Evaluation of Bacillus subtilis Czk1 Metabolites by LC–MS/MS and Their Antifungal Potential against Pyrrhoderma noxium Causing Brow Rot Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strains and Culture Conditions
2.2. Metabolite Extraction
2.3. Screening and Analysis of Different Metabolites of B. subtilis Czk1
2.4. Antifungal Activity of Metabolites of B. subtilis Czk1
2.5. Scanning Electron Microscopy (SEM) Observation
3. Results
3.1. Analysis of Metabolites in the Fermentation Broth of B. Subtilis Czk1
3.1.1. Principal Component Analysis
3.1.2. Orthogonal Partial Least Squares-Discriminant Analysis
3.1.3. Permutation Test
3.1.4. Screening and Graphs of Differential Metabolites
3.2. Identification of Potential Differential Metabolites
3.3. Antifungal Activity of Metabolites
3.4. Scanning Electron Microscopy Observation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Venkatachalam, P.; Jayashree, R.; Rekha, K.; Sushmakumari, S.; Sobha, S.; Kumari Jayasree, P.; Kala, R.G.; Thulaseedharan, A. Rubber Tree (Hevea brasiliensis Muell. Arg). Methods Mol. Biol. 2006, 344, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Lau, N.S.; Makita, Y.; Kawashima, M.; Taylor, T.D.; Kondo, S.; Othman, A.S.; Shu-Chien, A.C.; Matsui, M. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Sci. Rep. 2016, 6, 28594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayashree, R.; Nazeem, P.A.; Rekha, K.; Sreelatha, S.; Thulaseedharan, A.; Krishnakumar, R.; Kala, R.G.; Vineetha, M.; Leda, P.; Jinu, U.; et al. Over-expression of 3-hydroxy-3- methylglutaryl-coenzyme A reductase 1 (hmgr1) gene under super-promoter for enhanced latex biosynthesis in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Physiol. Biochem. 2018, 127, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Li, G.; Lin, C.; Shi, T.; Zhai, L.; Chen, Y.; Huang, G. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Microbiol. Res. 2013, 168, 340–350. [Google Scholar] [CrossRef]
- Oghenekaro, A.O.; Miettinen, O.; Omorusi, V.I.; Evueh, G.A.; Farid, M.A.; Gazis, R.; Asiegbu, F.O. Molecular phylogeny of Rigidoporus microporus isolates associated with white rot disease of rubber trees (Hevea brasiliensis). Fungal Biol. 2014, 118, 495–506. [Google Scholar] [CrossRef]
- Röther, W.; Birke, J.; Grond, S.; Beltran, J.M.; Jendrossek, D. Production of functionalized oligo-isoprenoids by enzymatic cleavage of rubber. Microb. Biotechnol. 2017, 10, 1426–1433. [Google Scholar] [CrossRef]
- Yamashita, S.; Yamaguchi, H.; Waki, T.; Aoki, Y.; Mizuno, M.; Yanbe, F.; Ishii, T.; Funaki, A.; Tozawa, Y.; Miyagi-Inoue, Y.; et al. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis. Elife 2016, 5, e19022. [Google Scholar] [CrossRef]
- Manaila, E.; Craciun, G.; Ighigeanu, D.; Lungu, I.B.; Dumitru Grivei, M.D.; Stelescu, M.D. Degradation by Electron Beam Irradiation of Some Composites Based on Natural Rubber Reinforced with Mineral and Organic Fillers. Int. J. Mol. Sci. 2022, 23, 6925. [Google Scholar] [CrossRef]
- Zhou, L.W.; Ji, X.H.; Vlasák, J.; Dai, Y.C. Taxonomy and phylogeny of Pyrrhoderma: A redefinition, the segregation of Fulvoderma, gen. nov., and identifying four new species. Mycologia 2018, 110, 872–889. [Google Scholar] [CrossRef]
- Mazlan, S.; Md, N.; Wahab, A.; Sulaiman, Z.; Dzarifah, Z.F. Major Diseases of Rubber (Hevea brasiliensis) in Malaysia. Pertanika J. Sch. Res. Rev. 2019, 5, 10–21. [Google Scholar]
