2022, 46, 409–420. [Google Scholar] [CrossRef]
- Ilavarashi, P.; Rani, N.; Velusamy, R.; Raja, M.J.; Ponnudurai, G. In-vitro anthelmintic evaluation of synthesized silver nanoparticles of Moringa oleifera seeds against strongyle nematode of small ruminants. J. Pharmacogn. Phytochem. 2019, 8, 2116–2121. [Google Scholar]
- Arias, M.; Lomba, C.; Dacal, V.; Vázquez, L.; Pedreira, J.; Francisco, I.; Piñeiro, P.; Cazapal-Monteiro, C.; Suárez, J.L.; Díez-Baños, P.; et al. Prevalence of mixed trematode infections in an abattoir receiving cattle from northern Portugal and north-west Spain. Vet. Rec. 2011, 168, 408. [Google Scholar] [CrossRef]
- Fairweather, I.; Brennan, G.P.; Hanna, R.E.B.; Robinson, M.W.; Skuce, P.J. Drug resistance in liver flukes. Int. J. Parasitol. Drugs Drug Resist. 2020, 12, 39–59. [Google Scholar] [CrossRef]
- Arbabi, M.; Haddad, A.; HosseipourMashkani, S.M.; Hooshyar, H. In Vitro Assessment of Anthelmintic Activities of AgO Nanoparticle in Comparison to Closantel against Liver Fluke Dicrocoelium Dendriticum. 2021. Available online: https://www.researchsquare.com/article/rs-827258/v1 (accessed on 15 May 2023).
- Chitra, K.; Annadurai, G. Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. Int. Food Res. J. 2013, 20, 1. [Google Scholar]
- Kalpana, V.N.; Devi Rajeswari, V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 2018, 3569758. [Google Scholar] [CrossRef] [PubMed]
- Aydin, A.; Goz, Y.; Yuksek, N.; Ayaz, E. Prevalence of Toxocara vitulorum in Hakkari eastern region of Turkey. Bull. Vet. Inst. Pulawy. 2006, 50, 51–54. [Google Scholar]
- Woodbury, M.R.; Copeland, S.; Wagner, B.; Fernando, C.; Hill, J.E.; Clemence, C. Toxocara vitulorum in a bison (Bison bison) herd from western Canada. Can. Vet. J. 2012, 53, 791. [Google Scholar]
- Dorostkar, R.; Ghalavand, M.; Nazarizadeh, A.; Tat, M. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. Int. Nano Lett. 2017, 7, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 2011, 51, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Wolstenholme, A.J.; Fairweather, I.; Prichard, R.; von Samson-Himmelstjerna, G.; Sangster, N.C. Drug resistance in veterinary helminths. Trends Parasitol. 2004, 20, 469–476. [Google Scholar] [CrossRef]
- Khan, Y.A.; Singh, B.R.; Ullah, R.; Shoeb, M.; Naqvi, A.H. Anthelmintic Effect of Biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a Neglected Parasite of Indian Water Buffalo. PLoS ONE 2015, 10, e0133086. [Google Scholar] [CrossRef] [Green Version]
- Hosain, F.; Islam, S.; Al, A.; Zukaul, M. Effectiveness of zinc oxide nanoparticles against helminthiasis: A preliminary investigation conducted on Pheretima posthuman. Curr. Chem. Lett. 2021, 10, 81–88. [Google Scholar] [CrossRef]
- Hosain, F.; Hossain, S.; Ahmed, S.; Al-ragib, A.; Hoque, N.; Islam, S. Enhancement of In-Vitro Anthelmintic Activity of Zinc Oxide Nanoparticles Reinforced by Silver (Ag) Doping against Pheretima posthuman. Anal. Chem. Lett. 2021, 10, 846–861. [Google Scholar] [CrossRef]
- Lichtenfels, J.R.; Hoberg, E.P.; Zarlenga, D.S. Systematics of gastrointestinal nematodes of domestic ruminants: Advances between 1992 and 1995 and proposals for future research. Vet. Parasitol. 1997, 72, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Önder, Z.; Yildirim, A.; Inci, A.; Düzlü, Ö.; ÇİLOĞLU, A. Molecular prevalence, phylogenetic characterization and benzimidazole resistance of Haemonchus contortus from sheep. Kafkas Üniversitesi. Vet. Fakültesi Derg. 2016, 22, 93–99. [Google Scholar]
