Mathematical Models to Predict Dry Matter Intake and Milk Production by Dairy Cows Managed under Tropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001.
- Smykov, I.T.; Topnikova, E.V.; Danilova, E. Studies on fatty acid profile and microstructure of butter, dairy fat spreads and blended spreads produced in Russia. Int. J. Dairy Technol. 2021, 74, 629–640. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, B.; Zhang, X.; Zhao, S.; Qie, M.; Wang, Q.; Zhao, Y.; Guo, J. Discrimination between organic and conventional raw and UHT milk by fatty acid profile in Inner Mongolia, China. Int. J. Dairy Technol. 2022, 75, 94–105. [Google Scholar] [CrossRef]
- Costa, L.P.M.; Lima, L.S.; Damasceno, J.C.; Marchi, F.E.; Granzotto, F.; Santos, F.S.; Santos, A.L.; Santos, G.T. Combination of pelleting and monensin does not affect antioxidant properties and fatty acids in milk of grazing dairy cows supplemented with a concentrate containing soybean seeds. Trop. Anim. Health Prod. 2020, 52, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Yonjalli, R.V.; Aghjehgheshlagh, F.M.; Mahdavi, A.; Navidshad, B.; Sta, J.I.H. The effects of tannin extract and linseed oil on yield, physicochemical characteristics and fatty acid profile of ewe milk. Int. J. Dairy Technol. 2020, 73, 656–666. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Palmonari, A.; García-González, R.; Chapman, J.D.; McLean, D.J.; Formigoni, A. Effect of an immunomodulatory feed additive in mitigating the stress responses in lactating dairy cows to a high-concentrate diet challenge. Animals 2020, 16, 2129. [Google Scholar] [CrossRef]
- Wanderley, A.M.; Ítavo, L.C.V.; Santos, G.T.; Ítavo, C.C.B.F.; Cunha, C.S.; Difante, G.S.; Dias, A.M.; Mateus, R.G.; Oliveira, M.V.M. Ruminal degradation kinetics of diets with different lipid sources and its influence on intake and milk yield of early lactation crossbred Holstein×Gir cows. Trop. Anim. Health Prod. 2021, 53, 516. [Google Scholar] [CrossRef] [PubMed]
- Gulinski, P.; Salamonczyk, E.; Mlynek, K. Improving nitrogen use efficiency of dairy cows in relation to urea in milk—A review. Anim. Sci. Pap. Rep. 2016, 34, 5–24. [Google Scholar]
- Hristrov, A.N.; Harper, M.; Oh, J.; Giallongo, F.; Lopes, J.C.; Cudoc, G.; Clay, J.; Ward, R.; Chase, L.E. Short communication: Variability in milk urea nitrogen and dairy total mixed ration composition in the northeastern United States. J. Dairy Sci. 2018, 101, 1579–1584. [Google Scholar] [CrossRef]
- Imaizumi, H.; Santos, F.A.P.; Bittar, C.M.M.; Correia, P.S.; Martinez, J.C. Diet crude protein content and sources for lactating dairy cattle. Sci. Agric. 2010, 67, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Kozerski, N.D.; Ítavo, L.C.V.; Santos, G.T.; Ítavo, C.C.B.; Benchaar, C.; Dias, A.M.; Difante, G.S.; Leal, E.S. Extruded urea-corn product can partially replace true protein sources in the diet for lactating Jersey cows. Anim. Feed Sci. Technol. 2021, 282, 115129. [Google Scholar] [CrossRef]
