A Methodological Review of Fluorescence Imaging for Quality Assessment of Agricultural Products
Abstract
:1. Introduction
2. Fluorescence Concepts and Methodology
3. Fluorescence Basis and Imaging Configuration
4. Fluorescence Imaging Application—An Example
5. Comparisons of Different Imaging Options for Quality Assessment
6. Areas for Future Investigation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.-R.; Chao, K.; Kim, M.S. Machine Vision Technology for Agricultural Applications. Comput. Electron. Agric. 2002, 36, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Blasco, J.; Aleixos, N.; Moltó, E. Machine Vision System for Automatic Quality Grading of Fruit. Biosyst. Eng. 2003, 85, 415–423. [Google Scholar] [CrossRef]
- Momin, M.A.; Rahman, M.T.; Sultana, M.S.; Igathinathane, C.; Ziauddin, A.T.M.; Grift, T.E. Geometry-Based Mass Grading of Mango Fruits Using Image Processing. Inf. Process. Agric. 2017, 4, 150–160. [Google Scholar] [CrossRef]
- Li, J.; Rao, X.; Ying, Y. Detection of Common Defects on Oranges Using Hyperspectral Reflectance Imaging. Comput. Electron. Agric. 2011, 78, 38–48. [Google Scholar] [CrossRef]
- Prabhakar, C.J.; Mohana, S.H. Computer Vision Based Technique for Surface Defect Detection of Apples. In Research Developments in Computer Vision and Image Processing: Methodologies and Applications; Srivastava, R., Singh, S.K., Shukla, K.K., Eds.; IGI Global: Hershey, PA, USA, 2014; pp. 111–121. ISBN 9781466645585. [Google Scholar]
- Kondo, N.; Yamamoto, K.; Yata, K.; Kurita, M. A Machine Vision for Tomato Cluster Harvesting Robot. In Proceedings of the ASABE Annual International Meeting Sponsored by ASABE, Providence, RI, USA, 29 June–2 July 2008. Paper Number: 084044. [Google Scholar]
- Xue, J.; Zhang, L.; Grift, T.E. Variable Field-of-View Machine Vision Based Row Guidance of an Agricultural Robot. Comput. Electron. Agric. 2012, 84, 85–91. [Google Scholar] [CrossRef]
- Davenel, A.; Guizard, C.H.; Labarre, T.; Sevila, F. Automatic Detection of Surface Defects on Fruit by Using a Vision System. J. Agric. Eng. Res. 1988, 41, 1–9. [Google Scholar] [CrossRef]
- Rehkugler, G.E.; Throopmann, J.A. Image Processing Algorithm for Apple Defect Detection. Trans. ASAE 1989, 32, 267–272. [Google Scholar] [CrossRef]
- Singh, N.; Delwiche, M.J. Machine Vision Algorithms for Defect Sorting Stonefruit. Trans. ASAE 1994, 37, 1989–1997. [Google Scholar] [CrossRef]
- Throop, J.A.; Aneshansley, D.J.; Upchurch, B.L. An Image Processing Algorithm to Find New and Old Bruises. Appl. Eng. Agric. 1995, 11, 751–757. [Google Scholar] [CrossRef]
- Rigney, M.P.; Brusewitz, G.H.; Kranzler, G.A. Asparagus Defect Inspection with Machine Vision. Trans. ASAE 1992, 35, 1873–1878. [Google Scholar] [CrossRef]
- McDonald, T.P.; Chen, Y.R. A Geometric Model of Marbling in Beef Longissimus Dorsi. Trans. ASAE 1992, 35, 1057–1062. [Google Scholar] [CrossRef]
- McDonald, T.P.; Chen, Y.R. Visual Characterization of Marbling in Beef Ribeyes and Its Relationship to Taste R\Rameters. Trans. ASAE 1990, 34, 2499–2504. [Google Scholar] [CrossRef]