- Ann, P.J.; Chang, T.T.; Ko, W.H. Phellinus noxius Brown Root Rot of Fruit and Ornamental Trees in Taiwan. Plant Dis. 2002, 86, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.H.; Hu, B.Y.; Chang, T.T.; Hsueh, K.L.; Hsu, W.T. Evaluation of dazomet as fumigant for the control of brown root rot disease. Pest Manag. Sci. 2012, 68, 959–962. [Google Scholar] [CrossRef]
- Chung, C.L.; Huang, S.Y.; Huang, Y.C.; Tzean, S.S.; Ann, P.J.; Tsai, J.N.; Yang, C.C.; Lee, H.H.; Huang, T.W.; Huang, H.Y.; et al. The Genetic Structure of Phellinus noxius and Dissemination Pattern of Brown Root Rot Disease in Taiwan. PLoS ONE 2015, 10, e0139445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.Y.; Chen, C.H.; Yang, Y.L.; Tsai, I.J.; Ho, Y.N.; Chung, C.L. The brown root rot fungus Phellinus noxius affects microbial communities in different root-associated niches of Ficus trees. Environ. Microbiol. 2022, 24, 276–297. [Google Scholar] [CrossRef] [PubMed]
- Sahashi, N.; Akiba, M.; Takemoto, S.; Yokoi, T.; Ota, Y.; Kanzaki, N. Phellinus noxius causes brown root rot on four important conifer species in japan. Eur. J. Plant Pathol. 2014, 140, 869–873. [Google Scholar] [CrossRef]
- Chung, C.L.; Lee, T.J.; Akiba, M.; Lee, H.H.; Kuo, T.H.; Liu, D.; Ke, H.M.; Yokoi, T.; Roa, M.B.; Lu, M.J.; et al. Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees. Mol. Ecol. 2017, 26, 6301–6316. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, W.; He, R.; Gong, H. Valuing health risk in agriculture: A choice experiment approach to pesticide use in China. Environ. Sci. Pollut. Res. Int. 2017, 24, 17526–17533. [Google Scholar] [CrossRef]
- Ndayambaje, B.; Amuguni, H.; Coffin-Schmitt, J.; Sibo, N.; Ntawubizi, M.; VanWormer, E. Pesticide Application Practices and Knowledge among Small-Scale Local Rice Growers and Communities in Rwanda: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 4770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgari, D.; Montagna, M.; Gobbi, E.; Faoro, F. Green Technology: Bacteria-Based Approach Could Lead to Unsuspected Microbe-Plant-Animal Interactions. Microorganisms 2019, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Ogbebor, N.O.; Adekunle, A.T.; Eghafona, O.N.; Ogboghodo, A.I. Biological control of Rigidoporus lignosus in Hevea brasiliensis in Nigeria. Fungal Biol. 2015, 119, 1–6. [Google Scholar] [CrossRef]
- Bonaterra, A.; Badosa, E.; Daranas, N.; Francés, J.; Roselló, G.; Montesinos, E. Bacteria as Biological Control Agents of Plant Diseases. Microorganisms 2022, 10, 1759. [Google Scholar] [CrossRef] [PubMed]
- Hirozawa, M.T.; Ono, M.A.; Suguiura, I.M.S.; Bordini, J.G.; Ono, E.Y.S. Lactic acid bacteria and Bacillus spp. as fungal biological control agents. J. Appl. Microbiol. 2023, 134, lxac083. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Mustafa, A.; Hyder, S.; Valipour, M.; Rizvi, Z.F.; Gondal, A.S.; Yousuf, Z.; Iqbal, R.; Daraz, U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. Biology 2022, 11, 1763. [Google Scholar] [CrossRef]