- Hynes, D.N.; Stergiadis, S.; Gordon, A.; Yan, T. Effects of crude protein level in concetrate supplements on animal performance and nitrogen utilization of lactating dairy cows fed fresh-cut perennial grass. J. Dairy Sci. 2016, 99, 8111–8120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammi, L.M.E.; Buonaiuto, G.; Ghiaccio, F.; Cavallini, D.; Palmonari, A.; Fusaro, I.; Massa, V.; Giorgino, A.; Formigoni, A. Combined inclusion of former foodstuff and distiller grains in dairy cows ration: Effect on milk production, rumen environment, and fiber digestibility. Animals 2022, 12, 3519. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, D.; Palmonari, A.; Mammi, L.M.E.; Ghiaccio, F.; Canestrari, G.; Formigoni, A. Evaluation of fecal sampling time points to estimate apparent nutrient digestibility in lactating Holstein dairy cows. Front. Vet. Sci. 2022, 9, 1065258. [Google Scholar] [CrossRef] [PubMed]
- Buonaiuto, G.; Palmonari, A.; Ghiaccio, F.; Visentin, G.; Visentin, G.; Campidonico, L.; Formigoni, A.; Mammi, L.M.E. Effects of complete replacement of corn flour with sorghum flour in dairy cows fed Parmigiano Reggiano dry hay-based ration. Ital. J. Anim. Sci. 2021, 20, 826–833. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Rumimant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Chico-Alcudia, D.R.; Portillo-Salgado, R.; Camacho-Pérez, E.; Peralta-Torres, J.A.; Angeles-Hernandez, J.C.; Muñoz-Benitez, A.L.; Lendechy, V.H.S.; Gurgel, A.L.C.; Difante, G.S.; Ítavo, L.C.V.; et al. Models to predict live weight from heart girth in crossbred beef heifers. Trop. Anim. Health Prod. 2022, 54, 275. [Google Scholar] [CrossRef]
- Gurgel, A.L.C.; Difante, G.S.; Emerenciano Neto, J.V.; Santana, J.C.S.; Fernandes, P.B.; Santos, G.T.; Dias, A.M.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Medeiros, H.R. Prediction of dry matter intake by meat sheep on tropical pastures. Trop. Anim. Health Prod. 2021, 53, 479. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.; Giulio Visentin, G. Stayability in Simmental cattle as affected by muscularity and body condition score between calvings. Front. Vet. Sci. 2023, 10, 1141286. [Google Scholar] [CrossRef]
- Menezes, G.L.; Azevêdo, J.A.G.; Valadares Filho, S.C.; Oliveira, A.F.; Silva, F.F.; Pires, F.P.A.A.; Pereira, M.I.B.; Gonçalves, L.C.; Borges, A.L.C.C.; Jayme, D.G. A new equation to predict dry matter intake by Nellore beef cattle in commercial feedlots in Brazil. Livestock Science. Livest. Sci. 2022, 260, 104952. [Google Scholar] [CrossRef]
- Durman, T.; Lima, L.S.; Rufno, M.O.A.; Gurgel, A.L.C.; Horst, J.A.; Ítavo, L.C.V.; Santos, G.T. Feeding okara, a soybean by-product, to dairy cows as partial protein source enhances economic indexes and preserves milk quality, intake, and digestibility of nutrients. Trop. Anim. Health Prod. 2022, 54, 14. [Google Scholar] [CrossRef]
- Visentin, G.; Lopez-Villalobos, N.; Niero, G.; Degano, L.; Dadati, E.; Formigoni, A.; Visentin, G. The application of Legendre Polynomials to model muscularity and body condition score in primiparous Italian Simmental cattle. Ital. J. Anim. Sci. 2021, 21, 350–360. [Google Scholar]
- Buonaiuto, G.; Cavallini, D.; Mammi, L.M.E.; Ghiaccio, F.; Alberto Palmonari, A.; Formigoni, A.; Visentin, G. The accuracy of NIRS in predicting chemical composition and fibre digestibility of hay-based total mixed rations. Ital. J. Anim. Sci. 2021, 20, 1730–1739. [Google Scholar] [CrossRef]