- Hwang, H.; Park, B.; Nguyen, M.; Chen, Y.-R. Hybrid Image Processing for Robust Extraction of Lean Tissue on Beef Cut Surfaces. Comput. Electron. Agric. 1997, 17, 281–294. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, S.; Liu, F.; He, Y.; Bao, Y.; Zhang, C. Hyperspectral Imaging for Seed Quality and Safety Inspection: A Review. Plant Methods 2019, 15, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Qiao, H.; Feng, Q.; Xu, L.; Lin, Q.; Cai, K. Rapid Detection of Pomelo Fruit Quality Using Near-Infrared Hyperspectral Imaging Combined with Chemometric Methods. Front. Bioeng. Biotechnol. 2021, 8, 616943. [Google Scholar] [CrossRef]
- Heinemann, P.H.; Varghese, Z.A.; Morrow, C.T.; Sommer, H.J., III; Crassweller, R.M. Machine Vision Inspection of ‘Golden Delicious’ Apples. Appl. Eng. Agric. 1995, 11, 901–906. [Google Scholar] [CrossRef]
- Leemans, V.; Magein, H.; Destain, M.-F. Defect Segmentation on ‘Jonagold’ Apples Using Colour Vision and a Bayesian Classification Method. Comput. Electron. Agric. 1999, 23, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, F.; Aguilera, J.M. Application of Image Analysis for Classification of Ripening Bananas. J. Food Sci. 2004, 69, E471–E477. [Google Scholar] [CrossRef]
- Lee, D.J.; Archibald, J.K. Color Image Processing for Date Quality Evaluation. In Proceedings of the Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques, San Jose, CA, USA, 18–19 January 2010; Casasent, D.P., Hall, E.L., Röning, J., Eds.; SPIE: Bellingham, WA, USA, 2010; Volume 7539, p. 75390V. [Google Scholar]
- Bejo, S.K.; Kamaruddin, S. Determination of Chokanan Mango Sweetness (Mangifera Indica) Using Non-Destructive Image Processing Technique. Aust. J. Crop Sci. 2014, 8, 475–480. [Google Scholar]
- Momin, M.A.; Yamamoto, K.; Miyamoto, M.; Kondo, N.; Grift, T. Machine Vision Based Soybean Quality Evaluation. Comput. Electron. Agric. 2017, 140, 452–460. [Google Scholar] [CrossRef]
- Ali, M.; Hashim, N.; Khairunniza-Bejo, S.; Shamsudin, R.; Wan Sembak, W.N.F.H. RGB Imaging System for Monitoring Quality Changes of Seedless Watermelon during Storage. Acta Hortic. 2017, 1152, 361–366. [Google Scholar]
- Rady, A.M.; Adedeji, A.; Watson, N.J. Feasibility of Utilizing Color Imaging and Machine Learning for Adulteration Detection in Minced Meat. J. Agric. Food Res. 2021, 6, 100251. [Google Scholar] [CrossRef]
- GIS Geography. Multispectral vs. Hyperspectral Imagery Explained. Available online: https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/ (accessed on 20 November 2022).
- Park, B.; Chen, Y.R.; Nguyen, M. Multi-Spectral Image Analysis Using Neural Network Algorithm for Inspection of Poultry Carcasses. J. Agric. Eng. Res. 1998, 69, 351–363. [Google Scholar] [CrossRef]
- Aleixos, N.; Blasco, J.; Navarró, F.; Moltó, E. Multispectral Inspection of Citrus in Real-Time Using. Machine Vision. and Digital Signal Processors. Comput. Electron. Agric. 2002, 33, 121–137. [Google Scholar] [CrossRef]
- Blasco, J.; Aleixos, N.; Gómez, J.; Moltó, E. Citrus Sorting by Identification of the Most Common Defects Using Multispectral Computer Vision. J. Food Eng. 2007, 83, 384–393. [Google Scholar] [CrossRef]
- Blasco, J.; Aleixos, N.; Gómez-Sanchís, J.; Moltó, E. Recognition and Classification of External Skin Damage in Citrus Fruits Using Multispectral Data and Morphological Features. Biosyst. Eng. 2009, 103, 137–145. [Google Scholar] [CrossRef]