- Esmaeilnejad, B.; Samiei, A.; Mirzaei, Y.; Farhang-pajuh, F. Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Haemonchus contortus, following exposure to zinc oxide nanoparticles. Acta Parasitol. 2018, 63, 563–571. [Google Scholar] [CrossRef]
- Baghbani, Z.; Esmaeilnejad, B.; Asri-Rezaei, S. Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Teladorsagia circumcincta following exposure to zinc oxide nanoparticles. J. Helminthol. 2020, 94, e115. [Google Scholar] [CrossRef] [PubMed]
- Morsy, K.; Bashtar, A.R.; Al Quraishy, S.; Adel, S. Description of two equine nematodes, Parascaris equorum Goeze 1782 and Habronema microstoma Schneider 1866 from the domestic horse Equus ferus caballus (Famisly: Equidae) in Egypt. Parasitol. Res. 2016, 115, 4299–4306. [Google Scholar] [CrossRef] [PubMed]
- Corning, S. Equine cyathostomins: A review of biology, clinical significance and therapy. Parasit. Vectors 2009, 2, S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsy, K.; Fahmy, S.; Mohamed, A.; Ali, S.; El, M.; Mohammed, G. Optimizing and Evaluating the Antihelminthic Activity of the Biocompatible Zinc Oxide Nanoparticles Against the Ascaridid Nematode, Parascaris equorum In Vitro. Acta Parasitol. 2019, 64, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Wang, Y.; Hu, Y.-O.; Zhong, J.-X.; Wang, D.-Y. Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans. Neurosci. Bull. 2011, 27, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Dai, H.; Nie, Y.; Wang, M.; Yang, Z.; Cheng, L.; Liu, Y.; Chen, S.; Zhao, G.; Wu, L.; et al. TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. Ecotoxicol. Environ. Saf. 2018, 162, 160–169. [Google Scholar] [CrossRef]
- Gonzalez-Moragas, L.; Roig, A.; Laromaine, A. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface Sci. 2015, 219, 10–26. [Google Scholar] [CrossRef]
- Puttaraju, T.D.; Manjunatha, M.; Maruti, G.; Srinivasan, V.; Haseen, S.; Bharathi, T.R. Materials Today: Proceedings Anthelmintic and antibacterial studies of zinc oxide NPs: Synthesized using dragon fruit juice as novel fuel. Mater. Today Proc. 2021, 47, 4652–4656. [Google Scholar] [CrossRef]
- Oasis, D.; Hassan, I.; Ramdan, Y.; Elkabawy, M. In vitro anthelmintic effects of iron oxide and zinc oxide nanoparticles against Fasciola spp. in Dakhla Oasis, Egypt. Benha Vet. Med. J. 2021, 41, 144–147. [Google Scholar]
- Chang, Y.-N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 2012, 5, 2850–2871. [Google Scholar] [CrossRef] [Green Version]
- Khalil, L.; Azzam, A.; Mohamed, H.; Nigm, A.; Taha, H.; Soliman, M. In vitro effects of iron nanoparticles on Schistosoma mansoni adult worms and its intermediate host snail, biomphalaria alexandrina. J. Egypt Soc. Parasitol. 2018, 48, 363–368. [Google Scholar] [CrossRef]
- Ullah, A.; Mohd, M.; Khan, S.; Kareem, A.; Nami, S.A.A.; Ahmad, S. Biomediated synthesis, characterization, and biological applications of nickel oxide nanoparticles derived from Toona ciliata, Ficus carica and Pinus roxburghii. Bioprocess Biosyst. Eng. 2021, 44, 1461–1476. [Google Scholar] [CrossRef]
- AbdElKader, N.A.; Sheta, E.; AbuBakr, H.O.; El-Shamy, O.A.A.; Oryan, A.; Attia, M.M. Effects of chitosan nanoparticles, ivermectin and their combination in the treatment of Gasterophilus intestinalis (Diptera: Gasterophilidae) larvae in donkeys (Equus asinus). Int. J. Trop. Insect Sci. 2021, 41, 43–54. [Google Scholar] [CrossRef]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; Van Wyk, J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar]