- Prado, R.M.; Palin, M.F.; Prado, I.N.; Santos, G.T.; Benchaar, C.; Petit, H.V. Milk yield, milk composition, and hepatic lipid metabolism in transition dairy cows fed flaxseed or linola. J. Dairy Sci. 2016, 99, 8831–8846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, F.S.; Zeoulaa, L.M.; Santos, G.T.; Lima, L.S.; Dias, A.L.G.; Rufino, M.O.A.; Schogor, A.L.B.; Marchi, F.E.; Petit, H.V. Intake, digestibility and milk production and composition of dairy cows fed different levels of Yerba Mate in the diet. Anim. Feed Sci. Technol. 2017, 230, 70–76. [Google Scholar] [CrossRef]
- Faccenda, A.; Zambom, M.A.; Avila, A.S.; Schneider, C.R.; Werle, C.H.; Anschau, F.A.; Almeida, R.E.; Lange, M.J.; Santos, G.T. Performance and milk composition of Holstein cows fed with dried malt bagasse and selenium-enriched Saccharomyces cerevisiae. Livest. Sci. 2020, 238, 104081. [Google Scholar] [CrossRef]
- Osorio, J.A.C.; Daniel, J.L.O.; Cabral, J.F.; Almeida, K.V.; Guimarães, K.L.; Sippert, M.R.; Lourenço, J.C.S.; Marchi, F.E.; Velho, J.P.; Santos, G.T. Annatto seeds as antioxidant sources with linseed oil for dairy cows. Animals 2021, 11, 1465. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O. Assessment of the adequacy of mathematical models. Agric. Syst. 2006, 89, 225–247. [Google Scholar] [CrossRef]
- Cavallini, D.; Penazzi, L.; Valle, E.; Raspa, F.; Bergero, D.; Formigoni, A.; Fusaro, I. When changing the hay makes a difference: A series of case reports. J. Equine Vet. Sci. 2022, 113, 103940. [Google Scholar] [CrossRef]
- Giorgino, A.; Federica Raspa, F.; Valle, E.; Bergero, D.; Cavallini, D.; Gariglio, M.; Bongiorno, V.; Bussone, G.; Bergagna, S.; Cimino, F.; et al. Effect of dietary organic acids and botanicals on metabolic status and milk parameters in mid–late lactating goats. Animals 2023, 13, 797. [Google Scholar] [CrossRef]
- Flavia Girolami, F.; Barbarossa, A.; Badino, P.; Ghadiri, S.; Cavallini, D.; Zaghini, A.; Nebbia, C. Effects of turmeric powder on aflatoxin M1 and aflatoxicol excretion in milk from dairy cows exposed to aflatoxin B1 at the EU maximum tolerable levels. Toxins 2022, 14, 430. [Google Scholar] [CrossRef]
- Menezes, B.B.; Ribeiro, C.B.; Walker, C.C.; Melo, G.K.A.; Souza, A.R.D.L.; Fernandes, H.J.; Franco, G.L.; Morais, M.G. Prediction of physical and chemical composition carcass of ewe lambs by 9-11th ribs section or 12th rib. Rev. Bras. Saúde Prod. Anim. 2015, 16, 874–884. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.B.; Neves, M.L.M.W.; Barreto, L.M.G.; Ferreira, M.A.; Monnerat, J.I.S.; Carone, G.M.; Morais, J.S.; Véras, A.S.C. Prediction of carcass composition through measurements in vivo and measurements of the carcass of growing Santa Inês sheep. PLoS ONE 2021, 16, 0247950. [Google Scholar] [CrossRef]
- Salazar-Cuytun, R.; Herrera-Camacho, J.; García-Herrera, R.A.; Pozo-Leyva, D.; Gurgel, A.L.C.; Ítavo, L.C.V.; Santos, G.T.; Chay-Canul, A.J. Relationships between body mass index, ultrasound measurements and, internal body fat depots in Pelibuey sheep. Biosci. J. 2023, 39, 39062. [Google Scholar] [CrossRef]
- Mertens, D.R. Regulation of forage intake. In Forage Quality, Evaluation and Utilization; American Society of Agronomy: Madison, WI, USA, 1994; pp. 450–492. [Google Scholar]