- Su, W.-H.; Sun, D.-W. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 220–239. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Chen, Y.R.; Mehl, P.M. Hyperspectral Reflectance and Fluorescence Imaging System for Food Quality and Safety. Trans. ASAE 2001, 44, 721–729. [Google Scholar]
- Zavattini, G.; Vecchi, S.; Leahy, R.M.; Smith, D.J.; Cherry, S.R. A Hyperspectral Fluorescence Imaging System for Biological Applications. In Proceedings of the IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515), Portland, OR, USA, 19–25 October 2003; pp. 942–946. [Google Scholar]
- Huang, H.; Liu, L.; Ngadi, M.O. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sensors 2014, 14, 7248–7276. [Google Scholar] [CrossRef] [Green Version]
- Li, J.B.; Rao, X.Q.; Ying, Y.B. Advance on Application of Hyperspectral Imaging to Nondestructive Detection of Agricultural Products External Quality. Guang Pu Xue Yu Guang Pu Fen Xi 2011, 31, 2021–2026. [Google Scholar]
- Gowen, A.; O’donnell, C.; Taghizadeh, M.; Cullen, P.; Frias, J.; Downey, G. Hyperspectral Imaging Combined with Principal Component Analysis for Bruise Damage Detection on White Mushrooms (Agaricus Bisporus). J. Chemom. 2008, 22, 259–267. [Google Scholar] [CrossRef]
- Xing, J.; Bravo, C.; Jancsók, P.T.; Ramon, H.; de Baerdemaeker, J. Detecting Bruises on “Golden Delicious” Apples Using Hyperspectral Imaging with Multiple Wavebands. Biosyst. Eng. 2005, 90, 27–36. [Google Scholar] [CrossRef]
- Nagata, M.; Tallada, J.G.; Kobayashi, T. Bruise Detection Using NIR Hyperspectral Imaging for Strawberry (Fragaria x Ananassa Duch.). Environ. Control Biol. 2006, 44, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Burks, T.F.; Kim, M.S.; Chao, K.; Ritenour, M.A. Citrus Canker Detection Using Hyperspectral Reflectance Imaging and PCA-Based Image Classification Method. Sens. Instrum. Food Qual. Saf. 2008, 2, 168–177. [Google Scholar] [CrossRef]
- Gómez-Sanchis, J.; Gómez-Chova, L.; Aleixos, N.; Camps-Valls, G.; Montesinos-Herrero, C.; Moltó, E.; Blasco, J. Hyperspectral System for Early Detection of Rottenness Caused by Penicillium Digitatum in Mandarins. J. Food Eng. 2008, 89, 80–86. [Google Scholar] [CrossRef]
- López-García, F.; Andreu-García, G.; Blasco, J.; Aleixos, N.; Valiente, J.-M. Automatic Detection of Skin Defects in Citrus Fruits Using a Multivariate Image Analysis Approach. Comput. Electron. Agric. 2010, 71, 189–197. [Google Scholar] [CrossRef]
- Kim, I.; Kim, M.S.; Chen, Y.R.; Kong, S.G. Detection of Skin Tumors on Chicken Carcasses Using Hyperspectral Fluorescence Imaging. Trans. ASAE 2004, 47, 1785–1792. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Hruska, Z.; Kincaid, R.; Brown, R.L.; Bhatnagar, D.; Cleveland, T.E. Detecting Maize Inoculated with Toxigenic and Atoxigenic Fungal Strains with Fluorescence Hyperspectral Imagery. Biosyst. Eng. 2013, 115, 125–135. [Google Scholar] [CrossRef]
- Qiao, J.; Ngadi, M.O.; Wang, N.; Gariépy, C.; Prasher, S.O. Pork Quality and Marbling Level Assessment Using a Hyperspectral Imaging System. J. Food Eng. 2007, 83, 10–16. [Google Scholar] [CrossRef]
- Barbin, D.F.; El Masry, G.; Sun, D.; Allen, P. Near-Infrared Hyperspectral Imaging for Grading and Classification of Pork. Meat Sci. 2012, 90, 259–268. [Google Scholar] [CrossRef]