- Liu, C.; Sheng, J.; Chen, L.; Zheng, Y.; Lee, D.Y.; Yang, Y.; Xu, M.; Shen, L. Biocontrol Activity of Bacillus subtilis Isolated from Agaricus bisporus Mushroom Compost Against Pathogenic Fungi. J. Agric. Food Chem. 2015, 63, 6009–6018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yu, S.; Yang, Y.; Zhang, J.; Zhao, D.; Pan, Y.; Fan, S.; Yang, Z.; Zhu, J. Antifungal Effects of Volatiles Produced by Bacillus subtilis Against Alternaria solani in Potato. Front. Microbiol. 2020, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, Z.; Shi, Y.; Guo, D.; Pang, B.; Chen, X.; Shao, D.; Liu, Y.; Shi, J. Bacillus subtilis inhibits Aspergillus carbonarius by producing iturin A, which disturbs the transport, energy metabolism, and osmotic pressure of fungal cells as revealed by transcriptomics analysis. Int. J. Food Microbiol. 2020, 330, 108783. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, C. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Appl. Environ. Microbiol. 2018, 84, e00445-18. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, F.; Neubauer, P.; Gimpel, M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. J. Nat. Prod. 2019, 82, 2038–2053. [Google Scholar] [CrossRef]
- Iqbal, S.; Begum, F.; Rabaan, A.A.; Aljeldah, M.; Al Shammari, B.R.; Alawfi, A.; Alshengeti, A.; Sulaiman, T.; Khan, A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023, 28, 927. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Wu, C.; Li, C.; Zhang, D.; Zhu, B. Isolation, heterologous expression, and purification of a novel antifungal protein from Bacillus subtilis strain Z-14. Microb. Cell Fact. 2020, 19, 214. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Lu, K.; Chen, R.; Jiang, J. Bacillus subtilis KLBMPGC81 suppresses appressorium-mediated plant infection by altering the cell wall integrity signaling pathway and multiple cell biological processes in Magnaporthe oryzae. Front. Cell. Infect. Microbiol. 2022, 12, 983757. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qin, Z.; Wu, S.; Zhao, P.; Zhen, C.; Gao, H. Antifungal Mechanism of Volatile Organic Compounds Produced by Bacillus subtilis CF-3 on Colletotrichum gloeosporioides Assessed Using Omics Technology. J. Agric. Food Chem. 2021, 69, 5267–5278. [Google Scholar] [CrossRef] [PubMed]
- Alfiky, A.; L’Haridon, F.; Abou-Mansour, E.; Weisskopf, L. Disease Inhibiting Effect of Strain Bacillus subtilis EG21 and Its Metabolites Against Potato Pathogens Phytophthora infestans and Rhizoctonia solani. Phytopathology 2022, 112, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Wang, W.; Sun, L.; Wang, Y.; Liao, J.; Xu, D.; Liu, Y.; Ye, R.; Gooneratne, R. A sensitive method for simultaneous quantitative determination of surfactin and iturin by LC-MS/MS. Anal. Bioanal. Chem. 2017, 409, 179–191. [Google Scholar] [CrossRef]
- Farzand, A.; Moosa, A.; Zubair, M.; Khan, A.R.; Hanif, A.; Tahir, H.; Tahira, H.A.S.; Gao, X.W. Marker assisted detection and LC-MS analysis of antimicrobial compounds in different Bacillus strains and their antifungal effect on sclerotinia sclerotiorum. Biol. Control 2019, 133, 91–102. [Google Scholar] [CrossRef]
- Zhao, L.L.; He, C.P.; Zheng, X.L.; Fan, L.Y.; Zheng, F.C. Effect of Bacillus subtilis strain czk1 on different rubber root pathogens and in vitro control of Colletotrichum gloeosporioides on rubber leaf. J. South. Agric. 2011, 42, 740–743. [Google Scholar]
- He, C.P.; Fan, L.Y.; Wu, W.H.; Liang, Y.Q.; Li, R.; Tang, W.; Zheng, X.L.; Xiao, Y.N.; Liu, Z.X.; Zheng, F.C. Identification of lipopeptides produced by Bacillus subtilis Czk1 isolated from the aerial roots of rubber trees. Genet. Mol. Res. 2017, 16, gmr16018710. [Google Scholar] [CrossRef]