- Gurgel, A.L.C.; Difante, G.S.; Ítavo, L.C.V.; Emerenciano Neto, J.V.; Ítavo, C.C.F.B.; Fernandes, P.B.; Costa, C.M.; Roberto, F.F.S.; Chay-Canul, A.J. Aspects related to the importance of using predictive models in sheep production. Review. Rev. Mex. Cienc. Pecu. 2023, 14, 204–227. [Google Scholar]
- Lahart, B.; McParland, S.; Kennedy, E.; Boland, T.; Condon, T.; Williams, M.; Galvin, N.; McCarthy, B.; Buckley, F. Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis. J. Dairy Sci. 2019, 102, 8907–8918. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wu, C.; Peng, W.; Liu, J.X.; Sun, H.Z. Predicting daily dry matter intake using feed intake of first two hours after feeding in mid and late lactation dairy cows with fed ration three times per day. Animals 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Dórea, J.R.R.; Borchers, M.R.; Wallace, R.L.; Bertics, S.J.; DeNise, S.K.; Weigel, K.A.; White, H.M. Comparison of methods to predict feed intake and residual feed intake using behavioral and metabolite data in addition to classical performance variables. J. Dairy Sci. 2021, 104, 8765–8782. [Google Scholar] [CrossRef]
- Madilindi, M.A.; Banga, C.B.; Zishiri, O.T. Prediction of dry matter intake and gross feed efficiency using milk production and live weight in frst-parity Holstein cows. Trop. Anim. Health Prod. 2022, 54, 13. [Google Scholar] [CrossRef]
- Fernandes, G.A.; Oliveira, A.S.; Araújo, C.V.; Couto, V.R.M.; Moraes, K.A.K.; Moraes, H.B.K. Prediction of pasture intake by beef cattle in tropical conditions. Trop. Anim. Health Prod. 2022, 54, 13. [Google Scholar] [CrossRef]
- Schio, A.R.; Veloso, C.R.; Silva, F.F.; Ítavo, L.C.V.; Mateus, R.G.; Silva, R.R. Forage on offer for Nellore heifers supplemented during the drought and dry/rainy transition seasons. Acta Sci. Anim. Sci. 2011, 33, 9–17. [Google Scholar]
- Oliveira, A.P.; Pereira, E.S.; Biffani, S.; Medeiros, A.N.; Silva, A.M.A.; Oliveira, R.L.; Marcondes, M.I. Meta-analysis of the energy and protein requirements of hair sheep raised in the tropical region of Brazil. J. Anim. Physiol. Anim. Nutr. 2018, 102, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Vieira, P.A.S.; Pereira, L.G.R.; Azevêdo, J.A.G.; Neves, A.L.A.; Chizzotti, M.L.; Santos, R.D.; Araújo, G.G.L.; Mistura, C.; Chaves, A.V. Development of mathematical models to predict dry matter intake in feedlot Santa Ines rams. Small Rumin. Res. 2013, 122, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.P.; Pereira, E.S.; Pinto, A.P.; Silva, A.M.A.; Carneiro, M.S.S.; Mizubuti, I.Y.; Ribeiro, E.L.A.; Campos, A.C.N.; Gadelha, C.R.F. Estimates of nutritional requirements and use of Small Ruminant Nutrition System model for hair sheep in semiarid conditions. Semin. Cienc. Agrar. 2014, 35, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Moura, J.R.F.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Dias, A.M.; Difante, G.S.; Santos, G.S.; Gurgel, A.L.C.; Chay-Canul, A.J. Prediction models of intake and productive performance of non-castrated Nellore cattle fnished in the feedlot system under tropical conditions. Trop. Anim. Health Prod. 2023, 55, 64. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2021.