- Kotze, A.C.; Prichard, R.K. Anthelmintic Resistance in Haemonchus contortus: History, Mechanisms and Diagnosis. Adv. Parasitol. 2016, 93, 397–428. [Google Scholar] [CrossRef] [PubMed]
- André, W.P.; Paiva, J.R., Jr.; Cavalcante, G.S.; Ribeiro, W.L.; Araújo Filho, J.V.; Cavalcanti, B.C.; Morais, S.M.; Oliveira, L.; Bevilaqua, C.M.; Abreu, F.O. Chitosan Nanoparticles Loaded with Carvacrol and Carvacryl Acetate for Improved Anthelmintic Activity. J. Braz. Chem. Soc. 2020, 31, 1614–1622. [Google Scholar] [CrossRef]
- Can Baser, K.H. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef]
- Andre, W.P.; Ribeiro, W.L.; Cavalcante, G.S.; dos Santos, J.M.; Macedo, I.T.; de Paula, H.C.; de Freitas, R.M.; de Morais, S.M.; de Melo, J.V.; Bevilaqua, C.M. Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Vet. Parasitol. 2016, 218, 52–58. [Google Scholar] [CrossRef] [Green Version]
- André, W.P.; Paiva Junior, J.R.; Cavalcante, G.S.; Ribeiro, W.L.; Araújo Filho, J.V.; Santos, J.M.; Alves, A.P.; Monteiro, J.P.; Morais, S.M.; Silva, I.N.; et al. Anthelmintic activity of nanoencapsulated carvacryl acetate against gastrointestinal nematodes of sheep and its toxicity in rodents. Rev. Bras. Parasitol. Vet. 2020, 29, e013119. [Google Scholar] [CrossRef] [Green Version]
- Wasso, S.; Maina, N.; Kagira, J. Toxicity and anthelmintic efficacy of chitosan encapsulated bromelain against gastrointestinal strongyles in Small East African goats in Kenya. Vet. World 2020, 13, 177–183. [Google Scholar] [CrossRef]
- Swelum, A.A.; Alqhtani, A.H. Incidence of gastrointestinal parasites in pigeons with an assessment of the nematocidal activity of chitosan nanoparticles against Ascaridia columbae. Poult. Sci. 2022, 101, 101820. [Google Scholar] [CrossRef]
- Attia, M.M.; Salem, H.M. Morphological and molecular characterization of Pseudolynchia canariensis (Diptera: Hippoboscidae) infesting domestic pigeons. Int. J. Trop. Insect Sci. 2022, 42, 733–740. [Google Scholar] [CrossRef]
- Rahman, S.; Khatun, R.; Nahar, L.; Khanum, T. Chemotherapy of gastrointestinal parasitic diseases in domestic pigeons (Columba livia) in Rajshahi division of Bangladesh. Res. Agric. Livest. Fish 2019, 6, 323–328. [Google Scholar] [CrossRef]
- Maciel, M.V.; Morais, S.M.; Bevilaqua, C.M.L.; Camurça-Vasconcelos, A.L.F.; Costa, C.T.C.; Castro, C.M.S. Ovicidal and larvicidal activity of Melia azedarach extracts on Haemonchus contortus. Vet. Parasitol. 2006, 140, 98–104. [Google Scholar] [CrossRef]
- Stepek, G.; Lowe, A.E.; Buttle, D.J.; Duce, I.R.; Behnke, J.M. The anthelmintic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo. Parasitology 2007, 134, 1409–1419. [Google Scholar] [CrossRef]
- Luoga, W.; Mansur, F.; Buttle, D.J.; Duce, I.R.; Garnett, M.C.; Lowe, A.; Behnke, J.M. The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes. J. Helminthol. 2015, 89, 165–174. [Google Scholar] [CrossRef]
- Hunduza, A.; Kagira, J.; Maina, N.; Andala, D. In vitro Anthelmintic Activity of Chitosan Encapsulated Bromelain against Eggs, Larval and Adult Stages of Haemonchus contortus. J. Appl. Life Sci. Int. 2020, 23, 28–38. [Google Scholar] [CrossRef]