- Li, R.; Huang, Y.; Wu, J.; Deng, H.; Wang, L.; Zhang, W.; Ding, J. Whole genome analysis and specific PCR primer development for vibrio coralliilyticus, combined with transcription and metabolome analysis of red spotting disease in the sea urchin, strongylocentrotus intermedius. Aquac. Rep. 2022, 22, 100957. [Google Scholar] [CrossRef]
- Yu, J.Z.; Ying, Y.; Liu, Y.; Sun, C.B.; Dai, C.; Zhao, S.; Tian, S.Z.; Peng, J.; Han, N.P.; Yuan, J.L.; et al. Antifibrotic action of Yifei Sanjie formula enhanced autophagy via PI3K-AKT-mTOR signaling pathway in mouse model of pulmonary fibrosis. Biomed Pharmacother. 2019, 118, 109293. [Google Scholar] [CrossRef]
- Zhang, D.; Qiang, R.; Zhou, Z.; Pan, Y.; Yu, S.; Yuan, W.; Cheng, J.; Wang, J.; Zhao, D.; Zhu, J.; et al. Biocontrol and Action Mechanism of Bacillus subtilis Lipopeptides’ Fengycins Against Alternaria solani in Potato as Assessed by a Transcriptome Analysis. Front. Microbiol. 2022, 13, 861113. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Y.; Xie, J.; Zhao, S.; Qin, W.; Song, Q.; Wang, S.; Rong, C. Bacterial Infection Induces Ultrastructural and Transcriptional Changes in the King Oyster Mushroom (Pleurotus eryngii). Microbiol. Spectr. 2022, 10, e0144522. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.; Xiao, Y.T.; Tsai, J.N.; Li, T.T.; Wu, H.Y.; Liu, L.D.; Tzeng, D.S.; Chung, C.L. In Vitro and in Planta Evaluation of Trichoderma asperellum TA as a Biocontrol Agent Against Phellinus noxius, the Cause of Brown Root Rot Disease of Trees. Plant Dis. 2019, 103, 2733–2741. [Google Scholar] [CrossRef] [PubMed]
- Burcham, D.C.; Jia, Y.W.; Abarrientos, N.V.; Ali, M.; Schwarze, F. In vitro evaluation of antagonism by Trichoderma spp. towards Phellinus noxius associated with rain tree (Samanea saman) and Senegal mahogany (Khaya senegalensis) in Singapore. bioRxiv 2017. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.T.; Chen, C.Y.; You, B.J.; Lee, M.H.; Huang, J.W. Brown Root Rot Disease of Phyllanthus myrtifolius: The Causal Agent and Two Potential Biological Control Agents. Plant Dis. 2020, 104, 3043–3053. [Google Scholar] [CrossRef]
- Kashyap, A.S.; Manzar, N.; Nebapure, S.M.; Rajawat, M.V.S.; Deo, M.M.; Singh, J.P.; Kesharwani, A.K.; Singh, R.P.; Dubey, S.C.; Singh, D. Unraveling Microbial Volatile Elicitors Using a Transparent Methodology for Induction of Systemic Resistance and Regulation of Antioxidant Genes at Expression Levels in Chili against Bacterial Wilt Disease. Antioxidants 2022, 11, 404. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.M.; Al-Qurashi, A.D.; Almasoudi, N.M. Evaluation of the synergy between Schwanniomyces vanrijiae and propolis in the control of Penicillium digitatum on lemons. Egypt. J. Biol. Pest Control 2021, 31, 66. [Google Scholar] [CrossRef]
- Bagy Hadeel, M.M.K.; Abo-Elyousr, K.A.M.; Hesham, A.E.L.; Sallam Nashwa, M.A. Development of antagonistic yeasts for controlling black mold disease of Onion. Egypt. J. Biol. Pest Control 2023, 33, 17. [Google Scholar] [CrossRef]
- Liu, J.; Hagberg, I.; Novitsky, L.; Hadj-Moussa, H.; Avis, T.J. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol. 2014, 118, 855–861. [Google Scholar] [CrossRef]
- Gu, Q.; Yang, Y.; Yuan, Q.; Shi, G.; Wu, L.; Lou, Z.; Huo, R.; Wu, H.; Borriss, R.; Gao, X. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum. Appl. Environ. Microbiol. 2017, 83, e01075-17. [Google Scholar] [CrossRef] [Green Version]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef]