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.G.; Young, A.J. The association between milk urea nitrogen and DHI production variables in Western commercial dairy herds. J. Dairy Sci. 2003, 86, 3008–3015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, P.M.; Machado, P.F.; Coldebella, A.; Cassoli, L.D.; Coelho, K.O.; Rodrigues, P.H.M. Effects of non-dietary factors on milk urea nitrogen in lactating Holstein cows. R. Bras. Zootec. 2006, 36, 114–1121. [Google Scholar]
- Steyerberg, E.W.; Harrell, F.E. Prediction models need appropriate internal, internal-external, and external validation. J. Clin. Epidemiol. 2016, 69, 245–247. [Google Scholar] [CrossRef] [Green Version]
- Canul-Solis, J.; Angeles-Hernández, J.C.; García-Herrera, R.A.; Razo-Rodríguez, D.; Lee-Rangle, H.A.; Piñeiro-Vázquez, A.T.; Casanova-Lugo, F.; Rosales-Nieto, C.A.; Chay-Canul, A.J. Estimation of body weight in hair ewes using an indirect measurement method. Trop. Anim. Health Prod. 2020, 52, 2341–2347. [Google Scholar] [CrossRef]
Variables | N | Average ± SD | Minimum | Maximum | SEM |
---|---|---|---|---|---|
Body weight (BW, kg) | 113 | 440.52 ± 90.49 | 312.25 | 704.00 | 8.51 |
Metabolic body weight (BW0.75, kg) | 113 | 95.81 ± 14.45 | 74.28 | 136.67 | 1.36 |
Dry matter intake (DMI, kg/day) | 113 | 13.13 ± 3.87 | 9.47 | 27.11 | 0.36 |
Crude protein intake (CPI, kg/day) | 113 | 1.90 ± 0.63 | 1.19 | 4.54 | 0.06 |
Neutral detergent fibre intake (NDFI, kg/day) | 113 | 5.79 ± 1.42 | 4.37 | 11.89 | 0.13 |
Acid detergent fibre intake (ADFI, kg/day) | 97 | 3.16 ± 0.39 | 2.64 | 4.48 | 0.04 |
Total digestible nutrients intake (TDNI, kg/day) | 97 | 9.12 ± 1.05 | 6.34 | 13.06 | 0.11 |
Milk yield (MY, kg/day) | 113 | 14.26 ± 5.35 | 4.50 | 34.93 | 0.50 |
Fat-corrected milk yield (FCMY, kg/day) | 113 | 14.14 ± 5.15 | 4.82 | 34.56 | 0.48 |
Milk protein (MProt, %) | 113 | 3.68 ± 0.53 | 2.68 | 4.77 | 0.49 |
Milk fat (MFat, %) | 113 | 4.07 ± 1.32 | 1.04 | 7.50 | 0.12 |
Milk lactose (MLac, %) | 113 | 4.48 ± 0.25 | 3.79 | 4.92 | 0.02 |
Milk total solids (MTS, %) | 113 | 13.22 ± 1.65 | 9.95 | 16.76 | 0.15 |
Milk urea nitrogen (MUN, mg/dL) | 113 | 18.06 ± 7.35 | 6.85 | 38.49 | 0.69 |
BW | BW0.75 | DMI | CPI | NDFI | ADFI | TDNI | MY | FCMY | MFat | MLac | MProt | MTS | MUN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BW | 1.00 | 0.99 ** | 0.81 ** | 0.77 ** | 0.79 ** | 0.15 | 0.15 | 0.73 ** | 0.58 ** | −0.23 * | 0.19 * | −0.42 ** | −0.29 * | −0.06 |
BW0.75 | 1.00 | 0.80 ** | 0.76 ** | 0.78 ** | 0.15 | 0.14 | 0.72 ** | 0.58 ** | 0.22 * | 0.19 * | −0.41 ** | 0.29 * | 0.06 | |
DMI | 1.00 | 0.98 ** | 0.96 ** | 0.80 ** | 0.81 * | 0.81 * | 0.56 ** | −0.44 ** | 0.33 * | −0.56 ** | −0.47 ** | 0.05 | ||