- Momin, M.A.; Kondo, N.; Kuramoto, M.; Ogawa, Y.; Yamamoto, K.; Shiigi, T. Investigation of Excitation Wavelength for Fluorescence Emission of Citrus Peels Based on UV-VIS Spectra. Eng. Agric. Environ. Food 2012, 5, 126–132. [Google Scholar] [CrossRef]
- Chen, W.-T.; Kuo, Y.-F. Detecting Bran Residue Distribution on Rice Surface Using Fluorescence Imaging. In Proceedings of the An ASABE—CSBE/ASABE Joint Meeting Presentation, Montreal, QC, Canada, 13–16 July 2014; Paper Number 00860; Annual International Meeting Sponsored by ASABE. 1419. [Google Scholar]
- Noh, H.K.; Lu, R. Hyperspectral Laser-Induced Fluorescence Imaging for Assessing Apple Fruit Quality. Postharvest Biol. Technol. 2007, 43, 193–201. [Google Scholar] [CrossRef]
- Momin, M.A.; Kondo, N.; Ogawa, Y.; Ido, K.; Ninomiya, K. Patterns of Fluorescence Associated with Citrus Peel Defects. Eng. Agric. Environ. Food 2013, 6, 54–60. [Google Scholar] [CrossRef]
- Al Riza, D.F.; Rulin, C.; Tun, N.T.T.; Yi, P.P.L.; Thwe, A.A.; Myint, K.T.; Kondo, N. Mango (Mangifera Indica Cv. Sein Ta Lone) Ripeness Level Prediction Using Color and Textural Features of Combined Reflectance-Fluorescence Images. J. Agric. Food Res. 2023, 11, 100477. [Google Scholar] [CrossRef]
- Nie, S.; Al Riza, D.F.; Ogawa, Y.; Suzuki, T.; Kuramoto, M.; Miyata, N.; Kondo, N. Potential of a Double Lighting Imaging System for Characterization of “Hayward” Kiwifruit Harvest Indices. Postharvest Biol. Technol. 2020, 162, 111113. [Google Scholar] [CrossRef]
- Fu, X.; Wang, M. Detection of Early Bruises on Pears Using Fluorescence Hyperspectral Imaging Technique. Food Anal. Methods 2022, 15, 115–123. [Google Scholar] [CrossRef]
- Pieczywek, P.M.; Cybulska, J.; Szymańska-Chargot, M.; Siedliska, A.; Zdunek, A.; Nosalewicz, A.; Baranowski, P.; Kurenda, A. Early Detection of Fungal Infection of Stored Apple Fruit with Optical Sensors—Comparison of Biospeckle, Hyperspectral Imaging and Chlorophyll Fluorescence. Food Control 2018, 85, 327–338. [Google Scholar] [CrossRef]
- Hachiya, M.; Asanome, N.; Goto, T.; Noda, T. Fluorescence Imaging with UV-Excitation for Evaluating Freshness of Rice. Jpn. Agric. Res. Q. 2009, 43, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Chao, K.; Kim, M.S.; Kang, S.; Cho, B.-K.; Jun, W. Detection of Organic Residues on Poultry Processing Equipment Surfaces by LED-Induced Fluorescence Imaging. Appl. Eng. Agric. 2011, 27, 153–161. [Google Scholar] [CrossRef]
- Hwang, C.; Mo, C.; Seo, Y.; Lim, J.; Baek, I.; Kim, M.S. Development of Fluorescence Imaging Technique to Detect Fresh-Cut Food Organic Residue on Processing Equipment Surface. Appl. Sci. 2021, 11, 458. [Google Scholar] [CrossRef]
- Chasteen, T.G. Jablonski Diagram. Available online: https://www.shsu.edu/chm_tgc/chemilumdir/JABLONSKI.html (accessed on 1 July 2021).
- Zhu, C.; Palmer, G.M.; Breslin, T.M.; Harter, J.; Ramanujam, N. Diagnosis of Breast Cancer Using Fluorescence and Diffuse Reflectance Spectroscopy: A Monte-Carlo-Model-Based Approach. J. Biomed. Opt. 2008, 13, 034015. [Google Scholar] [CrossRef] [Green Version]
- Herman, B.; Lakowicz, J.R.; Murphy, D.B.; Fellers, T.J.; Davidson, M.W. Fluorescence Excitation and Emission Fundamentals. Available online: https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/confocal/fluoroexciteemit/ (accessed on 10 July 2022).