- de Aquino Mesquita, M.; Panassol, A.M.; de Oliveira, E.F.; Vasconcelos, A.L.C.F.; de Paula, H.C.B.; Bevilaqua, C.M.L. Anthelmintic activity of Eucalyptus staigeriana encapsulated oil on sheep gastrointestinal nematodes. Parasitol. Res. 2013, 112, 3161–3165. [Google Scholar] [CrossRef]
- Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, I.T.F.; de Oliveira, L.M.B.; Ribeiro, W.L.C.; dos Santos, J.M.L.; Silva, K.D.C.; de Araújo Filho, J.V.; Camurça-Vasconcelos, A.L.F.; Bevilaqua, C.M.L. Anthelmintic activity of Cymbopogon citratus against Haemonchus contortus. Rev. Bras. Parasitol. Veterinária 2015, 24, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.C.; Ribeiro, W.L.C.; Camurça-Vasconcelos, A.L.F.; Macedo, I.T.F.; Santos, J.M.L.; Paula, H.C.B.; Filho, J.V.A.; Magalhães, R.D.; Bevilaqua, C.M.L. Efficacy of free and nanoencapsulated Eucalyptus citriodora essential oils on sheep gastrointestinal nematodes and toxicity for mice. Vet. Parasitol. 2014, 204, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, I.T.; Oliveira, L.M.; André, W.P.; Araújo, J.V.; Santos, J.M.; Rondon, F.C.; Ribeiro, W.L.; Camurça-Vasconcelos, A.L.; Oliveira, E.F.; Paula, H.C.; et al. Anthelmintic effect of Cymbopogon citratus essential oil and its nanoemulsion on sheep gastrointestinal nematodes. Rev. Bras. Parasitol. Veterinária 2019, 28, 522–527. [Google Scholar] [CrossRef] [PubMed]
Anthelmintic Standard Drug | Mechanism of Action | Mechanism of Resistance | References |
---|---|---|---|
Benzimidazoles | Inhibition of Polymerization of microtubule subunits leading to disarrangement of microtubules. | Changes in the β tubulin isotype 1 target site in the nematode parasite. Continued polymerization of microtubules. | [53,54] |
Macrocyclic Lactones | Modulating the glutamate-gated chloride channel. | Mutation in glutamate-gated chloride channel or gamma-aminobutyric acid receptor gene. | [54,55] |
Imidazothiazole | Agonists of nicotinergic acetylcholine receptor | Altered Nicotinic acetylcholine receptor. | [54] |
Monepantel | Act on Nicotinic acetylcholine receptor genes. | Increased expression of P-glycoproteins. Mutation in Hco-des-2H, Hco-acr-23H, Hco-MPTL-1 genes | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, L.; Alsayari, A.; Tak, H.; Mir, S.A.; Almoyad, M.A.A.; Wahab, S.; Bader, G.N. An Insight into the Global Problem of Gastrointestinal Helminth Infections amongst Livestock: Does Nanotechnology Provide an Alternative? Agriculture 2023, 13, 1359. https://doi.org/10.3390/agriculture13071359
Hamid L, Alsayari A, Tak H, Mir SA, Almoyad MAA, Wahab S, Bader GN. An Insight into the Global Problem of Gastrointestinal Helminth Infections amongst Livestock: Does Nanotechnology Provide an Alternative? Agriculture. 2023; 13(7):1359. https://doi.org/10.3390/agriculture13071359
Chicago/Turabian StyleHamid, Laraibah, Abdulrhman Alsayari, Hidayatullah Tak, Suhail Ahmad Mir, Mohammad Ali Abdullah Almoyad, Shadma Wahab, and Ghulam Nabi Bader. 2023. "An Insight into the Global Problem of Gastrointestinal Helminth Infections amongst Livestock: Does Nanotechnology Provide an Alternative?" Agriculture 13, no. 7: 1359. https://doi.org/10.3390/agriculture13071359
APA StyleHamid, L., Alsayari, A., Tak, H., Mir, S. A., Almoyad, M. A. A., Wahab, S., & Bader, G. N. (2023). An Insight into the Global Problem of Gastrointestinal Helminth Infections amongst Livestock: Does Nanotechnology Provide an Alternative? Agriculture, 13(7), 1359. https://doi.org/10.3390/agriculture13071359