CPI | 1.00 | 0.96 ** | 0.77 ** | 0.69 ** | 0.80 ** | 0.55 ** | −0.44 ** | 0.37 ** | −0.57 ** | −0.48 ** | 0.11 | |||
NDFI | 1.00 | 0.93 | 0.58 ** | 0.81 * | 0.56 ** | −0.40 ** | 0.32 * | −0.52 ** | −0.44 ** | 0.02 | ||||
ADFI | 1.00 | 0.45 ** | 0.10 | −0.35 ** | −0.58 ** | 0.38 ** | −0.48 ** | −0.55 ** | 0.45 ** | |||||
TDNI | 1.00 | 0.12 | −0.08 | −0.21 * | 0.26 * | −0.12 | 0.18 * | 0.21 * | ||||||
MY | 1.00 | 0.86 ** | −0.26 * | 0.34 * | −0.55 ** | −0.32 * | −0.12 | |||||||
FCMY | 1.00 | 0.23 * | 0.05 | −0.19 * | 0.14 | −0.41 * | ||||||||
MFat | 1.00 | −0.60 ** | 0.74 ** | 0.94 ** | −0.58 ** | |||||||||
MLac | 1.00 | −0.62 ** | −0.52 ** | 0.41 ** | ||||||||||
MProt | 1.00 | 0.83 ** | −0.42 ** | |||||||||||
MTS | 1.00 | −0.53 ** | ||||||||||||
MUN | 1.00 |
Equation | RMSE | r2 | C(p) | p-Value | |
---|---|---|---|---|---|
Dry matter intake (DMI, kg/day) | |||||
1 | YDMI = −2.06483 + 2.62252.NDFI | 1.03 | 0.92 | 14.38 | 0.0001 |
2 | YDMI = −2.77526 + 0.00480.BW + 2.37990.NDFI | 1.00 | 0.93 | 8.29 | 0.0001 |
3 | YDMI = −1.52619 + 0.00557.BW + 0.25994.NDFI − 0.21927.MFat | 0.97 | 0.94 | 2.34 | 0.0001 |
4 | YDMI = −1.22245 + 0.00494.BW + 0.04608.MY + 2.14859.NDFI − 0.22863.MFat | 0.97 | 0.94 | 2.03 | 0.0001 |
Neutral detergent fibre intake (NDFI, kg/day) | |||||
5 | YNDFI = 2.73423 + 0.21464.MY | 0.84 | 0.65 | 39.64 | 0.0001 |
6 | YNDFI = 3.63559 + 0.00000654.BW2 + 0.00361.MY2 | 0.69 | 0.77 | 10.78 | 0.0001 |
7 | YNDFI = 1.16600 + 1.92445.CPI + 0.00217.BW | 0.39 | 0.93 | 4.95 | 0.0001 |
8 | YNDFI = 1.46183 + 1.78164.CPI + 0.00175.BW + 0.0007125.MY2 | 0.38 | 0.93 | 2.47 | 0.0001 |
Crude protein intake (CPI, kg/day) | |||||
9 | YCPI = 0.56512 + 0.09414.MY | 0.38 | 0.64 | 84.38 | 0.0001 |
10 | YCPI = 0.09150 + 0.00234.BW + 0.12265.MY − 0.06824.FCMY | 0.29 | 0.78 | 10.11 | 0.0001 |
11 | YCPI = 2.11775 + 0.00454.MY2 − 0.08930.FCMY | 0.28 | 0.81 | 21.60 | 0.0001 |
12 | YCPI = 1.81163 + 0.00371.MY2 + 0.000002.BW2 − 0.08015.FCMY | 0.26 | 0.84 | 6.07 | 0.0001 |
Equation | RMSE | r2 | C(P) | p-Value | |
---|---|---|---|---|---|
Milk Yield (MY, kg/day) | |||||
13 | YMY = −0.35370 + 1.11265.DMI | 3.19 | 0.65 | 22.02 | 0.0001 |
14 | YMY = −2.98665 + 0.85514.DMI + 0.01365.BW | 3.11 | 0.67 | 3.83 | 0.0001 |
15 | YMY = 31.07583 + 0.77530.CPI2 − 0.10347.BW + 0.00012679.BW2 | 2.86 | 0.72 | 1.89 | 0.0001 |
16 | YMY = −6.95912 + 0.02140.DMI2 − 0.07114.BW + 0.0000904.BW2 + 4.85942. MFat − 0.50981. MFat2 + 4.42102.MLac | 2.61 | 0.77 | 5.26 | 0.0001 |
Milk Fat (MFat, %) | |||||
17 | YMFat = 8.11644 − 1.70280.DMI + 1.23601.NDFI + 1.04077.TDNI | 0.93 | 0.51 | 7.15 | 0.0001 |
18 | YMFat = 7.79626 –1.66251.DMI + 1.36044.NDFI − 0.06672.MY + 0.00333.BW + 1.02753.TDNI | 0.91 | 0.54 | 5.16 | 0.0001 |