- Momin, M.A. Fluorescence Imaging for Defect Inspection of Citrus Fruits. Ph.D. Thesis, Kyoto University, Kyoto, Japan, 2013, unpublished. [Google Scholar]
- Goodwin, R.H. Fluorescent Substances in Plants. Annu. Rev. Plant Physiol. 1953, 4, 283–304. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Baltimore, MD, USA, 2010. [Google Scholar]
- Latz, H.W.; Ernes, D.A. Selective Fluorescence Detection of Citrus Oil Components Separated by High-Performance Liquid Chromatography. J. Chromatogr. A 1978, 166, 189–199. [Google Scholar] [CrossRef]
- Uozumi, J.; Kawano, S.; Iwamoto, M.; Nishinari, K. Spectrophotometric System for the Quality Evaluation of Unevenly Colored Food. J. Food Sci. Technol.-Mysore 1987, 34, 163–170. [Google Scholar] [CrossRef]
- Castillo, J.; Benavente, O.; del Río, J.A. Naringin and Neohesperidin Levels during Development of Leaves, Flower Buds, and Fruits of Citrus Aurantium. Plant Physiol. 1992, 99, 67–73. [Google Scholar] [CrossRef]
- Benavente-Garcia, O.; Castillo, J.; del Rio, J. Changes in Neodiosmin Levels during the Development of Citrus Aurantium Leaves and Fruits. Postulation of a Neodiosmin Biosynthetic Pathway. J. Agric. Food Chem. 1993, 41, 1916–1919. [Google Scholar] [CrossRef]
- Swift, L.J. Thin-Layer Chromatographic-Spectrophotometric Analysis for Neutral Fraction Flavones in Orange Peel Juice. J. Agric. Food Chem. 1967, 15, 99–101. [Google Scholar] [CrossRef]
- Kondo, N.; Kuramoto, M.; Shimizu, H.; Ogawa, Y.; Kurita, M.; Nishizu, T.; Chong, V.K.; Yamamoto, K. Identification of Fluorescent Substance in Mandarin Orange Skin for Machine Vision System to Detect Rotten Citrus Fruits. Eng. Agric. Environ. Food 2009, 2, 54–59. [Google Scholar] [CrossRef]
- Ingle, J.D.; Crouch, S.R. Spectrochemical Analysis, 1st ed.; Prentice Hall: Hoboken, NJ, USA, 1988. [Google Scholar]
- Kondo, N.; Ting, K. Robotics for Bio Production Systems; Kondo, N., Ting, K., Eds.; Amer Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1998. [Google Scholar]
- Bhargava, A.; Bansal, A. Fruits and Vegetables Quality Evaluation Using Computer Vision: A Review. J. King Saud Univ. Comput. Inf. Sci. 2021, 33, 243–257. [Google Scholar] [CrossRef]
- Specim. Hyperspectral Technology vs. RGB. Available online: https://www.specim.com/hyperspectral-technology-vs-rgb/ (accessed on 27 May 2023).
- Gowen, A.A.; Burger, J.; O’Callaghan, D.; O’Donnell, C.P. Potential Applications of Hyperspectral Imaging for Quality Control in Dairy Foods. Bornimer Agrartech. Berichte 2009, 65–81. Available online: http://www2.atb-potsdam.de/CIGR-ImageAnalysis/images/07_125_%20Gowen.pdf (accessed on 20 May 2023).
- Di Paolo Emilio, M. Hyperspectral Imaging for Agriculture. Available online: https://www.eetimes.eu/hyperspectral-imaging-for-agriculture/ (accessed on 26 May 2023).
- Unispectral. Breaking Hyperspectral Barriers. Available online: https://www.imveurope.com/viewpoint/breaking-hyperspectral-barriers (accessed on 25 May 2023).