- Fatima, R.; Mahmood, T.; Moosa, A.; Aslam, M.N.; Shakeel, M.T.; Maqsood, A.; Shafiq, M.U.; Ahmad, T.; Moustafa, M.; Al-Shehri, M. Bacillus thuringiensis CHGP12 uses a multifaceted approach for the suppression of Fusarium oxysporum f. sp. ciceris and to enhance the biomass of chickpea plants. Pest Manag. Sci. 2023, 79, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Tenea, G.N.; Ascanta, P. Bioprospecting of Ribosomally Synthesized and Post-translationally Modified Peptides Through Genome Characterization of a Novel Probiotic Lactiplantibacillus plantarum UTNGt21A Strain: A Promising Natural Antimicrobials Factory. Front. Microbiol. 2022, 13, 868025. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Song, C.; Muñoz, C.Y.; Kuipers, O.P. Bacillus cabrialesii BH5 Protects Tomato Plants Against Botrytis cinerea by Production of Specific Antifungal Compounds. Front. Microbiol. 2021, 12, 707609. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Chou, H.P.; Huang, J.W.; Deng, W.L. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola. Microbiol. Res. 2021, 251, 126815. [Google Scholar] [CrossRef]
- Kupper, K.C.; Moretto, R.K.; Fujimoto, A. Production of antifungal compounds by Bacillus spp. isolates and its capacity for controlling citrus black spot under field conditions. World J. Microbiol. Biotechnol. 2019, 36, 7. [Google Scholar] [CrossRef]
- Guevara-Avendaño, E.; Lizette Pérez-Molina, M.; Luis Monribot-Villanueva, J.; Marian Cortazar-Murillo, E.; Ramírez-Vázquez, M.; Reverchon, F.; Antonio Guerrero-Analco, J. Identification of Antifungal Compounds from Avocado Rhizobacteria (Bacillus spp.) against Fusarium spp., by a Bioassay-Guided Fractionation Approach. Chem. Biodivers. 2022, 19, e202200687. [Google Scholar] [CrossRef]
- Pang, Y.; Yang, J.; Chen, X.; Jia, Y.; Li, T.; Jin, J.; Liu, H.; Jiang, L.; Hao, Y.; Zhang, H.; et al. An Antifungal Chitosanase from Bacillus subtilis SH21. Molecules 2021, 26, 1863. [Google Scholar] [CrossRef]
- Zahari, R.; Halimoon, N.; Ahmad, M.F.; Ling, S.K. Antifungal Compound Isolated from Catharanthus roseus L. (Pink) for Biological Control of Root Rot Rubber Diseases. Int. J. Anal. Chem. 2018, 2018, 8150610. [Google Scholar] [CrossRef] [Green Version]
- Panchalingam, H.; Powell, D.; Adra, C.; Foster, K.; Tomlin, R.; Quigley, B.L.; Nyari, S.; Hayes, R.A.; Shapcott, A.; Kurtböke, D.İ. Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. J. Fungi 2022, 8, 1105. [Google Scholar] [CrossRef]
- Magan, J.B.; O’Callaghan, T.F.; Zheng, J.; Zhang, L.; Mandal, R.; Hennessy, D.; Fenelon, M.A.; Wishart, D.S.; Kelly, A.L.; McCarthy, N.A. Impact of Bovine Diet on Metabolomic Profile of Skim Milk and Whey Protein Ingredients. Metabolites 2019, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, N.N.; Lindqvist, L.L.; Wibowo, M.; Sonnenschein, E.C.; Bentzon-Tilia, M.; Gram, L. Role is in the eye of the beholder-the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol. Rev. 2022, 46, fuac007. [Google Scholar] [CrossRef] [PubMed]
Model | Type | A | N | R2X (cum) | Title |
---|---|---|---|---|---|
POS | PCA | 2 | 12 | 0.928 | TC vs. CK |
NEG | PCA | 2 | 12 | 0.927 | TC vs. CK |
Model | Type | A | N | R2X (cum) | R2Y (cum) | Q2 (cum) | Title |
---|---|---|---|---|---|---|---|
POS | OPLS-DA | 1 + 1 + 0 | 12 | 0.819 | 0.989 | 0.972 | TC vs. CK |