19 | YMFat = 0.84993 − 0.15719.DMI + 0.00186.BW − 0.11913.MY + 1.66848.MProt − 0.77230.MLac | 0.62 | 0.75 | 4.39 | 0.0001 |
20 | YMFat = 2.41143 − 0.51728.DMI + 0.01024.DMI2 + 0.10335.MY − 1.58625.MProt + 0.00000285.BW2 − 0.07149.MLac2 | 0.60 | 0.76 | 1.68 | 0.0001 |
Milk urea nitrogen (MUN, mg/dL) | |||||
21 | YMUN = 42.83429 + 13.39994.CPI − 18.57076.NDFI + 18.89071.ADFI − 2.16292.MFat | 4.52 | 0.62 | 11.93 | 0.0001 |
22 | YMUN = 37.89993 + 13.68839.CPI − 20.88952.NDFI + 20.58141.ADFI + 0.02893.BW − 2.26930.MFat | 4.35 | 0.65 | 5.84 | 0.0001 |
23 | YMUN = −0.80896.MY + 1.03405.CPI2 + 1.22163.MLac2 | 5.21 | 0.92 | 34.91 | 0.0001 |
Y | r2 | CCC | MSE | RMSE | RMSEP | |
---|---|---|---|---|---|---|
Equation (4) | DMI | 0.94 | 0.89 | 0.68 | 0.82 | 1.70 |
Equation (8) | NDFI | 0.87 | 0.64 | 0.62 | 0.79 | 1.19 |
Equation (12) | CPI | 0.92 | 0.60 | 0.03 | 0.18 | 0.56 |
Equation (15) | MY | 0.79 | 0.55 | 28.60 | 5.54 | 1.25 |
Equation (20) | MFat | 0.71 | 0.63 | 0.18 | 0.43 | 0.44 |
Equation (23) | MUN | 0.82 | 0.71 | 0.37 | 0.61 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurgel, A.L.C.; Santos, G.T.d.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Difante, G.d.S.; Dias, A.M.; Longhini, V.Z.; Dias-Silva, T.P.; de Araújo, M.J.; Neto, J.V.E.; et al. Mathematical Models to Predict Dry Matter Intake and Milk Production by Dairy Cows Managed under Tropical Conditions. Agriculture 2023, 13, 1446. https://doi.org/10.3390/agriculture13071446
Gurgel ALC, Santos GTd, Ítavo LCV, Ítavo CCBF, Difante GdS, Dias AM, Longhini VZ, Dias-Silva TP, de Araújo MJ, Neto JVE, et al. Mathematical Models to Predict Dry Matter Intake and Milk Production by Dairy Cows Managed under Tropical Conditions. Agriculture. 2023; 13(7):1446. https://doi.org/10.3390/agriculture13071446
Chicago/Turabian StyleGurgel, Antonio Leandro Chaves, Geraldo Tadeu dos Santos, Luís Carlos Vinhas Ítavo, Camila Celeste Brandão Ferreira Ítavo, Gelson dos Santos Difante, Alexandre Menezes Dias, Vanessa Zirondi Longhini, Tairon Pannunzio Dias-Silva, Marcos Jácome de Araújo, João Virgínio Emerenciano Neto, and et al. 2023. "Mathematical Models to Predict Dry Matter Intake and Milk Production by Dairy Cows Managed under Tropical Conditions" Agriculture 13, no. 7: 1446. https://doi.org/10.3390/agriculture13071446
APA StyleGurgel, A. L. C., Santos, G. T. d., Ítavo, L. C. V., Ítavo, C. C. B. F., Difante, G. d. S., Dias, A. M., Longhini, V. Z., Dias-Silva, T. P., de Araújo, M. J., Neto, J. V. E., Fernandes, P. B., & Chay-Canul, A. J. (2023). Mathematical Models to Predict Dry Matter Intake and Milk Production by Dairy Cows Managed under Tropical Conditions. Agriculture, 13(7), 1446. https://doi.org/10.3390/agriculture13071446