- Omwange, K.A.; al Riza, D.F.; Sen, N.; Shiigi, T.; Kuramoto, M.; Ogawa, Y.; Kondo, N.; Suzuki, T. Fish Freshness Monitoring Using UV-Fluorescence Imaging on Japanese Dace (Tribolodon Hakonensis) Fisheye. J. Food Eng. 2020, 287, 110111. [Google Scholar] [CrossRef]
- Khaliduzzaman, A.; Omwange, K.A.; Al Riza, D.F.; Konagaya, K.; Kamruzzaman, M.; Alom, M.S.; Gao, T.; Saito, Y.; Kondo, N. Antioxidant Assessment of Agricultural Produce Using Fluorescence Techniques: A Review. Crit. Rev. Food Sci. Nutr. 2021, 63, 3704–3715. [Google Scholar] [CrossRef] [PubMed]
- Al Riza, D.F.; Widodo, S.; Purwanto, Y.A.; Kondo, N. Combined Fluorescence-Transmittance Imaging System for Geographical Authentication of Patchouli Oil. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 218, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Fatchurrahman, D.; Kuramoto, M.; Kondo, N.; Ogawa, Y.; Suzuki, T. Identification of UV-Fluorescence Components Associated with and Detection of Surface Damage in Green Pepper (Capsicum annum L.). In Proceedings of the 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzeň, Czechia, 8–12 June 2015. [Google Scholar]
- Momin, M.A.; Kuramoto, M.; Kondo, N.; Ido, K.; Ogawa, Y.; Shiigi, T.; Ahmad, U. Identification of UV-Fluorescence Components for Detecting Peel Defects of Lemon and Yuzu Using Machine Vision. Eng. Agric. Environ. Food 2013, 6, 165–171. [Google Scholar] [CrossRef]
- Muharfiza; Al Riza, D.F.; Saito, Y.; Itakura, K.; Kohno, Y.; Suzuki, T.; Kuramoto, M.; Kondo, N. Monitoring of Fluorescence Characteristics of Satsuma Mandarin (Citrus unshiu Marc.) during the Maturation Period. Horticulturae 2017, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Konagaya, K.; Al Riza, D.F.; Nie, S.; Yoneda, M.; Hirata, T.; Takahashi, N.; Kuramoto, M.; Ogawa, Y.; Suzuki, T.; Kondo, N. Monitoring Mature Tomato (Red Stage) Quality during Storage Using Ultraviolet-Induced Visible Fluorescence Image. Postharvest Biol. Technol. 2020, 160, 111031. [Google Scholar] [CrossRef]
- Al Riza, D.F.; Kumar, S.K.; Suzuki, T.; Ogawa, Y.; Kondo, N. Preliminary Investigation on Rice Bran Residue Detection Using Ultraviolet Fluorescence Imaging. In Proceedings of the Fourth International Seminar on Photonics, Optics, and Its Applications (ISPhOA 2020), Virtual, 12 March 2021; Nasution, A.M.T., Wahyuono, R.A., Hatta, A.M., Eds.; SPIE: Bellingham, WA, USA, 2021; Volume 11789, p. 117890I. [Google Scholar]
- Langhals, H. Fluorescence and Fluorescent Dyes. Phys. Sci. Rev. 2020, 5, 20190100. [Google Scholar] [CrossRef]
- Park, S.Y.; Yoon, S.A.; Cha, Y.; Lee, M.H. Recent Advances in Fluorescent Probes for Cellular Antioxidants: Detection of NADH, HNQO1, H2S, and Other Redox Biomolecules. Coord. Chem. Rev. 2021, 428, 213613. [Google Scholar] [CrossRef]
- Ulku, A.; Ardelean, A.; Antolovic, M.; Weiss, S.; Charbon, E.; Bruschini, C.; Michalet, X. Wide-Field Time-Gated SPAD Imager for Phasor-Based FLIM Applications. Methods Appl. Fluoresc. 2020, 8, 24002. [Google Scholar] [CrossRef]
- Chen, H.; Liu, K.; Hu, L.; Al-Ghamdi, A.A.; Fang, X. New Concept Ultraviolet Photodetectors. Mater. Today 2015, 18, 493–502. [Google Scholar] [CrossRef]
- Council, N.R. Seeing Photons: Progress and Limits of Visible and Infrared Sensor Arrays; The National Academies Press: Washington, DC, USA, 2010; ISBN 978-0-309-15304-1. [Google Scholar]
- Muramoto, Y.; Kimura, M.; Nouda, S. Development and Future of Ultraviolet Light-Emitting Diodes: UV-LED Will Replace the UV Lamp. Semicond. Sci. Technol. 2014, 29, 84004. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Zhang, H.; Yu, P. X-Ray Fluorescence Application in Food, Feed, and Agricultural Science: A Critical Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2340–2350. [Google Scholar] [CrossRef]