NEG | OPLS-DA | 1 + 1 + 0 | 12 | 0.811 | 0.988 | 0.969 | TC vs. CK |
Differential Metabolite | MS2-Score | VIP | Q-Value | Fold Change |
---|---|---|---|---|
5-Hydroxyhexanoic acid | 0.9045 | 1.2864 | 0.00001 | 15.4119 |
2-Methylglutaric acid | 0.8617 | 1.2759 | 0.0006 | 126.4513 |
L-2-Aminobutyric acid | 0.9700 | 1.2758 | 0.0013 | 31.8914 |
trans-2-Octenoic acid | 0.8521 | 1.2426 | 0.0035 | 4.51206 |
Phenyllactic acid | 0.9254 | 1.2345 | 0.0020 | 3.4718 |
3-Hydroxycapric acid | 0.8604 | 1.2222 | 0.00001 | 0.0335 |
3-Guanidinopropanoate | 0.9199 | 1.2382 | 0.0023 | 6.4467 |
4-Guanidinobutyric acid | 0.9836 | 1.1470 | 0.0206 | 2.9586 |
Stearic acid | 0.9938 | 1.1215 | 0.0002 | 2.5096 |
Levulinic acid | 0.8681 | 1.0706 | 0.0101 | 2.7918 |
2-Amino-2-methyl-1,3-propanediol | 0.8524 | 1.0991 | 0.0280 | 3.7020 |
Tetramethylpyrazine | 0.9621 | 1.2421 | 0.00006 | 2.6826 |
Tolazoline | 0.9169 | 1.2002 | 0.0032 | 3.7448 |
Methyl acetoacetate | 0.9958 | 1.2743 | 0.0009 | 10.9199 |
Cyclopentolate | 0.9701 | 1.2541 | 0.0074 | 67.2024 |
Glycerol 1-myristate | 0.9077 | 1.2224 | 0.0183 | 42.9216 |
Meclofenoxate | 0.8968 | 1.2287 | 0.00002 | 10.5913 |
Acetoin | 0.9066 | 1.2618 | 0.0012 | 9.8972 |
Diacetyl | 0.9002 | 1.0707 | 0.0290 | 2.4256 |
N-Acetylcadaverine | 0.9816 | 1.1010 | 0.0175 | 3.9136 |
Erucamide | 0.9398 | 1.0369 | 0.0006 | 3.9047 |
Putrescine | 0.8668 | 1.1757 | 0.0239 | 9.6776 |
N,N-Dimethylaniline | 0.9495 | 1.1553 | 0.0210 | 3.5936 |
Dopamine | 0.9643 | 1.2165 | 0.0053 | 6.7305 |
Trimethobenzamide | 0.9876 | 1.2593 | 0.0004 | 6.3928 |
Tamoxifen | 0.9979 | 1.2375 | 0.0031 | 14.6384 |
Amitraz | 0.9959 | 1.2169 | 0.0013 | 3.4780 |
Arecoline | 0.9996 | 1.1740 | 0.0322 | 6.9166 |
Ellipticine | 0.9452 | 1.1621 | 0.0093 | 4.2528 |
Pure Products of Metabolites | Toxicity Regression Equation (Y = aX + b) | Correlation Coefficient (r) | Median Effective Concentrations (mg/mL) (EC50) |
---|---|---|---|
trans-2-octenoic acid | Y = 0.9112x + 5.0384 | 0.9820 | 0.9075 |
diacetyl | Y = 0.8506x + 4.4189 | 0.9739 | 4.8213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Wu, W.; Li, R.; Lu, Y.; Wang, G.; Tan, S.; Chen, H.; Xi, J.; Huang, X.; He, C.; et al. Evaluation of Bacillus subtilis Czk1 Metabolites by LC–MS/MS and Their Antifungal Potential against Pyrrhoderma noxium Causing Brow Rot Disease. Agriculture 2023, 13, 1396. https://doi.org/10.3390/agriculture13071396
Liang Y, Wu W, Li R, Lu Y, Wang G, Tan S, Chen H, Xi J, Huang X, He C, et al. Evaluation of Bacillus subtilis Czk1 Metabolites by LC–MS/MS and Their Antifungal Potential against Pyrrhoderma noxium Causing Brow Rot Disease. Agriculture. 2023; 13(7):1396. https://doi.org/10.3390/agriculture13071396
Chicago/Turabian StyleLiang, Yanqiong, Weihuai Wu, Rui Li, Ying Lu, Guihua Wang, Shibei Tan, Helong Chen, Jingen Xi, Xing Huang, Chunping He, and et al. 2023. "Evaluation of Bacillus subtilis Czk1 Metabolites by LC–MS/MS and Their Antifungal Potential against Pyrrhoderma noxium Causing Brow Rot Disease" Agriculture 13, no. 7: 1396. https://doi.org/10.3390/agriculture13071396
APA StyleLiang, Y., Wu, W., Li, R., Lu, Y., Wang, G., Tan, S., Chen, H., Xi, J., Huang, X., He, C., & Yi, K. (2023). Evaluation of Bacillus subtilis Czk1 Metabolites by LC–MS/MS and Their Antifungal Potential against Pyrrhoderma noxium Causing Brow Rot Disease. Agriculture, 13(7), 1396. https://doi.org/10.3390/agriculture13071396