- Singh, K.V.; Sharma, N.; Singh, K.V. Application of Wavelength Dispersive X-Ray Fluorescence to Agricultural Disease Research. X-ray Spectrosc. Methods Appl. Today’s Spectrosc. 2021, 36, 23–30. [Google Scholar]
- Mannam, V.; Zhang, Y.; Yuan, X.; Ravasio, C.; Howard, S.S. Machine Learning for Faster and Smarter Fluorescence Lifetime Imaging Microscopy. J. Phys. Photonics 2020, 2, 42005. [Google Scholar] [CrossRef]
- Schaefer, M.A.; Nelson, H.N.; Butrum, J.L.; Gronseth, J.R.; Hines, J.H. A Low-Cost Smartphone Fluorescence Microscope for Research, Life Science Education, and STEM Outreach. Sci. Rep. 2023, 13, 2722. [Google Scholar] [CrossRef]
- Herppich, W.B. Chlorophyll Fluorescence Imaging for Process Optimisation in Horticulture and Fresh Food Production. Photosynthetica 2021, 59, 422–437. [Google Scholar] [CrossRef]
- Matveyeva, T.A.; Sarimov, R.M.; Simakin, A.V.; Astashev, M.E.; Burmistrov, D.E.; Lednev, V.N.; Sdvizhenskii, P.A.; Grishin, M.Y.; Pershin, S.M.; Chilingaryan, N.O.; et al. Using Fluorescence Spectroscopy to Detect Rot in Fruit and Vegetable Crops. Appl. Sci. 2022, 12, 3391. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Zhang, Y.; Feng, Y.; Liu, J.; Zhu, H. Artificial Intelligence in Food Safety: A Decade Review and Bibliometric Analysis. Foods 2023, 12, 1242. [Google Scholar] [CrossRef]
- Gorji, H.T.; Van Kessel, J.A.S.; Haley, B.J.; Husarik, K.; Sonnier, J.; Shahabi, S.M.; Zadeh, H.K.; Chan, D.E.; Qin, J.; Baek, I.; et al. Deep Learning and Multiwavelength Fluorescence Imaging for Cleanliness Assessment and Disinfection in Food Services. Front. Sens. 2022, 3, 977770. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2002; p. 07458. [Google Scholar]
- Mul, Y.G.; Gokhale, A.V. Color Image Segmentation Based on Automatic Seed Pixel Selection. Int. J. Comput. Eng. Manag. 2012, 15, 11–14. [Google Scholar]
- Ma, Z.; Tavares, J.M.R.S.; Jorge, R.N.; Mascarenhas, T. A Review of Algorithms for Medical Image Segmentation and Their Applications to the Female Pelvic Cavity. Comput. Methods Biomech. Biomed. Eng. 2010, 13, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Vala, H.J.; Baxi, A. A Review on Otsu Image Segmentation Algorithm. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 387–389. [Google Scholar]
- Martins Crispi, G.; Valente, D.S.M.; de Queiroz, D.M.; Momin, A.; Fernandes-Filho, E.I.; Picanço, M.C. Using Deep Neural Networks to Evaluate Leafminer Fly Attacks on Tomato Plants. AgriEngineering 2023, 5, 273–286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momin, A.; Kondo, N.; Al Riza, D.F.; Ogawa, Y.; Obenland, D. A Methodological Review of Fluorescence Imaging for Quality Assessment of Agricultural Products. Agriculture 2023, 13, 1433. https://doi.org/10.3390/agriculture13071433
Momin A, Kondo N, Al Riza DF, Ogawa Y, Obenland D. A Methodological Review of Fluorescence Imaging for Quality Assessment of Agricultural Products. Agriculture. 2023; 13(7):1433. https://doi.org/10.3390/agriculture13071433
Chicago/Turabian StyleMomin, Abdul, Naoshi Kondo, Dimas Firmanda Al Riza, Yuichi Ogawa, and David Obenland. 2023. "A Methodological Review of Fluorescence Imaging for Quality Assessment of Agricultural Products" Agriculture 13, no. 7: 1433. https://doi.org/10.3390/agriculture13071433
APA StyleMomin, A., Kondo, N., Al Riza, D. F., Ogawa, Y., & Obenland, D. (2023). A Methodological Review of Fluorescence Imaging for Quality Assessment of Agricultural Products. Agriculture, 13(7), 1433. https://doi.org/10.3390/agriculture13071433